1
|
Kwon JH, Kim DK, Cho YE, Kwun IS. Zinc Action in Vascular Calcification. Prev Nutr Food Sci 2024; 29:118-124. [PMID: 38974586 PMCID: PMC11223917 DOI: 10.3746/pnf.2024.29.2.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Although zinc's involvement in bone calcification is well-established, its role in vascular calcification, characterized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, including atherosclerosis, remains unclear. This review focuses on zinc's action in vascular smooth muscle cell (VSMC) calcification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phosphatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate transporter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and thereby explaining the "zinc paradox," wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC calcification.
Collapse
Affiliation(s)
- Jae-Hee Kwon
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Young-Eun Cho
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| | - In-Sook Kwun
- Department of Food and Nutrition, College of Life Science and Biotechnology, Andong National University, Andong 36729, Korea
| |
Collapse
|
2
|
Gholizadeh M, Saeedy SAG, Roodi PB, Saedisomeolia A. The association between zinc and endothelial adhesion molecules ICAMs and VCAM-1 and nuclear receptors PPAR-ɑ and PPAR-γ: A systematic review on cell culture, animal and human studies. Microvasc Res 2021; 138:104217. [PMID: 34197877 DOI: 10.1016/j.mvr.2021.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cardiovascular health is strongly influenced by diet. The levels of inflammatory factors like ICAM-1 and VCAM-1 are high in patients with atherosclerosis or predisposing factor for heart disease. Antioxidant and anti-inflammatory functions are attributed to zinc. We systematically reviewed cell culture, human or animal studies for determining the relationship between zinc status and ICAMs or VCAM-1 levels. METHODS PubMed, Google Scholar, Scopus, and Cochrane databases from database inception till 30th August 2020 were systematically searched to obtain any possible article for inclusion. RESULTS After screening and removing unrelated or duplicate articles by the title and abstract by two independent reviewers, 15 articles were included. Results indicating an inverse relationship between zinc status with ICAM-1 or VCAM-1 levels and the development of endothelial inflammation, plaque formation, or atherosclerosis. A direct relationship between zinc status and PPAR-α or γ levels was also observed. Zinc oxide (ZnO), zinc nanoparticles, or ions can cause endothelial activation and increased levels of ICAM-1 and VCAM-1. CONCLUSION Normal function of the endothelium is linked with zinc level. Zinc deficiency causes atherosclerosis, most probably via increased production of ICAM-1 and VCAM-1; and decreased expression of PPAR-ɑ and PPAR-γ receptors. Contrarily, endothelial activation and increased ICAM-1 and VCAM-1 levels can be caused by ZnO, zinc nanoparticles, or zinc ions.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Poorya Basafay Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Lebedeva A, Vorobyeva D, Vagida M, Ivanova O, Felker E, Fitzgerald W, Danilova N, Gontarenko V, Shpektor A, Vasilieva E, Margolis L. Ex vivo culture of human atherosclerotic plaques: A model to study immune cells in atherogenesis. Atherosclerosis 2017; 267:90-98. [PMID: 29101840 DOI: 10.1016/j.atherosclerosis.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS The mechanisms that drive atherosclerotic plaque progression and destabilization in humans remain largely unknown. Laboratory models are needed to study these mechanisms under controlled conditions. The aim of this study was to establish a new ex vivo model of human atherosclerotic plaques that preserves the main cell types in plaques and the extracellular components in the context of native cytoarchitecture. METHODS Atherosclerotic plaques from carotid arteries of 28 patients undergoing carotid endarterectomy were dissected and cultured. At various time-points, samples were collected and analysed histologically. After enzymatic digestion, single cells were analysed with flow cytometry. Moreover, tissue cytokine production was evaluated. RESULTS We optimised the plaque dissection protocol by cutting plaques into circular segments that we cultured on collagen rafts at the medium-air interface, thus keeping them well oxygenated. With this technique, the relative presence of T and B lymphocytes did not change significantly during culture, and the sizes of lymphocyte subsets remained stable after day 4 of culture. Macrophages, smooth muscle cells, and fibroblasts with collagen fibres, as well as T and B lymphocyte subsets and CD16 natural killer cells, remained largely preserved for 19 days of culture, with a continuous production of inflammatory cytokines and chemokines. CONCLUSIONS Our new model of ex vivo human atherosclerotic plaques, which preserves the main subsets of immune cells in the context of tissue cytoarchitecture, may be used to investigate important aspects of atherogenesis, in particular, the functions of immune cells under controlled laboratory conditions.
Collapse
Affiliation(s)
- Anna Lebedeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Daria Vorobyeva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Murad Vagida
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Oxana Ivanova
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Eugeny Felker
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Natalya Danilova
- Department of Clinical Pathology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Gontarenko
- Department of Vascular Surgery, A.V. Vishnevsky Institute of Surgery, Moscow, Russia
| | - Alexander Shpektor
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow, Russia.
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Chen J, Wang S, Luo M, Zhang Z, Dai X, Kong M, Cai L, Wang Y, Shi B, Tan Y. From the Cover: Zinc Deficiency Worsens and Supplementation Prevents High-Fat Diet Induced Vascular Inflammation, Oxidative Stress, and Pathological Remodeling. Toxicol Sci 2016; 153:124-136. [PMID: 27370414 DOI: 10.1093/toxsci/kfw110] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Obesity has become a common public health problem in the world and raises the risk of various cardiovascular diseases. Zinc is essential for multiple organs in terms of normal structure and function. The present study investigated the effects of high fat diet (HFD) induced obesity on the aorta in mice, and evaluated whether it can be affected by zinc deficiency or supplementation. Four-week-old male C57BL/6J mice were fed HFD with varied amounts of zinc (deficiency, adequate and supplementation) for 3 and 6 months. Results showed that HFD feeding induced a time-dependent aortic remodeling, demonstrated by increased vessel wall thickness, tunica cell proliferation and fibrotic responses, and inflammatory response, reflected by increased expression of inflammatory cytokines (tumor necrosis factor-α and vascular cell adhesion molecule 1). HFD feeding also caused aortic oxidative damage, reflected by 3-nitrotyrosine and 4-hydroxy-2-nonenal accumulation, and down-regulated nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression and function, shown by down-regulation of its downstream antioxidants, catalase, NAD(P)H dehydrogenase (quinone 1), and metallothionein expression. The vascular effects of obesity-induced by HFD was exacerbated by zinc deficiency but significantly improved by zinc supplementation. In addition, down-regulation of Nrf2 function and associated antioxidants expression were also worsened by zinc deficiency but improved by zinc supplementation. These results suggest that HFD induces aortic remodeling, which can be exacerbated by zinc deficiency and improved by zinc supplementation.
Collapse
Affiliation(s)
- Jun Chen
- *Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an 710061, China Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| | - Shudong Wang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 Center of Cardiovascular Disease, The First Hospital of Jilin University, Changchun 130000, China
| | - Manyu Luo
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 Department of Nephrology, The Second Hospital of Jilin University, Changchun 130000, China
| | - Zhiguo Zhang
- Center of Cardiovascular Disease, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiaozhen Dai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202 School of Biomedicine, Chengdu Medical College, Chengdu 610500, China
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, SPHIS, University of Louisville, Louisville, Kentucky 40202
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| | - Yuehui Wang
- Department of Geriatric Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Bingyin Shi
- *Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, School of Medicine, Xi'an 710061, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences and School of Nursing, Wenzhou Medical University, Wenzhou 325035, China Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
5
|
Allen-Redpath K, Ou O, Beattie JH, Kwun IS, Feldmann J, Nixon GF. Marginal dietary zinc deficiency in vivo induces vascular smooth muscle cell apoptosis in large arteries. Cardiovasc Res 2013; 99:525-34. [DOI: 10.1093/cvr/cvt114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|