1
|
Frolov A, Atwood SG, Guzman MA, Martin JR. A Rare Case of Polymicrogyria in an Elderly Individual With Unique Polygenic Underlining. Cureus 2024; 16:e74300. [PMID: 39717325 PMCID: PMC11665267 DOI: 10.7759/cureus.74300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2024] [Indexed: 12/25/2024] Open
Abstract
Polymicrogyria (PMG) is the most common malformation of cortical development (MCD) and presents as an irregularly patterned cortical surface with numerous small gyri and shallow sulci leading to various neurological deficits including developmental delays, intellectual disability, epilepsy, and language and motor issues. The presentation of PMG varies and is often found in conjunction with other congenital anomalies. Histologically, PMG features an abnormal cortical structure and dyslamination, resulting in its classification as a defect of neuronal migration and organization. Due in part to a variety of etiologies, little is known about the molecular mechanism(s) underlining PMG. To address this gap in knowledge, a case study is presented where an elderly individual with a medical history of unspecified PMG was examined postmortem by using a combination of anatomical, magnetic resonance imaging (MRI), histopathological, and genetic techniques. The results of the study allowed the classification of this case as bifrontal PMG. The genetic screening by whole exome sequencing (WES) on the Illumina Next Generation Sequencing (NGS) platform yielded 83 rare (minor allele frequency, MAF ≤ 0.01) pathological/deleterious variants where none of the respective genes has been previously linked to PMG. However, a subsequent analysis of those variants revealed that a significant number of affected genes were associated with most of the biological processes known to be impaired in PMG thereby pointing toward a polygenic nature in the present case. One of the notable features of the WES dataset was the presence of rare pathological/deleterious variants of genes (ADGRA2, PCDHA1, PCDHA12, PTK7, TPGS1, and USP4) involved in the regulation of Wnt signaling potentially highlighting the latter as an important PMG contributor in the present case. Notably, ADGRA2 warrants a closer look as a candidate gene for PMG because it not only regulates cortical patterning but has also been recently linked to two cases of bifrontal PMG with multiple congenital anomalies through its compound heterozygous mutations.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Stuart G Atwood
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
2
|
Chen F, Feng F, You D, Guo Y, Yang S, Zhao T, Sun S, Wang L. A Prospective Observational Study of Children with FS-Associated Hospitalization: The Implication and Outcomes of Pathogen Detection in Cerebrospinal Fluid. Int J Gen Med 2023; 16:1891-1898. [PMID: 37223619 PMCID: PMC10202201 DOI: 10.2147/ijgm.s410337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Background Febrile seizures (FS) are a common cause of paediatric emergencies, but research on their aetiology and epidemiology are limited. The aim of this study was to investigate the prevalence of central nervous system (CNS) pathogenic infections in patients with FS-associated hospitalization. Methods A prospective observational study was conducted in children under 16 years of age with FS-associated hospitalization. Demographic, clinical and laboratory data were recorded. Multiplex-PCR was performed on cerebrospinal fluid (CSF) samples for nine viruses, nine bacteria and one fungus. Results A total of 119 children were enrolled between June 2021 and June 2022. Of these, 83.2% had a final diagnosis of FS (69.7%) or FS plus (13.4%). In addition, epilepsy and encephalitis/meningitis were also found in 16.8% (20/119). Seven pathogens were identified from 9 CSF samples (7.6%), including viruses (EV, EBV, HHV-6) and bacteria (H. influenzae, S. pneumoniae, M. tuberculosis, S. putrefaciens). There were no significant clinical or laboratory differences between children who tested positive or negative for pathogens in the CSF, except for the presentation of herpes pharyngitis. Children with encephalitis/meningitis had longer hospital stays compared with those diagnosed with FS at discharge; abnormal EEG findings were significantly more common in patients with epilepsy. Conclusion FS-associated hospitalized children may have viral or bacterial intracranial infections. Pathogen testing of CSF is an important basis for timely antibiotic or antiviral therapy when clinical and laboratory findings make FS indistinguishable from other CNS disorders.
Collapse
Affiliation(s)
- Fang Chen
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Fan Feng
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Dianping You
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Yinghui Guo
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Shuo Yang
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Tong Zhao
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Suzhen Sun
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| | - Le Wang
- Institute of Pediatric Research, Children’s Hospital of Hebei Province, Shijiazhuang, 050031, People’s Republic of China
| |
Collapse
|
3
|
Non-Typeable Haemophilus influenzae Invade Choroid Plexus Epithelial Cells in a Polar Fashion. Int J Mol Sci 2020; 21:ijms21165739. [PMID: 32785145 PMCID: PMC7461124 DOI: 10.3390/ijms21165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.
Collapse
|
4
|
Ren Y, Choi E, Zhang K, Chen Y, Ye S, Deng X, Zhang K, Bao X. Detection of Nuclear Protein Profile Changes by Human Metapneumovirus M2-2 Protein Using Quantitative Differential Proteomics. Vaccines (Basel) 2017; 5:vaccines5040045. [PMID: 29207503 PMCID: PMC5748611 DOI: 10.3390/vaccines5040045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
Human metapneumovirus (hMPV) is a leading cause of lower respiratory infection in pediatric populations globally. This study examined proteomic profile changes in A549 cells infected with hMPV and two attenuated mutants with deleted PDZ domain-binding motif(s) in the M2-2 protein. These motifs are involved in the interruption of antiviral signaling, namely the interaction between the TNF receptor associated factor (TRAF) and mitochondrial antiviral-signaling (MAVS) proteins. The aim of this study was to provide insight into the overall and novel impact of M2-2 motifs on cellular responses via an unbiased comparison. Tandem mass tagging, stable isotope labeling, and high-resolution mass spectrometry were used for quantitative proteomic analysis. Using quantitative proteomics and Venn analysis, 1248 common proteins were detected in all infected samples of both technical sets. Hierarchical clustering of the differentiated proteome displayed distinct proteomic signatures that were controlled by the motif(s). Bioinformatics and experimental analysis confirmed the differentiated proteomes, revealed novel cellular biological events, and implicated key pathways controlled by hMPV M2-2 PDZ domain-binding motif(s). This provides further insight for evaluating M2-2 mutants as potent vaccine candidates.
Collapse
Affiliation(s)
- Yuping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Plastic Surgery, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430073, China.
| | - Eunjin Choi
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ke Zhang
- Department of Biochemistry, Baylor University, Waco, TX 76706, USA.
| | - Yu Chen
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan 430073, China.
| | - Sha Ye
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Gynecologic Oncology Ward V, Hunan Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Xiaoling Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
- The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX 77555, USA.
- The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
5
|
Kouwaki T, Okamoto M, Tsukamoto H, Fukushima Y, Matsumoto M, Seya T, Oshiumi H. Zyxin stabilizes RIG-I and MAVS interactions and promotes type I interferon response. Sci Rep 2017; 7:11905. [PMID: 28928438 PMCID: PMC5605516 DOI: 10.1038/s41598-017-12224-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023] Open
Abstract
RIG-I and MDA5 are cytoplasmic viral RNA sensors that belong to the RIG-I-like receptors (RLRs), which induce antiviral innate immune responses, including the production of type I interferon and other pro-inflammatory cytokines. After recognition of viral RNA, the N-terminal caspase activation and recruitment domains (CARDs) of RIG-I and MDA5 bind to a CARD in the MAVS adaptor molecule, resulting in MAVS oligomerization and downstream signaling. To reveal the molecular mechanism of MAVS-dependent signaling, we performed a yeast two-hybrid screening and identified zyxin as a protein that binds to MAVS. Zyxin co-immunoprecipitated with MAVS in human cells. A proximity ligation assay showed that zyxin and MAVS partly co-localized on mitochondria. Ectopic expression of zyxin augmented MAVS-mediated IFN-β promoter activation, and knockdown of zyxin (ZYX) attenuated the IFN-β promoter activation. Moreover, ZYX knockdown reduced the expression of type I IFN and an interferon-inducible gene after stimulation with polyI:C or influenza A virus RNA. Interestingly, physical interactions between RLRs and MAVS were abrogated by ZYX knockdown. These observations indicate that zyxin serves as a scaffold for the interactions between RLRs and MAVS.
Collapse
Affiliation(s)
- Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaaki Okamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotake Tsukamoto
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, 060-8556, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, 060-8556, Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- JST, PRESTO, 1-1-1- Honjo, Chuo-ku, Kumamoto, 060-8556, Japan.
| |
Collapse
|
6
|
Parisi DN, Martinez LR. Intracellular Haemophilus influenzae invades the brain: is zyxin a critical blood brain barrier component regulated by TNF-α? Virulence 2015; 5:645-7. [PMID: 25127527 DOI: 10.4161/viru.36086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Dana N Parisi
- Department of Biomedical Sciences; Long Island University-Post; Brookville, NY USA
| | - Luis R Martinez
- Department of Biomedical Sciences; College of Osteopathic Medicine; New York Institute of Technology; Old Westbury, NY USA
| |
Collapse
|