Ahmadvand H, Ghasemi-Dehnoo M. Antiatherogenic, hepatoprotective, and hypolipidemic effects of coenzyme Q10 in alloxan-induced type 1 diabetic rats.
ARYA ATHEROSCLEROSIS 2014;
10:192-8. [PMID:
25258634 PMCID:
PMC4173318]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 05/01/2014] [Indexed: 11/05/2022]
Abstract
BACKGROUND
Diabetes mellitus, one of the leading metabolic syndromes, accounts for highest morbidity and mortality worldwide. In this study, we examined possible protective effect of coenzyme Q10 on lipid profile, atherogenic index, and liver enzyme markers in alloxan-induced type 1 diabetic rats.
METHODS
A total of 30 male rats were randomly divided into three groups; group 1 as control, group 2 diabetic untreatment, and group 3 treatments with coenzyme Q10 by 15 mg/kg i.p. daily, respectively .Diabetes was induced in the second and third groups by alloxan injection subcutaneously. After 8 weeks, the levels of fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), high density lipoprotein (HDL), atherogenic index, atherogenic coefficient, cardiac risk ratio, and the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) of all groups were analyzed. Data were analyzed using non-parametric Mann-Whitney test (using SPSS) and P < 0.05 was considered as significant.
RESULTS
Coenzyme Q10 inhibited significantly the activities of ALT (11.17%), AST (19.35%) and ALP (36.67%) and decreased FBG (21.19%), TG (37.24%), TC (17.15%), LDL (30.44%), VLDL (37.24%), atherogenic index (44.24%), atherogenic coefficient (49.69%), and cardiac risk ratio (37.97%), HDL level was significantly (33.38%) increased when treated with coenzyme Q10.
CONCLUSION
The findings of this study suggest that coenzyme Q10 exert beneficial effects on the lipid profile, atherogenic index, and liver enzymes activity in alloxan-induced type 1 diabetic rats.
Collapse