1
|
Kim E. Effects of Natural Alternative Sweeteners on Metabolic Diseases. Clin Nutr Res 2023; 12:229-243. [PMID: 37593210 PMCID: PMC10432160 DOI: 10.7762/cnr.2023.12.3.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
The rising prevalence of obesity and diabetes is a significant health concern both in globally and is now regarded as a worldwide epidemic. Added sugars like sucrose and high-fructose corn syrup (HFCS) are a major concern due to their link with an increased incidence of diet-induced obesity and diabetes. The purpose of this review is to provide insight into the effects of natural sweeteners as alternatives to sucrose and HFCS, which are known to have negative impacts on metabolic diseases and to promote further research on sugar consumption with a focus on improving metabolic health. The collective evidences suggest that natural alternative sweeteners have positive impacts on various markers associated with obesity and diabetes, including body weight gain, hepatic fat accumulation, abnormal blood glucose or lipid homeostasis, and insulin resistance. Taken together, natural alternative sweeteners can be useful substitutes to decrease the risk of obesity and diabetes compared with sucrose and HFCS.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Cheudjeu A. The SARS-CoV-2 Entry Inhibition Mechanisms of Serine Protease Inhibitors, OM-85, Heparin and Soluble HS Might Be Linked to HS Attachment Sites. Molecules 2022; 27:molecules27061947. [PMID: 35335311 PMCID: PMC8954261 DOI: 10.3390/molecules27061947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.
Collapse
|
3
|
Alam YH, Kim R, Jang C. Metabolism and Health Impacts of Dietary Sugars. J Lipid Atheroscler 2022; 11:20-38. [PMID: 35118020 PMCID: PMC8792817 DOI: 10.12997/jla.2022.11.1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/23/2022] Open
Abstract
Consumption of excessive amounts of added sugars and their effects on human health has been a major concern in the last several decades. Epidemiological data suggest that the incidence of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, cardiovascular disease and diabetes, has increased due to chronic surplus consumption of these sugars. While many of these sugars have been isolated and studied for centuries, their health impacts and exact underlying mechanisms are still unclear. In this review, we discuss the pathophysiological role of 6 major simple sugars present in the human diet and the biochemical and molecular pathways related to their metabolism by different organs and gut microbiota, with a focus on the most recent investigations.
Collapse
Affiliation(s)
- Yasmine Henna Alam
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Raymond Kim
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
4
|
Pol K, Mars M. L-arabinose and D-xylose: sweet pentoses that may reduce postprandial glucose and insulin responses. Food Nutr Res 2021; 65:6254. [PMID: 34393698 PMCID: PMC8344406 DOI: 10.29219/fnr.v65.6254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022] Open
Abstract
Background Diets inducing high fluctuations in plasma glucose levels are linked to type 2 diabetes. L-arabinose and D-xylose have been hypothesized to inhibit intestinal sucrase activity, delay sucrose digestion, and reduce glycaemic and insulinaemic responses. However, few human studies have assessed this using realistic foods. Objective We investigated the effects of the addition of L-arabinose and D-xylose on glucose homeostasis using a fruit-based drink and the effect of L-arabinose using a muffin. Design Fifteen males participated in two double-blind, randomized cross-over experiments. In experiment A, three drinks were tested: (1) L-arabinose, (2) D-xylose and (3) control drink. In experiment B, two muffins were tested: (1) L-arabinose and (2) control muffin. All products consisted of ~50 g available carbohydrates, and L-arabinose or D-xylose was added as 10% of sucrose. Pre- and post-ingestive plasma glucose and insulin levels were measured at fixed time points up to 180 min after consumption. Results Glucose and insulin peaks were lower after the L-arabinose and D-xylose drink than the control drink (P < 0.01). After consumption of the muffin, glucose responses were not significantly different; however, the insulin peak and incremental area under the curve (iAUC) tended to be lower for the L-arabinose muffin. Conclusion L-arabinose and D-xylose are functional ingredients that can potentially lower the post-ingestive glycaemic and insulinaemic responses when added to realistic foods. However, the efficacy of applying L-arabinose appears to depend on the food matrix. Addition of these compounds needs further testing in other foods and in other populations, such as pre-diabetics.
Collapse
Affiliation(s)
- Korrie Pol
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, The Netherlands
| | - Monica Mars
- Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, The Netherlands
| |
Collapse
|
5
|
Xu K, Wang M, Zhou W, Pu J, Wang H, Xie P. Chronic D-ribose and D-mannose overload induce depressive/anxiety-like behavior and spatial memory impairment in mice. Transl Psychiatry 2021; 11:90. [PMID: 33531473 PMCID: PMC7854712 DOI: 10.1038/s41398-020-01126-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The effects of different forms of monosaccharides on the brain remain unclear, though neuropsychiatric disorders undergo changes in glucose metabolism. This study assessed cell viability responses to five commonly consumed monosaccharides-D-ribose (RIB), D-glucose, D-mannose (MAN), D-xylose and L-arabinose-in cultured neuro-2a cells. Markedly decreased cell viability was observed in cells treated with RIB and MAN. We then showed that high-dose administration of RIB induced depressive- and anxiety-like behavior as well as spatial memory impairment in mice, while high-dose administration of MAN induced anxiety-like behavior and spatial memory impairment only. Moreover, significant pathological changes were observed in the hippocampus of high-dose RIB-treated mice by hematoxylin-eosin staining. Association analysis of the metabolome and transcriptome suggested that the anxiety-like behavior and spatial memory impairment induced by RIB and MAN may be attributed to the changes in four metabolites and 81 genes in the hippocampus, which is involved in amino acid metabolism and serotonin transport. In addition, combined with previous genome-wide association studies on depression, a correlation was found between the levels of Tnni3k and Tbx1 in the hippocampus and RIB induced depressive-like behavior. Finally, metabolite-gene network, qRT-PCR and western blot analysis showed that the insulin-POMC-MEK-TCF7L2 and MAPK-CREB-GRIN2A-CaMKII signaling pathways were respectively associated with RIB and MAN induced depressive/anxiety-like behavior and spatial memory impairment. Our findings clarified our understanding of the biological mechanisms underlying RIB and MAN induced depressive/anxiety-like behavior and spatial memory impairment in mice and highlighted the deleterious effects of high-dose RIB and MAN as long-term energy sources.
Collapse
Affiliation(s)
- Ke Xu
- grid.203458.80000 0000 8653 0555Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China ,grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Mingyang Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- grid.452206.7NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,Institute of Neuroscience and Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Wang J, Fukuda M, Chung JJ, Wang P, Jin T. Chemical exchange sensitive MRI of glucose uptake using xylose as a contrast agent. Magn Reson Med 2020; 85:1953-1961. [PMID: 33107108 DOI: 10.1002/mrm.28557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Glucose and its analogs can be detected by CEST and chemical exchange spin-lock (CESL) MRI techniques, but sensitivity is still a bottleneck for human applications. Here, CESL and CEST sensitivity and the effect of injection on baseline physiology were evaluated for a glucose analog, xylose. METHODS The CEST and CESL sensitivity were evaluated at 9.4 T in phantoms and by in vivo rat experiments with 0.5 and 1 g/kg xylose injections. Arterial blood glucose level was sampled before and after 1 g/kg xylose injection. The effect of injection on baseline neuronal activity was measured by electrophysiology data during injections of saline, xylose, and 2-deoxy-D-glucose. RESULTS In phantoms, xylose shows similar chemical exchange sensitivity and pH-dependence with that of glucose. In rat experiments with a bolus injection, CESL shows higher sensitivity in the detection of xylose than CEST, and the sensitivity of xylose is much higher than glucose. Injection of xylose does not significantly affect blood glucose level and baseline neural activity for 1-g/kg and 0.6-g/kg doses, respectively. CONCLUSION Due to its relatively high sensitivity and safety, xylose is a promising contrast agent for the study of glucose uptake.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julius Juhyun Chung
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ping Wang
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Compounds targeting YadC of uropathogenic Escherichia coli and its host receptor annexin A2 decrease bacterial colonization in bladder. EBioMedicine 2019; 50:23-33. [PMID: 31757778 PMCID: PMC6921372 DOI: 10.1016/j.ebiom.2019.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs), and fimbrial tip adhesins, play important roles in UPEC colonization. Few fimbrial tip adhesins and their receptors on host cells, which have the potential to be the therapeutic targets, have been identified. Methods the UPEC wild-type strain CFT073, ΔyadC and the complemented strain were used to perform assays in vitro and in vivo. The effects of D-xylose targeting YadC on UPEC colonization were evaluated. A YadC receptor was identified by far-western blotting, LC-MS/MS and co-immunoprecipitation. The effects of compounds targeting the receptor on UPEC colonization were tested. Findings YadC was investigated for its mediation of UPEC adhesion and invasion to bladder epithelial cells in vitro; and its promotion of UPEC colonization in bladder in vivo. D-xylose, targeting YadC, showed prophylactic and therapeutic effects on UPEC colonization. Annexin A2 (ANXA2) was identified as a YadC receptor, involved in UPEC infection. ANXA2 inhibitors attenuated UPEC infections. The yadC gene was widely present in UPEC clinical isolates and phylogenetic analysis of yadC was performed. Interpretation YadC and its receptor ANXA2 play important roles in UPEC colonization in bladder, leading to novel treatment strategies targeting YadC or ANXA2 for acute UTIs. Fund This study was supported by grants from the National Natural Science Foundation of China (NSFC) Programs (31670071 and 31970133), the National Key Technologies R&D Program, Intergovernmental international innovation cooperation (2018YFE0102000), Tianjin Science and Technology Commissioner Project (18JCZDJC36000), the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (2017ZD12). The Science Foundation of Tianjin Medical University (2016KY2M08).
Collapse
|
8
|
Akpro L, Gbogouri G, Konan B, Issali A, Konan K, Brou K, Nemlin G. Phytochemical compounds, antioxidant activity and non-enzymatic browning of sugars extracted from the water of immature coconut (Cocos nucifera L.). SCIENTIFIC AFRICAN 2019. [DOI: 10.1016/j.sciaf.2019.e00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Abstract
It is important to understand if, and to what extent, the pig can utilize xylose as an energy source if xylanase releases free xylose in the small intestine. The experimental objectives were to determine the effects of industry-relevant dietary xylose concentrations and adaptation time on xylose retention efficiency and metabolism, diet digestibility and energy value, nitrogen balance, and hindgut fermentation. Forty-eight pigs were housed in metabolism crates and randomly assigned to one of four treatments with increasing D-xylose levels (n = 12/treatment) in 2 replications of a 22-d experiment with 3 collection periods. The control diet was xylose-free (0%), to which either 2, 4, or 8% D-xylose was added. Adaptation effects were assessed during three fecal and urine collection periods: d 5-7, 12-14, and 19-21. On d 22, pigs from the 0 and 8% treatments were euthanized; cecal and colon digesta were collected. Dietary xylose did not affect the total tract digestibility of dry matter, gross energy, or crude protein (P>0.10). Digesta short chain fatty acids concentrations and molar proportions and cecal pH were not different (P>0.10). This experiment utilized a targeted metabolomics approach to characterize and quantify urine xylose and metabolite excretion. Xylose retention decreased from 60% to 47% to 41% when pigs were fed diets containing 2, 4, or 8% xylose, respectively. In the 4 and 8% treatments, xylose retention was greater in the 2nd and 3rd collection periods compared to the 1st. A comprehensive pathway for xylose metabolism was proposed and D-threitol was confirmed as the major urinary metabolite of xylose. In conclusion, pigs can metabolize xylose, but with considerably lower efficiency than glucose, and may be able to adapt with time to utilize xylose more efficiently.
Collapse
Affiliation(s)
- Nichole F. Huntley
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| | - John F. Patience
- Department of Animal Science, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
10
|
Agyekum AK, Walsh MC, Kiarie E, Sands JS, Nyachoti CM. Dietary D-xylose effects on growth performance, portal nutrient fluxes, and energy expenditure in growing pigs. J Anim Sci 2018; 96:2310-2319. [PMID: 29746656 PMCID: PMC6095248 DOI: 10.1093/jas/sky142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Xylanase is commonly added to pig diets rich in arabinoxylans to promote nutrient utilization and growth. However, high doses of xylanase could release high amounts of xylose in the upper gut, which could have negative nutritional and metabolic implications. However, the amount of xylose to elicit such adverse effects is not clear. Thus, two experiments were conducted to investigate the effects of dietary xylose on the growth performance and portal-drained viscera (PDV) fluxes of glucose (GLU), urea-N (BUN), insulin production, and O2 consumption in growing pigs. In Exp. 1, 64 pigs (21.4 ± 0.1 kg BW), housed as either two barrows or gilts per pen (eight pens per diet) were used to determine the effects of increasing levels of D-xylose (0, 5, 15, and 25%) in a corn-soybean meal-cornstarch-based diet on pig growth performance in a 28-d trial. Cornstarch was substituted for D-xylose (wt/wt) in the control diet. BW and feed intake were monitored weekly. D-xylose linearly reduced (P < 0.05) final BW, ADG, and G:F but not ADFI. However, final BW, ADG, and G:F of pigs fed 15% D-xylose did not differ from pigs fed 0% D-xylose. Thus, the results suggested that pigs could tolerate up to 15% dietary D-xylose. In Exp. 2, six gilts (22.8 ± 1.6 kg BW), fitted with permanent catheters in the portal vein, ileal vein, and carotid artery, were fed the 0% and 15% D-xylose diets at 4% of their BW once daily at 0900 h for 7 d in a cross-over design (six pigs per diet). On d 7, pigs were placed in indirect calorimeters to measure whole-animal O2 consumption and sample blood simultaneously for 6 h from the portal vein and carotid artery after feeding to assay GLU, O2, BUN, and insulin concentrations. Net portal nutrients and insulin production were calculated as porto-arterial concentration differences × portal blood flow (PBF) rate, whereas PDV O2 consumption was calculated as arterial-portal O2 differences × PBF. Diet had no effect on postprandial PBF, insulin production, and portal BUN flux and O2 consumption. Pigs fed 0% D-xylose had greater (P < 0.05) postprandial portal and arterial BUN concentrations, and portal GLU concentration and flux than pigs fed 15% D-xylose diet. In conclusion, feeding growing pigs a diet containing 15% D-xylose did not reduce pig performance or affect PDV energetic demand but reduced GLU fluxes.
Collapse
Affiliation(s)
- Atta K Agyekum
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Maria C Walsh
- Danisco Animal Nutrition-DuPont Industrial Biosciences, Marlborough, Wiltshire SN8 1XN, UK
| | - Elijah Kiarie
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jason S Sands
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
11
|
Xylobiose Prevents High-Fat Diet Induced Mice Obesity by Suppressing Mesenteric Fat Deposition and Metabolic Dysregulation. Molecules 2018; 23:molecules23030705. [PMID: 29558403 PMCID: PMC6017709 DOI: 10.3390/molecules23030705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is a public concern and is responsible for various metabolic diseases. Xylobiose (XB), an alternative sweetener, is a major component of xylo-oligosaccharide. The purpose of this study was to investigate the effects of XB on obesity and its associated metabolic changes in related organs. For these studies, mice received a 60% high-fat diet supplemented with 15% d-xylose, 10% XB, or 15% XB as part of the total sucrose content of the diet for ten weeks. Body weight, fat and liver weights, fasting blood glucose, and blood lipids levels were significantly reduced with XB supplementation. Levels of leptin and adipokine were also improved and lipogenic and adipogenic genes in mesenteric fat and liver were down-regulated with XB supplementation. Furthermore, pro-inflammatory cytokines, fatty acid uptake, lipolysis, and β-oxidation-related gene expression levels in mesenteric fat were down-regulated with XB supplementation. Thus, XB exhibited therapeutic potential for treating obesity which involved suppression of fat deposition and obesity-related metabolic disorders.
Collapse
|
12
|
Huntley NF, Patience JF. Xylose: absorption, fermentation, and post-absorptive metabolism in the pig. J Anim Sci Biotechnol 2018; 9:4. [PMID: 29340150 PMCID: PMC5759861 DOI: 10.1186/s40104-017-0226-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Xylose, as β-1,4-linked xylan, makes up much of the hemicellulose in cell walls of cereal carbohydrates fed to pigs. As inclusion of fibrous ingredients in swine diets continues to increase, supplementation of carbohydrases, such as xylanase, is of interest. However, much progress is warranted to achieve consistent enzyme efficacy, including an improved understanding of the utilization and energetic contribution of xylanase hydrolysis product (i.e. xylooligosaccharides or monomeric xylose). This review examines reports on xylose absorption and metabolism in the pig and identifies gaps in this knowledge that are essential to understanding the value of carbohydrase hydrolysis products in the nutrition of the pig. Xylose research in pigs was first reported in 1954, with only sporadic contributions since. Therefore, this review also discusses relevant xylose research in other monogastric species, including humans. In both pigs and poultry, increasing purified D-xylose inclusion generally results in linear decreases in performance, efficiency, and diet digestibility. However, supplementation levels studied thus far have ranged from 5% to 40%, while theoretical xylose release due to xylanase supplementation would be less than 4%. More than 95% of ingested D-xylose disappears before the terminal ileum but mechanisms of absorption have yet to be fully elucidated. Some data support the hypothesis that mechanisms exist to handle low xylose concentrations but become overwhelmed as luminal concentrations increase. Very little is known about xylose metabolic utilization in vertebrates but it is well recognized that a large proportion of dietary xylose appears in the urine and significantly decreases the metabolizable energy available from the diet. Nevertheless, evidence of labeled D-xylose-1-14C appearing as expired 14CO2 in both humans and guinea pigs suggests that there is potential, although small, for xylose oxidation. It is yet to be determined if pigs develop increased xylose metabolic capacity with increased adaptation time to diets supplemented with xylose or xylanase. Overall, xylose appears to be poorly utilized by the pig, but it is important to consider that only one study has been reported which supplemented D-xylose dietary concentrations lower than 5%. Thus, more comprehensive studies testing xylose metabolic effects at dietary concentrations more relevant to swine nutrition are warranted.
Collapse
Affiliation(s)
- Nichole F Huntley
- Department of Animal Science, 213 Kildee Hall, Iowa State University, Ames, 50011 IA USA
| | - John F Patience
- Department of Animal Science, 201B Kildee Hall, Iowa State University, Ames, 50011 IA USA
| |
Collapse
|
13
|
Pfützner A, Demircik F, Sachsenheimer D, Spatz J, Pfützner AH, Ramljak S. Impact of Xylose on Glucose-Dehydrogenase-Based Blood Glucose Meters for Patient Self-Testing. J Diabetes Sci Technol 2017; 11:577-583. [PMID: 28745092 PMCID: PMC5505425 DOI: 10.1177/1932296816678428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The pentose xylose is enriched in edible algae, and is increasingly used as a slowly metabolized carbohydrate in functional food. It is known to interfere with glucose-dehydrogenase-based (GDH) blood glucose measurement systems for patients self-testing. The aim of our study was to investigate the extent of xylose interference in commercially available blood glucose meters. A heparinized whole blood sample was manipulated to contain 3 different glucose concentrations (50-80 mg/dL, 130-160 mg/dL, and 250-300 mg/dL) and 4 different xylose concentrations (0 mg/dL, 25 mg/dL, 50 mg/dL, and 100 mg/dL). Each sample was measured 3 times with 2 different strip lots per test meter (AccuChek Aviva, AccuChek Connect, Contour Next, FreeStyle Freedom Lite, FreeStyle Insulinx, MyStar Extra, OneTouch Verio IQ, and Wellion Calla, reference: YSI GlucoStat analyzer). For analysis, we calculated the xylose capture rate, that is, the xylose amount wrongly displayed as glucose. No xylose interference was seen with 4 meters: AccuChek Aviva (mean capture rate 0%), AccuChek Connect (-2%), MyStar Extra (10%), and Wellion Calla (8%). In contrast, substantial interference was observed with Contour Next (100%), FreeStyle Freedom Lite (104%), FreeStyle Insulinx (120%), and OneTouch Verio IQ (162%). We observed xylose interference in several GDH-based meters. This may become important with increased use of xylose in dietary and functional food products, in particular in products designed for weight loss. Our findings may affect the meter selection for patients who are consuming such food products as part of their lifestyle treatment regimen.
Collapse
Affiliation(s)
- Andreas Pfützner
- Pfützner Science & Health Institute, Mainz, Germany
- Sciema UG, Mainz, Germany
- Andreas Pfützner, MD, PhD, Pfützner Science & Health Institute, Parcusstr 8, Mainz D-55116, Germany.
| | - Filiz Demircik
- Pfützner Science & Health Institute, Mainz, Germany
- Sciema UG, Mainz, Germany
| | | | | | | | | |
Collapse
|
14
|
Xylobiose, an Alternative Sweetener, Ameliorates Diabetes-Related Metabolic Changes by Regulating Hepatic Lipogenesis and miR-122a/33a in db/db Mice. Nutrients 2016; 8:nu8120791. [PMID: 27929393 PMCID: PMC5188446 DOI: 10.3390/nu8120791] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes is a major public health concern worldwide. Xylobiose (XB) consists of two molecules of d-xylose and is a major disaccharide in xylooligosaccharides that are used as prebiotics. We hypothesized that XB could regulate diabetes-related metabolic and genetic changes via microRNA expression in db/db mice. For six weeks, C57BL/KsJ-db/db mice received 5% XB as part of the total sucrose content of their diet. XB supplementation improved glucose tolerance with reduced levels of OGTT AUC, fasting blood glucose, HbA1c, insulin, and HOMA-IR. Furthermore, XB supplementation decreased the levels of total triglycerides, total cholesterol, and LDL-C. The expression levels of miR-122a and miR-33a were higher and lower in the XB group, respectively. In the liver, expressions of the lipogenic genes, including, fatty acid synthase (FAS), peroxisome proliferator activated receptor γ (PPARγ), sterol regulatory element-binding protein-1C (SREBP-1C), sterol regulatory element-binding protein-2 (SREBP-2), acetyl-CoA carboxylase (ACC), HMG-CoA reductase (HMGCR), ATP-binding cassette transporter G5/G8 (ABCG5/8), cholesterol 7 alpha-hydroxylase (CYP7A1), and sterol 12-alpha-hydroxylase (CYP8B1), as well as oxidative stress markers, including superoxide dismutase 1 (SOD1), superoxide dismutase 2 (SOD2), glutathione peroxidase (GPX), and catalase, were also regulated by XB supplementation. XB supplementation inhibited the mRNA expressions levels of the pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interleukin (IL)-6, and monocyte chemoattractant protein (MCP)-1, as well as phosphorylation of c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), p38 mitogen-activated protein kinases (MAPK), and extracellular signal-regulated kinases 1/2 (ERK1/2). These data demonstrate that XB exhibits anti-diabetic, hypolipogenic, and anti-inflammatory effects via regulation of the miR-122a/33a axis in db/db mice.
Collapse
|
15
|
Regassa A, Kiarie E, Sands JS, Walsh MC, Kim WK, Nyachoti CM. Nutritional and metabolic implications of replacing cornstarch with D-xylose in broiler chickens fed corn and soybean meal-based diet. Poult Sci 2016; 96:388-396. [PMID: 27444448 DOI: 10.3382/ps/pew235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/22/2015] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
Effects of substituting cornstarch with D-xylose on growth performance, nutrients digestibility, serum metabolites, and expression of select hepatic genes involved in glucose and lipid metabolism were investigated in broiler chickens. A total of 360 one-day-old male Ross chicks were fed 3 diets (n = 24; 5 chicks/cage) for 21 days. A control corn-soybean meal-based diet with 25% cornstarch was formulated to meet specifications. Two additional diets were formulated by substituting cornstarch with 5 or 15% D-xylose w/w. Growth performance and digestibility by index method were determined in 12 replicate cages. Birds in these replicates had free access to feed and water, the BW and feed intake (FI) were monitored weekly and the excreta samples were collected on d 18 to 20. The other 12 replicates were used for blood and liver sampling by serial slaughter. On d 18, baseline (t0) birds were sampled following a 12 h overnight fasting and birds allowed 30 min access to the feed; samples were subsequently taken at 60, 120, 180, 240, and 300 min post feeding. Serum metabolites (glucose, xylose, and insulin) were assayed at all time points, whereas expression of hepatic transcripts was evaluated at zero, 180 and 300 min. Xylose linearly reduced (P < 0.05) FI, BWG, gross energy digestibility, and feed conversion ratio (FCR) but increased (P < 0.05) serum xylose level. Serum glucose and insulin levels were higher (P < 0.05) in the post-fed state compared with baseline, irrespective of treatments. There was an interaction (P < 0.05) between diet and sampling time on the expression of hepatic genes. At t0, xylose linearly increased (P < 0.05) the expression of pyruvate carboxylase, Acetyl Co-A acethyltransferase 2 (ACAT2), and glucose transporter 2. Xylose linearly reduced (P < 0.05) the expression of ACAT2 at 300 min post feeding. In conclusion, 5% or more xylose reduced growth performance and utilization of nutrients linked to hepatic enzymes and transcription factors involved in glucose and lipid metabolism.
Collapse
Affiliation(s)
- A Regassa
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - E Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - J S Sands
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - M C Walsh
- DuPont Industrial Biosciences-Danisco Animal Nutrition, Marlborough, United Kingdom SN8 1XN
| | - W K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602
| | - C M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
16
|
Jun YJ, Lee J, Hwang S, Kwak JH, Ahn HY, Bak YK, Koh J, Lee JH. Beneficial effect of xylose consumption on postprandial hyperglycemia in Korean: a randomized double-blind, crossover design. Trials 2016; 17:139. [PMID: 26979433 PMCID: PMC4791768 DOI: 10.1186/s13063-016-1261-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have reported that xylose selectively inhibited the activity of sucrase. Xylose supplementation may have a beneficial effect on the postprandial glycemic response. However, no studies have investigated patients with IFG or the effectivity of a dose of D-xylose less than 10 % (w/w). Methods The present study determined the effect of xylose consumption on postprandial hyperglycemia in normal (n = 25) and hyperglycemic subjects (n = 50). Subjects in this double-blind crossover design study were randomly assigned to consume a sucrose drink (Control, sucrose 50 g + deionized water 100 g) or a sucrose drink additionally containing 5 g (Test 1, sucrose:xylose = 10:1), 3.33 g (Test 2, sucrose:xylose = 15:1), or 2.5 g (Test 3, sucrose:xylose = 20:1) of D-xylose separated by a one-week interval. Results Normal subjects in all test groups exhibited a significant decrease in serum glucose levels 15 min and 30 min after consuming the xylose-containing drinks compared to the control group. Significantly lower serum levels of insulin were observed at 15 min and 30 min after consuming the xylose-containing drinks compared to the control group. The test 1 group also exhibited a significantly lower insulin area under the curve than the control group. Hyperglycemic subjects (n = 50) in all test groups exhibited a significant decrease in serum glucose levels at 30 min compared to the control group. However, the test 1 group exhibited a significant increase in serum glucose levels at 120 min compared to the control group. Glucose-related markers did not significantly differ in each group. Conclusion Xylose supplementation may exert a beneficial effect on postprandial glycemic responses in subjects with normal glucose levels and prediabetes. Trial registration ClinicalTrials.gov identifier: NCT02654301. Registered 12 January 2016.
Collapse
Affiliation(s)
- Yun Ju Jun
- Department of Food and Nutrition, National Research Laboratory for Clinical Nutrigenetics/Nutrigenomics, Yonsei University, Sudamun-Gu, Seoul, Republic of Korea
| | - Jinhee Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Sehee Hwang
- College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, Republic of Korea
| | - Jung Hyun Kwak
- Department of Preventive Medicine, Gachon University College of Medicine, Yeonsu-gu, Incheon, Republic of Korea
| | - Hyeon Yeong Ahn
- Department of Food and Nutrition, National Research Laboratory for Clinical Nutrigenetics/Nutrigenomics, Yonsei University, Sudamun-Gu, Seoul, Republic of Korea.,Department of Food and Nutrition, Research Institute of Science for Aging, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
| | - Youn Kyung Bak
- Food Ingredients R&D Center, CJ Cheiljedang Co., Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jihoon Koh
- Food Ingredients R&D Center, CJ Cheiljedang Co., Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jong Ho Lee
- Department of Food and Nutrition, National Research Laboratory for Clinical Nutrigenetics/Nutrigenomics, Yonsei University, Sudamun-Gu, Seoul, Republic of Korea. .,Department of Food and Nutrition, Research Institute of Science for Aging, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Sweetness potency and sweetness synergism of sweeteners in milk and coffee systems. Food Res Int 2015; 74:168-176. [DOI: 10.1016/j.foodres.2015.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
18
|
Lim E, Lim JY, Shin JH, Seok PR, Jung S, Yoo SH, Kim Y. d-Xylose suppresses adipogenesis and regulates lipid metabolism genes in high-fat diet–induced obese mice. Nutr Res 2015; 35:626-36. [DOI: 10.1016/j.nutres.2015.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/18/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023]
|
19
|
Kim E, Kim YS, Kim KM, Jung S, Yoo SH, Kim Y. D-Xylose as a sugar complement regulates blood glucose levels by suppressing phosphoenolpyruvate carboxylase (PEPCK) in streptozotocin-nicotinamide-induced diabetic rats and by enhancing glucose uptake in vitro. Nutr Res Pract 2015; 10:11-8. [PMID: 26865911 PMCID: PMC4742304 DOI: 10.4162/nrp.2016.10.1.11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND/OBJECTIVES Type 2 diabetes (T2D) is more frequently diagnosed and is characterized by hyperglycemia and insulin resistance. D-Xylose, a sucrase inhibitor, may be useful as a functional sugar complement to inhibit increases in blood glucose levels. The objective of this study was to investigate the anti-diabetic effects of D-xylose both in vitro and stretpozotocin (STZ)-nicotinamide (NA)-induced models in vivo. MATERIALS/METHODS Wistar rats were divided into the following groups: (i) normal control; (ii) diabetic control; (iii) diabetic rats supplemented with a diet where 5% of the total sucrose content in the diet was replaced with D-xylose; and (iv) diabetic rats supplemented with a diet where 10% of the total sucrose content in the diet was replaced with D-xylose. These groups were maintained for two weeks. The effects of D-xylose on blood glucose levels were examined using oral glucose tolerance test, insulin secretion assays, histology of liver and pancreas tissues, and analysis of phosphoenolpyruvate carboxylase (PEPCK) expression in liver tissues of a STZ-NA-induced experimental rat model. Levels of glucose uptake and insulin secretion by differentiated C2C12 muscle cells and INS-1 pancreatic β-cells were analyzed. RESULTS In vivo, D-xylose supplementation significantly reduced fasting serum glucose levels (P < 0.05), it slightly reduced the area under the glucose curve, and increased insulin levels compared to the diabetic controls. D-Xylose supplementation enhanced the regeneration of pancreas tissue and improved the arrangement of hepatocytes compared to the diabetic controls. Lower levels of PEPCK were detected in the liver tissues of D-xylose-supplemented rats (P < 0.05). In vitro, both 2-NBDG uptake by C2C12 cells and insulin secretion by INS-1 cells were increased with D-xylose supplementation in a dose-dependent manner compared to treatment with glucose alone. CONCLUSIONS In this study, D-xylose exerted anti-diabetic effects in vivo by regulating blood glucose levels via regeneration of damaged pancreas and liver tissues and regulation of PEPCK, a key rate-limiting enzyme in the process of gluconeogenesis. In vitro, D-xylose induced the uptake of glucose by muscle cells and the secretion of insulin cells by β-cells. These mechanistic insights will facilitate the development of highly effective strategy for T2D.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Yoo-Sun Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Kyung-Mi Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sangwon Jung
- R&D center, TS Corporation, Incheon 400-201, Korea
| | - Sang-Ho Yoo
- Department of Food Science & Technology, BK21 Plus Team, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
20
|
Zhu Y, Cong W, Shen L, Wei H, Wang Y, Wang L, Ruan K, Wu F, Feng Y. Fecal metabonomic study of a polysaccharide, MDG-1 from Ophiopogon japonicus on diabetic mice based on gas chromatography/time-of-flight mass spectrometry (GC TOF/MS). ACTA ACUST UNITED AC 2014; 10:304-12. [DOI: 10.1039/c3mb70392d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Moon S, Lee K, Kyung M, Jung S, Park Y, Yang CK. Study on the Proper D-Xylose Concentration in Sugar Mixture to Reduce Glycemic Index (GI) Value in the Human Clinical Model. ACTA ACUST UNITED AC 2012. [DOI: 10.9799/ksfan.2012.25.4.787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|