1
|
Dudkevich R, Koh JH, Beaudoin-Chabot C, Celik C, Lebenthal-Loinger I, Karako-Lampert S, Ahmad-Albukhari S, Thibault G, Henis-Korenblit S. Neuronal IRE-1 coordinates an organism-wide cold stress response by regulating fat metabolism. Cell Rep 2022; 41:111739. [PMID: 36450261 DOI: 10.1016/j.celrep.2022.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/07/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Cold affects many aspects of biology, medicine, agriculture, and industry. Here, we identify a conserved endoplasmic reticulum (ER) stress response, distinct from the canonical unfolded protein response, that maintains lipid homeostasis during extreme cold. We establish that the ER stress sensor IRE-1 is critical for resistance to extreme cold and activated by cold temperature. Specifically, neuronal IRE-1 signals through JNK-1 and neuropeptide signaling to regulate lipid composition within the animal. This cold-response pathway can be bypassed by dietary supplementation with unsaturated fatty acids. Altogether, our findings define an ER-centric conserved organism-wide cold stress response, consisting of molecular neuronal sensors, effectors, and signaling moieties, which control adaptation to cold conditions in the organism. Better understanding of the molecular basis of this stress response is crucial for the optimal use of cold conditions on live organisms and manipulation of lipid saturation homeostasis, which is perturbed in human pathologies.
Collapse
Affiliation(s)
- Reut Dudkevich
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Jhee Hong Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Sarit Karako-Lampert
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Syed Ahmad-Albukhari
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Sivan Henis-Korenblit
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Regulation and functions of membrane lipids: Insights from Caenorhabditis elegans. BBA ADVANCES 2022; 2:100043. [PMID: 37082601 PMCID: PMC10074978 DOI: 10.1016/j.bbadva.2022.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
The Caenorhabditis elegans plasma membrane is composed of glycerophospholipids and sphingolipids with a small cholesterol. The C. elegans obtain the majority of the membrane lipids by modifying fatty acids present in the bacterial diet. The metabolic pathways of membrane lipid biosynthesis are well conserved across the animal kingdom. In C. elegans CDP-DAG and Kennedy pathway produce glycerophospholipids. Meanwhile, the sphingolipids are synthesized through a different pathway. They have evolved remarkably diverse mechanisms to maintain membrane lipid homeostasis. For instance, the lipid bilayer stress operates to accomplish homeostasis during any perturbance in the lipid composition. Meanwhile, the PAQR-2/IGLR-2 complex works with FLD-1 to balance unsaturated to saturated fatty acids to maintain membrane fluidity. The loss of membrane lipid homeostasis is observed in many human genetic and metabolic disorders. Since C. elegans conserved such genes and pathways, it can be used as a model organism.
Collapse
|
3
|
Schifano E, Cicalini I, Pieragostino D, Heipieper HJ, Del Boccio P, Uccelletti D. In vitro and in vivo lipidomics as a tool for probiotics evaluation. Appl Microbiol Biotechnol 2020; 104:8937-8948. [PMID: 32875367 DOI: 10.1007/s00253-020-10864-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 07/18/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The probiotic bacteria are helpful for nutritional and therapeutic purposes, and they are commercially available in various forms, such as capsules or powders. Increasing pieces of evidence indicate that different growth conditions and variability in manufacturing processes can determine the properties of probiotic products. In recent years, the lipidomic approach has become a useful tool to evaluate the impact that probiotics induce in host physiology. In this work, two probiotic formulations with identical species composition, produced in two different sites, the USA and Italy, were utilized to feed Caenorhabditis elegans, strains and alterations in lipid composition in the host and bacteria were investigated. Indeed, the multicellular organism C. elegans is considered a simple model to study the in vivo effects of probiotics. Nematodes fat metabolism was assessed by gene expression analysis and by mass spectrometry-based lipidomics. Lipid droplet analysis revealed a high accumulation of lipid droplets in worms fed US-made products, correlating with an increased expression of genes involved in the fatty acid synthesis. We also evaluated the lifespan of worms defective in genes involved in the insulin/IGF-1-mediated pathway and monitored the nuclear translocation of DAF-16. These data demonstrated the involvement of the signaling in C. elegans responses to the two diets. Lipidomics analysis of the two formulations was also conducted, and the results indicated differences in phosphatidylglycerol (PG) and phosphatidylcholine (PC) contents that, in turn, could influence nematode host physiology. Results demonstrated that different manufacturing processes could influence probiotics and host properties in terms of lipid composition. KEY POINTS: • Probiotic formulations impact on Caenorhabditis elegans lipid metabolism; • Lipidomic analysis highlighted phospholipid abundance in the two products; • Phosphocholines and phosphatidylglycerols were analyzed in worms fed the two probiotic formulations.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Ilaria Cicalini
- Department of Medicine and Aging Science, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Laboratory, Centre on Aging Sciences and Translational Medicine (Ce.S.I-MeT), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
4
|
Zhuo X, Qin Y, He P, Wei P, Zhang B, Chen X, Peng J. Transcriptomic analysis of Litopenaeus vannamei hepatopancreas under cold stress in cold-tolerant and cold-sensitive cultivars. Gene 2020; 764:145090. [PMID: 32861880 DOI: 10.1016/j.gene.2020.145090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 01/19/2023]
Abstract
Litopenaeus vannamei (L. vannamei) is one of the most widely cultured shrimp species in the world. The species often suffers from cold stress. To understand the molecular mechanism of cold tolerance, we performed transcriptomic analysis on two contrasting cultivars of L. vannamei, namely, cold-tolerant Guihai 2 (GH2) and cold-sensitive Guihai1 (GH1), under a control temperature (28 °C), cold stress (16 °C), and recovery to 28 °C. A total of 84.5 Gb of sequences were generated from 12 L. vannamei hepatopancreas libraries. The de-novo assembly generated a total of 143,029 unigenes with a mean size of 1,052 bp and an N50 of 2,604 bp, of which 34.08% were annotated in the Nr database. We analyzed the differentially expressed genes (DEGs) between nine comparison groups and detected a total of 21,026 DEGs. KEGG pathways, including lysosome, sphingolipid metabolism and nitrogen metabolism, were significantly enriched by DEGs between different temperatures in GH2. Furthermore, eight of the most significantly DEGs under cold stress from the transcriptomic analysis were selected for quantitative real-time PCR (qPCR) validation. Overall, we compared gene expression changes under cold stress in cold-tolerant and cold-sensitive L. vannamei for the first time. The results may further extend our understanding of the cold stress-response mechanism in L. vannamei.
Collapse
Affiliation(s)
- Xiaofei Zhuo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yibin Qin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Bin Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
5
|
Lakshmi PK, Kumar S, Pawar S, Kuriakose BB, Sudheesh MS, Pawar RS. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol Res 2020; 159:104925. [PMID: 32492491 DOI: 10.1016/j.phrs.2020.104925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/10/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Adaptive cellular stress response confers stress tolerance against inflammatory and metabolic disorders. In response to metabolic stress, the key mediator of cellular adaptation and tolerance is a class of molecules called the molecular chaperones (MCs). MCs are highly conserved molecules that play critical role in maintaining protein stability and functionality. Hormesis in this context is a unique adaptation mechanism where a low dose of a stressor (which is toxic at high dose) confers a stress-resistant adaptive cellular phenotype. Hormesis can be observed at different level of biological organization at various measurable endpoints. The MCs are believed to play a key role in adaptation during hormesis. Several phytochemicals are known for their hormetic response and are called phytochemical hormetins. The role of phytochemical-mediated hormesis on the adaptive cellular processes is proposed as a potential therapeutic approach to target inflammation associated with metabolic syndrome. However, the screening of phytochemical hormetins would require a paradigm shift in the methods currently used in drug discovery.
Collapse
Affiliation(s)
- P K Lakshmi
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Shweta Kumar
- Pharmacognosy and Phytochemistry Laboratory, Faculty of Pharmacy, VNS Group of Institutions, VNS Campus, Vidya Vihar, Neelbad-462044, Bhopal, MP, India
| | - Sulakshhna Pawar
- Ravi Shankar College of Pharmacy, Bypass Road, Bhanpur Square, Bhopal, MP 462010, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis, Mushayt, Saudi Arabia
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Rajesh Singh Pawar
- Truba Institute of Pharmacy, Karond-Gandhi Nagar, By Pass Road, Bhopal, 462038, India.
| |
Collapse
|
6
|
Takeishi A, Takagaki N, Kuhara A. Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans. J Neurogenet 2020; 34:351-362. [DOI: 10.1080/01677063.2020.1734001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Natsune Takagaki
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
7
|
Saha S. Association between the membrane transporter proteins and type 2 diabetes mellitus. Expert Rev Clin Pharmacol 2020; 13:287-297. [PMID: 32066279 DOI: 10.1080/17512433.2020.1729125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The prevalence rate of diabetes is increasing day by day and the current scenario of the available agents for its treatment has given rise to stimulation in the search for new therapeutic targets and agents. Therefore the present review will examine the role of membrane composition in the pathophysiology of Type 2 Diabetes and the possible therapeutic approaches for this.Areas covered: Glucose transporter proteins (GLUTs) are integral membrane proteins which are responsible for facilitated glucose transport over the plasma membrane into cells. Thus, this chapter is an attempt to interpret the co-relation between membrane transporter proteins and lipid molecules of cell membrane and their implications in type 2 diabetes mellitus. The relationship between the composition controlled flexibility of the membrane in the insertion of GLUTs into cell membrane as well as its fusion with the membrane is the focus of this chapter.Expert opinion: There is increasing data on the central role of phospholipid composition toward T2DM. Plasma membrane lipid composition plays a key role in maintaining the machinery for insulin-independent GLUT insertion into the membrane as well as insulin-dependent GLUT4 containing vesicles. As a therapeutic option, the designing of new chemical entities should be aimed to decrease saturated fatty acids of lipid bilayer phospholipids to target type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Zoology, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
8
|
Lei L, Ling ZN, Chen XL, Hong LL, Ling ZQ. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization. Cancer Manag Res 2020; 12:353-362. [PMID: 32021448 PMCID: PMC6970510 DOI: 10.2147/cmar.s210919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is critical in the compartmentalization of signaling cascades originating from the cytoplasmic membrane and various organelles. Scaffold proteins, such as progestin and adipoQ receptor (PAQR)3, specifically regulate this process, and have recently been identified in the Golgi apparatus. PAQR3 belongs to the PAQR family, and was recently described as a tumor suppressor. Accumulating evidence demonstrates PAQR3 is downregulated in different cancers to suppress its inhibitory effects on malignant potential. PAQR3 functions biologically through the pathological regulation of altered signaling pathways. Significant cell proliferation networks, including Ras proto-oncogene (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin, and vascular endothelial growth factor, are closely controlled by PAQR3 for physiologically relevant effects. Meanwhile, genetic/epigenetic susceptibility and environmental factors, may have functions in the downregulation of PAQR3 in human cancers. This study aimed to assess the subcellular localization of PAQR3 and determine its topological features and functional domains, summarizing its effects on cell signaling compartmentalization. The pathophysiological functions of PAQR3 in cancer pathogenesis, metabolic diseases, and developmental ailments were also highlighted.
Collapse
Affiliation(s)
- Lan Lei
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China.,The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Zhe-Nan Ling
- Department of Clinical Medicine, Medical College, Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Xiang-Liu Chen
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Lian-Lian Hong
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Zhi-Qiang Ling
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| |
Collapse
|
9
|
Abstract
Fundamental questions remain unresolved in diabetes: What is the actual mechanism of glucose toxicity? Why is there insulin resistance in type 2 diabetes? Why do diets rich in sugars or saturated fatty acids increase the risk of developing diabetes? Studying the C. elegans homologs of the anti-diabetic adiponectin receptors (AdipoR1 and AdipoR2) has led us to exciting new discoveries and to revisit what may be termed “The Membrane Theory of Diabetes”. We hypothesize that excess saturated fatty acids (obtained through a diet rich in saturated fats or through conversion of sugars into saturated fats via lipogenesis) leads to rigid cellular membranes that in turn impair insulin signalling, glucose uptake and blood circulation, thus creating a vicious cycle that contributes to the development of overt type 2 diabetes. This hypothesis is supported by our own studies in C. elegans and by a wealth of literature concerning membrane composition in diabetics. The purpose of this review is to survey this literature in the light of the new results, and to provide an admittedly membrane-centric view of diabetes.
Collapse
|
10
|
Svensk E, Devkota R, Ståhlman M, Ranji P, Rauthan M, Magnusson F, Hammarsten S, Johansson M, Borén J, Pilon M. Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition. PLoS Genet 2016; 12:e1005982. [PMID: 27082444 PMCID: PMC4833288 DOI: 10.1371/journal.pgen.1005982] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/16/2016] [Indexed: 12/19/2022] Open
Abstract
In spite of the worldwide impact of diabetes on human health, the mechanisms behind glucose toxicity remain elusive. Here we show that C. elegans mutants lacking paqr-2, the worm homolog of the adiponectin receptors AdipoR1/2, or its newly identified functional partner iglr-2, are glucose intolerant and die in the presence of as little as 20 mM glucose. Using FRAP (Fluorescence Recovery After Photobleaching) on living worms, we found that cultivation in the presence of glucose causes a decrease in membrane fluidity in paqr-2 and iglr-2 mutants and that genetic suppressors of this sensitivity act to restore membrane fluidity by promoting fatty acid desaturation. The essential roles of paqr-2 and iglr-2 in the presence of glucose are completely independent from daf-2 and daf-16, the C. elegans homologs of the insulin receptor and its downstream target FoxO, respectively. Using bimolecular fluorescence complementation, we also show that PAQR-2 and IGLR-2 interact on plasma membranes and thus may act together as a fluidity sensor that controls membrane lipid composition.
Collapse
Affiliation(s)
- Emma Svensk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Parmida Ranji
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Manish Rauthan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Hammarsten
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maja Johansson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Peng J, Wei P, Chen X, Zeng D, Chen X. Identification of cold responsive genes in Pacific white shrimp (Litopenaeus vannamei) by suppression subtractive hybridization. Gene 2016; 575:667-74. [DOI: 10.1016/j.gene.2015.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
|
12
|
Wang T, Ma D. Warm up and cool down! Oncotarget 2015; 6:30449-50. [PMID: 26387141 PMCID: PMC4741542 DOI: 10.18632/oncotarget.5721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Tao Wang
- Cardiovascular Research Institute and Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA
| | - Dengke Ma
- Cardiovascular Research Institute and Department of Physiology, UCSF School of Medicine, San Francisco, CA, USA
| |
Collapse
|
13
|
Yu X, Li Z, Chan MTV, Wu WKK. PAQR3: a novel tumor suppressor gene. Am J Cancer Res 2015; 5:2562-2568. [PMID: 26609468 PMCID: PMC4633890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 07/01/2015] [Indexed: 06/05/2023] Open
Abstract
PAQR3, also known as RKTG (Raf kinase trapping to Golgi), is a member of the progestin and adipoQ receptor (PAQR) family. The role of PAQR3 as a tumor suppressor has recently been established in different types of human cancer in which PAQR3 exerts its biological function through negative regulation of the oncogenic Raf/MEK/ERK signaling. Multiple studies have found that PAQR3 downregulation frequently occurs in human cancers and is very often associated with tumor progression and shortened patients' survival. Moreover, restoring the expression of PAQR3 could induce apoptosis and inhibit proliferation and invasiveness of cancer cells. Downregulation of PAQR3 by oncogenic microRNAs has also been reported. In this review, we summarized current knowledge concerning the role of PAQR3 in tumor development. To our knowledge, this is the first review on the role of this novel tumor suppressor.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing 100730, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
14
|
Saita EA, de Mendoza D. Thermosensing via transmembrane protein-lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1757-64. [PMID: 25906947 DOI: 10.1016/j.bbamem.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 11/25/2022]
Abstract
Cell membranes are composed of a lipid bilayer containing proteins that cross and/or interact with lipids on either side of the two leaflets. The basic structure of cell membranes is this bilayer, composed of two opposing lipid monolayers with fascinating properties designed to perform all the functions the cell requires. To coordinate these functions, lipid composition of cellular membranes is tailored to suit their specialized tasks. In this review, we describe the general mechanisms of membrane-protein interactions and relate them to some of the molecular strategies organisms use to adjust the membrane lipid composition in response to a decrease in environmental temperature. While the activities of all biomolecules are altered as a function of temperature, the thermosensors we focus on here are molecules whose temperature sensitivity appears to be linked to changes in the biophysical properties of membrane lipids. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Emilio A Saita
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET, 2000-Rosario, Argentina.
| |
Collapse
|
15
|
Patananan AN, Budenholzer LM, Eskin A, Torres ER, Clarke SG. Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Exp Gerontol 2014; 61:20-30. [PMID: 25449858 DOI: 10.1016/j.exger.2014.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/17/2014] [Accepted: 11/16/2014] [Indexed: 01/09/2023]
Abstract
Previous studies have shown that exposing adults of the soil-dwelling nematode Caenorhabditis elegans to concentrations of ethanol in the range of 100-400mM results in slowed locomotion, decreased fertility, and reduced longevity. On the contrary, lower concentrations of ethanol (0.86-68mM) have been shown to cause a two- to three-fold increase in the life span of animals in the stress resistant L1 larval stage in the absence of a food source. However, little is known about how gene and protein expression is altered by low concentrations of ethanol and the mechanism for the increased longevity. Therefore, we used biochemical assays and next generation mRNA sequencing to identify genes and biological pathways altered by ethanol. RNA-seq analysis of L1 larvae incubated in the presence of 17mM ethanol resulted in the significant differential expression of 649 genes, 274 of which were downregulated and 375 were upregulated. Many of the genes significantly altered were associated with the conversion of ethanol and triglycerides to acetyl-CoA and glucose, suggesting that ethanol is serving as an energy source in the increased longevity of the L1 larvae as well as a signal for fat utilization. We also asked if L1 larvae could sense ethanol and respond by directed movement. Although we found that L1 larvae can chemotax to benzaldehyde, we observed little or no chemotaxis to ethanol. Understanding how low concentrations of ethanol increase the lifespan of L1 larvae may provide insight into not only the longevity pathways in C. elegans, but also in those of higher organisms.
Collapse
Affiliation(s)
| | | | - Ascia Eskin
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Eric Rommel Torres
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| | - Steven Gerard Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|