1
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
2
|
Emberts Z, St Mary CM, Howard CC, Forthman M, Bateman PW, Somjee U, Hwang WS, Li D, Kimball RT, Miller CW. The evolution of autotomy in leaf-footed bugs. Evolution 2020; 74:897-910. [PMID: 32267543 PMCID: PMC7317576 DOI: 10.1111/evo.13948] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Colette M St Mary
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Cody Coyotee Howard
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Michael Forthman
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Ummat Somjee
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, 117377, Singapore
| | - Daiqin Li
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
3
|
Hodgkin J. Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. J Dev Biol 2019; 7:jdb7040021. [PMID: 31771156 PMCID: PMC6955759 DOI: 10.3390/jdb7040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Autotomy in C. elegans, which results in the severing of the body into two fragments, has been observed as a response to late larval worm-star formation after exposure to a bacterial surface pathogen. It was found that autotomy can occur in both hermaphroditic and gonochoristic nematode species, and during either the L3 or the L4 molt. Severing was hypothesized to be driven by a ‘balloon-twisting’ mechanism during molting but was found to be independent of lethargus-associated flipping. Extensive healing and apparent tissue fusion were seen at the site of scission. No obvious regeneration of lost body parts was seen in either L4 or adult truncated worms. A variety of mutants defective in processes of cell death, healing, regeneration, responses to damage, stress or pathogens were found to be competent to autotomize. Mutants specifically defective in autotomy have yet to be found. Autotomy may represent a modification of the essential normal process of molting.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
4
|
Emberts Z, Escalante I, Bateman PW. The ecology and evolution of autotomy. Biol Rev Camb Philos Soc 2019; 94:1881-1896. [PMID: 31240822 DOI: 10.1111/brv.12539] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023]
Abstract
Autotomy, the self-induced loss of a body part, occurs throughout Animalia. A lizard dropping its tail to escape predation is an iconic example, however, autotomy occurs in a diversity of other organisms. Octopuses can release their arms, crabs can drop their claws, and bugs can amputate their legs. The diversity of organisms that can autotomize body parts has led to a wealth of research and several taxonomically focused reviews. These reviews have played a crucial role in advancing our understanding of autotomy within their respective groups. However, because of their taxonomic focus, these reviews are constrained in their ability to enhance our understanding of autotomy. Here, we aim to synthesize research on the ecology and evolution of autotomy throughout Animalia, building a unified framework on which future studies can expand. We found that the ability to drop an appendage has evolved multiple times throughout Animalia and that once autotomy has evolved, selection appears to act on the removable appendage to increase the efficacy and/or efficiency of autotomy. This could explain why some autotomizable body parts are so elaborate (e.g. brightly coloured). We also show that there are multiple benefits, and variable costs, associated with autotomy. Given this variation, we generate an economic theory of autotomy (modified from the economic theory of escape) which makes predictions about when an individual should resort to autotomy. Finally, we show that the loss of an autotomizable appendage can have numerous consequences on population and community dynamics. By taking this broad taxonomic approach, we identified patterns of autotomy that transcend specific lineages and highlight clear directions for future research.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL, 32611, USA
| | - Ignacio Escalante
- Department of Environmental Sciences, Policy, & Management, University of California, 140 Mulford Hall, Berkeley, CA, 94720, USA
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|