1
|
Meng Y, Li C, Liang Y, Jiang Y, Zhang H, Ouyang J, Zhang W, Deng R, Tan Q, Yu X, Luo Z. Umbilical Cord Mesenchymal-Stem-Cell-Derived Exosomes Exhibit Anti-Oxidant and Antiviral Effects as Cell-Free Therapies. Viruses 2023; 15:2094. [PMID: 37896871 PMCID: PMC10612094 DOI: 10.3390/v15102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to cell aging and death. Equally, the skeletal muscle usually hosts enteroviral persistent infection in inflammatory muscle diseases. As excellent bioactive products, the exosomes derived from umbilical cord mesenchymal stem cells (ucMSCs) have been proven to be safe and have low immunogenicity with a potential cell-free therapeutic function. Here, exosomes derived from ucMSCs (ucMSC-EXO) were extracted and characterized. In a model of oxidative damage to skin fibroblasts (HSFs) under exposure to H2O2, ucMSC-EXO had an observable repairing effect for the HSFs suffering from oxidative damage. Furthermore, ucMSC-EXO inhibited mitogen-activated protein kinases (MAPK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) signaling pathways, thereby promoting p21 protein expression while decreasing lamin B1 protein expression, and finally alleviated oxidative stress-induced cell damage and aging. In a model of rhabdomyosarcoma (RD) cells being infected by enterovirus 71 (EV71) and coxsackievirus B3 (CVB3), the ucMSC-EXO enhanced the expression of interferon-stimulated gene 15 (ISG15) and ISG56 to inhibit enteroviral replication, whereafter reducing the virus-induced proinflammatory factor production. This study provides a promising therapeutic strategy for ucMSC-EXO in anti-oxidative stress and antiviral effects, which provides insight into extending the function of ucMSC-EXO in cell-free therapy.
Collapse
Affiliation(s)
- Yi Meng
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Chengcheng Li
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yicong Liang
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
| | - Yu Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Haonan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Jianhua Ouyang
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Rumei Deng
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
| | - Qiuping Tan
- Guangdong Longfan Biological Science and Technology Company, Foshan 528315, China; (W.Z.); (Q.T.)
| | - Xiaolan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; (Y.J.); (H.Z.)
| | - Zhen Luo
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China; (Y.M.); (C.L.); (Y.L.)
- Foshan Institute of Medical Microbiology, Foshan 528315, China; (J.O.); (R.D.)
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
2
|
Zhang W, Yin Z, Guo Q, Chen L, Zhang J. Ionic liquid-based ultrasonic-assisted extraction coupled with HPLC to analyze isoquercitrin, trifolin and afzelin in Amygdalus persica L. flowers. BMC Chem 2023; 17:102. [PMID: 37598224 PMCID: PMC10439561 DOI: 10.1186/s13065-023-01018-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
This study aimed to establish a method for the simultaneous determination of isoquercitrin, trifolin and afzelin in A. persica flowers by high performance liquid chromatography (HPLC) with ionic liquid as extractant and ultrasonic-assisted extraction. The effects of ionic liquid concentration, solid-liquid ratio, number of crushing mesh, ultrasonic time, extraction temperature, and ultrasonic power on the extraction yield of three target compounds were investigated using the extraction yield of target analytes as the index. According to the results of single factor experiment, the Box-Behnken design-response surface methodology (BBD) was used to optimize the extraction method and compared with the traditional extraction method. The results showed that, calibration curves had excellent linearity (R2 > 0.9990) within the test ranges. In combination with other validation data, this method demonstrated good reliability and sensitivity, and can be conveniently used for the quantification of isoquercitrin, trifolin and afzelinin A. persica flowers. And the contents of isoquercitrin, trifolin and afzelin were 64.08, 20.55 and 75.63 μg/g, respectively. The optimal process obtained by BBD was as follows: ionic liquid concentration was 1.0 mol/L, solid-liquid ratio was 1:40 g/ml, mesh sieve was 50 mesh, ultrasonic time was 40 min, extraction temperature was 50 °C, and ultrasonic power was 400 W. Under the optimal conditions, the theoretical predicted total extraction yield of the three target compounds was 159.77 μg/g, which was close to the actual extraction value (160.26 μg/g, n = 3), this result indicating that the optimal process parameters obtained by response surface methodology analysis were accurate and reliable. The method was simple, accurate and rapid for determination the contents of three active ingredients in A. persica flowers.
Collapse
Affiliation(s)
- Wei Zhang
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, 450063, Henan Province, China
| | - Zhenhua Yin
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, 450063, Henan Province, China
- Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science and Technology College, Zhengzhou, 450063, China
| | - Qingfeng Guo
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, 450063, Henan Province, China
- Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science and Technology College, Zhengzhou, 450063, China
| | - Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, 450063, Henan Province, China
- Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, 450063, China
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science and Technology College, Zhengzhou, 450063, China
| | - Juanjuan Zhang
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Huanghe Science and Technology College, Zhengzhou, 450063, Henan Province, China.
- Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Huanghe Science and Technology College, Zhengzhou, 450063, China.
- Henan Joint International Research Laboratory of Drug Discovery of Small Molecules, Huanghe Science and Technology College, Zhengzhou, 450063, China.
| |
Collapse
|
3
|
Sam FE, Ma T, Wang J, Liang Y, Sheng W, Li J, Jiang Y, Zhang B. Aroma improvement of dealcoholized Merlot red wine using edible flowers. Food Chem 2023; 404:134711. [DOI: 10.1016/j.foodchem.2022.134711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
|
4
|
Protective Effects of Orange Sweet Pepper Juices Prepared by High-Speed Blender and Low-Speed Masticating Juicer against UVB-induced Skin Damage in SKH-1 Hairless Mice. Molecules 2022; 27:molecules27196394. [PMID: 36234931 PMCID: PMC9572457 DOI: 10.3390/molecules27196394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sweet pepper fruits (Capsicum annuum L.) contain various nutrients and phytochemicals that enhance human health and prevent the pathogenesis of certain diseases. Here, we report that oral administration of orange sweet pepper juices prepared by a high-speed blender and low-speed masticating juicer reduces UVB-induced skin damage in SKH-1 hairless mice. Sweet pepper juices reduced UVB-induced skin photoaging by the regulation of genes involved in dermal matrix production and maintenance such as collagen type I α 1 and matrix metalloproteinase-2, 3, 9. Administration of sweet pepper juices also restored total collagen levels in UVB-exposed mice. In addition, sweet pepper juices downregulated the expression of pro-inflammatory proteins such as cyclooxygenase-2, interleukin (IL)-1β, IL-17, and IL-23, which was likely via inhibiting the NF-κB pathway. Moreover, primary antioxidant enzymes in the skin were enhanced by oral supplementation of sweet pepper juices, as evidenced by increased expression of catalase, glutathione peroxidase, and superoxide dismutase-2. Immunohistochemical staining showed that sweet pepper juices reduced UVB-induced DNA damage by preventing 8-OHdG formation. These results suggest that sweet pepper juices may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, inflammatory response, and DNA damage as well as enhancing antioxidant defense, which leads to an overall reduction in skin damage.
Collapse
|
5
|
Ma T, Sam FE, Didi DA, Atuna RA, Amagloh FK, Zhang B. Contribution of edible flowers on the aroma profile of dealcoholized pinot noir rose wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang Z, Xu Y, Lai R, Deng H, Zhou F, Wang P, Pang X, Huang G, Chen X, Lin H, Lin Y, Chen Z, Lin J. Protective Effect of the Pearl extract from Pinctada fucata martensii Dunker on UV-induced Photoaging in Mice. Chem Biodivers 2022; 19:e202100876. [PMID: 35098641 DOI: 10.1002/cbdv.202100876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Although the effect of pearl powder has been recognized for more than a thousand years from healthcare to beauty care, there has yet to be an in-depth understanding of its anti-photoaging effect. In the present study, the protective effect of pearl extract (PE) on UV-induced photoaging in mice was evaluated. First, the amino acid analysis of PE was carried out. Then, different dosages of pearl extract gel (PEG) were applied topically on the shaved dorsal skins regions of mice before UV irradiation. Skin physiological and histological analysis, antioxidant enzymes and inflammatory factor test were used to evaluate the anti-photoaging effect of PEG. The results showed that PEG contained 14 amino acids, and could inhibit UV-irritated skin wrinkles, laxity, thickness, and dryness. Moreover, PEG upregulated the activities of CAT, GSH-Px, SOD and decreased MDA level, and suppressed the production of IL-1𝛽, IL-6, PGE 2 , TNF-𝛼, and COX-2 in UV-irradiated mice. The therapeutic effect in high dose PEG group was superior to those of positive control (Vitamin E). This study demonstrated the underlying mechanisms of PEG against UV-irritated photoaging. And PEG possesses a potential use in photoprotective medicines and cosmetics.
Collapse
Affiliation(s)
- Zhongmin Zhang
- GuangXi University of Chinese Medicine, College of Pharmacy, Wuhe Road No.13, Nanning, CHINA
| | - Yunling Xu
- Zhejiang Academy of Traditional Chinese Medicine, Deparment of Basic Medicine, No.132 Tianmushan Road, Hangzhou, CHINA
| | - Ruicheng Lai
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Huiyuan Deng
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Fengling Zhou
- GuangXi University of Chinese Medicine, College of Pharmacy, Wuhe Road No.13, Nanning, CHINA
| | - Peiyan Wang
- GuangXi University of Chinese Medicine, College of Basic Medince, Wuhe Road No.13, Nanning, CHINA
| | - Xiubing Pang
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Guoxin Huang
- Shantou Central Hospital, Clinical research center, Waima road No.114, Shantou, CHINA
| | - Xin Chen
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Haoge Lin
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| | - Yong Lin
- Beihai Baozhulin Ocean Technology Co.LTD, None, Hunan road Lvye garden 18, Beihai, CHINA
| | - Zhenxing Chen
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe road No.13, 530200, Nanning, CHINA
| | - Jiang Lin
- GuangXi University of Chinese Medicine, College of Basic Medicine, Wuhe Road No.13, Nanning, CHINA
| |
Collapse
|
7
|
Lee D, Kim JY, Qi Y, Park S, Lee HL, Yamabe N, Kim H, Jang DS, Kang KS. Phytochemicals from the flowers of Prunus persica (L.) Batsch: Anti-adipogenic effect of mandelamide on 3T3-L1 preadipocytes. Bioorg Med Chem Lett 2021; 49:128326. [PMID: 34403725 DOI: 10.1016/j.bmcl.2021.128326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 01/11/2023]
Abstract
Flowers of Prunus persica (L.) Batsch (Rosaceae), known as peach blossoms, have been reported to exert anti-obesity effects by improving hepatic lipid metabolism in obese mice. However, little is known regarding the anti-adipogenic effects of the phenolic compounds isolated from P. persica flowers. This study investigated the inhibitory effects of compounds extracted from P. persica flowers (PPF) on adipogenesis in 3T3-L1 murine preadipocytes using adipogenic differentiation assays. Additionally, we compared the anti-adipogenic effects of the phenolic compounds isolated from PPF, such as prunasin amide (1), amygdalin amide (2), prunasin acid (3), mandelamide (4), methyl caffeate (5), ferulic acid (6), chlorogenic acid (7), benzyl α-l-xylpyranosyl-(1 → 6)-β-d-glucopyranoside (8), prunin (9), naringenin (10), nicotiflorin (11), astragalin (12), afzelin (13), and uridine (14), on adipogenesis in 3T3-L1 murine preadipocytes. PPF and compounds 4-7 and 10 significantly inhibited adipogenesis. Among them, mandelamide (4) exhibited the maximum inhibitory activity with an IC50 of 36.04 ± 1.82 μM. Additionally, mandelamide downregulated the expression of key adipogenic markers, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, P38, CCAAT/enhancer-binding protein α, CCAAT/enhancer-binding protein β, peroxisome proliferator activated receptor γ, and glucocorticoid receptor. These results indicate that mandelamide is an active ingredient of PPF possessing anti-obesity properties.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea
| | - Ji-Young Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Yutong Qi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Sangsu Park
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Hye Lim Lee
- Department of Pediatrics, College of Korean Medicine, Daejeon University, Daejeon, South Korea
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, South Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
8
|
A Unique Acylated Flavonol Glycoside from Prunus persica (L.) var. Florida Prince: A New Solid Lipid Nanoparticle Cosmeceutical Formulation for Skincare. Antioxidants (Basel) 2021; 10:antiox10030436. [PMID: 33809166 PMCID: PMC7998748 DOI: 10.3390/antiox10030436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
Polyphenols are known dietary antioxidants. They have recently attracted considerable interest in uses to prevent skin aging and hyperpigmentation resulting from solar UV-irradiation. Prunus persica (L.) leaves are considered by-products and were reported to have a remarkable antioxidant activity due to their high content of polyphenols. This study aimed at the development of a cosmeceutical anti-aging and skin whitening cream preparation using ethanol leaves extract of Prunus persica (L.) (PPEE) loaded in solid lipid nanoparticles (SLNs) to enhance the skin delivery. Chemical investigation of PPEE showed significantly high total phenolic and flavonoids content with notable antioxidant activities (DPPH, ABTS, and β-carotene assays). A unique acylated kaempferol glycoside with a rare structure, kaempferol 3-O-β-4C1-(6″-O-3,4-dihydroxyphenylacetyl glucopyranoside) (KDPAG) was isolated for the first time and its structure fully elucidated. It represents the first example of acylation with 3,4-dihydroxyphenyl acetic acid in flavonoid chemistry. The in-vitro cytotoxicity studies against a human keratinocytes cell line revealed the non-toxicity of PPEE and PPEE-SLNs. Moreover, PPEE, PPEE-SLNs, and KDPAG showed good anti-elastase activity, comparable to that of N-(Methoxysuccinyl)-Ala-Ala-Pro-Val-chloromethyl ketone. Besides, PPEE-SLNs and KDPAG showed significantly (p < 0.001) higher anti-collagenase and anti-tyrosinase activities in comparison to EDTA and kojic acid, respectively. Different PPEE-SLNs cream formulae (2% and 5%) were evaluated for possible anti-wrinkle activity against UV-induced photoaging in a mouse model using a wrinkle scoring method and were shown to offer a highly significant protective effect against UV, as evidenced by tissue biomarkers (SOD) and histopathological studies. Thus, the current study demonstrates that Prunus persica leaf by-products provide an interesting, valuable resource for natural cosmetic ingredients. This provides related data for further studying the potential safe use of PPEE-SLNs in topical anti-aging cosmetic formulations with enhanced skin permeation properties.
Collapse
|
9
|
Lee D, Qi Y, Kim R, Song J, Kim H, Kim HY, Jang DS, Kang KS. Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion. Biomolecules 2021; 11:biom11020279. [PMID: 33672801 PMCID: PMC7917615 DOI: 10.3390/biom11020279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
Phenolic compounds from natural products are considered effective enhancers of insulin secretion to prevent and treat type 2 diabetes (T2DM). The flowers of Prunus persica (L.) Batsch also contain many phenolic compounds. In this study, the extract of flowers of P. persica (PRPE) exhibited an insulin secretion effect in a glucose-stimulated insulin secretion (GSIS) assay, which led us to isolate and identify the bioactive compound(s) responsible for these effects. Compounds isolated from PRPE were screened for their efficacy in INS-1 rat pancreatic β-cells. Among them, caffeic acid (5), methyl caffeate (6), ferulic acid (7), chlorogenic acid (8), naringenin (11), nicotiflorin (12), and astragalin (13) isolated from PRPE increased GSIS without inducing cytotoxicity. Interestingly, the GSIS effect of methyl caffeate (6) as a phenolic compound was similar to gliclazide, an antidiabetic sulfonylurea drug. Western blot assay showed that methyl caffeate (6) enhanced the related signaling proteins of the activated pancreatic and duodenal homeobox-1 (PDX-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ), but also the phosphorylation of the total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt, which influence β-cell function and insulin secretion. This study provides evidence that methyl caffeate (6) isolated from PRPE may aid in the management of T2DM.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Yutong Qi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.Q.); (R.K.)
| | - Ranhee Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.Q.); (R.K.)
| | - Jungbin Song
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (J.S.); (H.K.)
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea; (J.S.); (H.K.)
| | - Hyun Young Kim
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (Y.Q.); (R.K.)
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (D.S.J.); (K.S.K.); Tel.: +82-2-961-0719 (D.S.J.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
10
|
Chen Q, Xu B, Huang W, Amrouche AT, Maurizio B, Simal-Gandara J, Tundis R, Xiao J, Zou L, Lu B. Edible flowers as functional raw materials: A review on anti-aging properties. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Anti-Obesity Effects of a Prunus persica and Nelumbo nucifera Mixture in Mice Fed a High-Fat Diet. Nutrients 2020; 12:nu12113392. [PMID: 33158191 PMCID: PMC7694277 DOI: 10.3390/nu12113392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Prunus persica and Nelumbo nucifera are major crops cultivated worldwide. In East Asia, both P. persica flowers and N. nucifera leaves are traditionally used for therapeutic purposes and consumed as teas for weight loss. Herein, we investigated the anti-obesity effects of an herbal extract mixture of P. persica and N. nucifera (HT077) and the underlying mechanism using a high-fat diet (HFD)-induced obesity model. Male C57BL/6 mice were fed a normal diet, HFD, HFD containing 0.02% orlistat (positive control), or HFD containing 0.1, 0.2, or 0.4% HT077 for 12 weeks. HT077 significantly reduced final body weights, weight gain, abdominal fat weights, liver weights, and hepatic levels of triglycerides and total cholesterol. HT077 also lowered glucose, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and leptin levels and increased AST/ALT and adiponectin/leptin ratios and adiponectin levels. Real-time polymerase chain reaction analysis showed that HT077 decreased the expression of lipogenic genes and increased the expression of fatty acid oxidation-related genes in adipose tissue. Our results indicate that HT077 exerts anti-obesity effects and prevents the development of obesity-related metabolic disorders. These beneficial effects might be partially attributed to ameliorating adipokine imbalances and regulating lipid synthesis and fatty acid oxidation in adipose tissue.
Collapse
|
12
|
Her Y, Lee TK, Kim JD, Kim B, Sim H, Lee JC, Ahn JH, Park JH, Lee JW, Hong J, Kim SS, Won MH. Topical Application of Aronia melanocarpa Extract Rich in Chlorogenic Acid and Rutin Reduces UVB-Induced Skin Damage via Attenuating Collagen Disruption in Mice. Molecules 2020; 25:E4577. [PMID: 33036412 PMCID: PMC7582310 DOI: 10.3390/molecules25194577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Aronia melanocarpa, a black chokeberry, contains high levels of phenolic acids and polyphenolic flavonoids and displays antioxidative and anti-inflammatory effects. Through high-performance liquid chromatography for extracts from Aronia melanocarpa, we discovered that the extract contained chlorogenic acid and rutin as major ingredients. In this study, we examined the protective effects of the extract against ultraviolet B- (UVB)-induced photodamage in the dorsal skin of institute of cancer research (ICR) mice. Their dorsal skin was exposed to UVB, thereafter; the extract was topically applied once a day for seven days. Photoprotective properties of the extract in the dorsal skin were investigated by clinical skin severity score for skin injury, hematoxylin and eosin staining for histopathology, Masson's trichrome staining for collagens. In addition, we examined change in collagen type I and III, and matrix metalloproteinase (MMP)-1 and MMP-3 by immunohistochemistry. In the UVB-exposed mice treated with the extract, UVB-induced epidermal damage was significantly ameliorated, showing that epidermal thickness was moderated. In these mice, immunoreactivities of collagen type I and III were significantly increased, whereas immunoreactivities of MMP-1 and 3 were significantly decreased compared with those in the UVB-exposed mice. These results indicate that treatment with Aronia melanocarpa extract attenuates UV-induced photodamage by attenuating UVB-induced collagen disruption: these findings might be a result of the chlorogenic acid and rutin contained in the extract. Based on the current results, we suggest that Aronia melanocarpa can be a useful material for developing photoprotective adjuvant.
Collapse
Affiliation(s)
- Young Her
- Department of Dermatology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon 24289, Korea;
| | - Tae-Kyeong Lee
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Korea;
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Bora Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| | - Ji Hyeon Ahn
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Korea;
| | - Ji-Won Lee
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Junkee Hong
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Sung-Su Kim
- Famenity Co., Ltd., Uiwang, Gyeonggi 16006, Korea; (J.-W.L.); (J.H.)
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea; (B.K.); (H.S.); (J.-C.L.); (J.H.A.)
| |
Collapse
|
13
|
Cho G, Park HM, Jung WM, Cha WS, Lee D, Chae Y. Identification of candidate medicinal herbs for skincare via data mining of the classic Donguibogam text on Korean medicine. Integr Med Res 2020; 9:100436. [PMID: 32742921 PMCID: PMC7388188 DOI: 10.1016/j.imr.2020.100436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022] Open
Abstract
Background Korean cosmetics are widely exported throughout Asia. Cosmetics exploiting traditional Korean medicine lead this trend; thus, the traditional medicinal literature has been invaluable in terms of cosmetic development. We sought candidate medicinal herbs for skincare. Methods We used data mining to investigate associations between medicinal herbs and skin-related keywords (SRKs) in a classical text. We selected 26 SRKs used in the Donguibogam text; these referred to 626 medicinal herbs. Using a term frequency-inverse document frequency approach, we extracted data on herbal characteristics by assessing the co-occurrence frequencies of 52 medicinal herbs and the 26 SRKs. Results We extracted the characteristics of the 52 herbs, each of which exhibited a distinct skin-related action profile. For example Ginseng Radix was associated at a high-level with tonification and anti-aging, but Rehmanniae Radix exhibited a stronger association with anti-aging. Of the 52 herbs, 46 had been subjected to at least one modern study on skincare-related efficacy. Conclusions We made a comprehensive list of candidate medicinal herbs for skincare via data mining a classical medical text. This enhances our understanding of such herbs and will help with discovering new candidate herbs.
Collapse
Affiliation(s)
- Gayoung Cho
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Hyo-Min Park
- Amore Pacific Research and Development Center, Yongin, Republic of Korea
| | - Won-Mo Jung
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woong-Seok Cha
- Department of Medical History, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Younbyoung Chae
- Acupuncture & Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Kwak CS, Yang J, Shin CY, Chung JH. Rosa multiflora Thunb Flower Extract Attenuates Ultraviolet-Induced Photoaging in Skin Cells and Hairless Mice. J Med Food 2020; 23:988-997. [PMID: 32721259 DOI: 10.1089/jmf.2019.4610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ethanol extract (RET) of Rosa multiflora Thunb flowers and its subfractions in ethylacetate (REA) or n-butanol subfractions (RBT) were reported to have potent antioxidative and anti-inflammatory activities. In this study, we investigated if those Rosa multiflora flower (RMF) extracts prevent ultraviolet (UV)-induced biochemical damages leading to photoaging. In keratinocyte or dermal fibroblasts, RET, REA, and RBT treatments with UV irradiation significantly decreased reactive oxygen species (ROS), interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-1 levels through suppression of nuclear factor kappa B and mitogen-activated protein kinases. In the animal experiment, mice were orally supplemented with RET (RET group) or REA and RBT mixture (RM group) for 10 weeks, concomitantly with UV exposure. Tumor necrosis factor alpha production and MMP-13 expression were reduced in the mouse skin of RET and RM groups compared with those in the UV control (UVC) group. UV-induced IL-6 production and epidermal thickening were reduced in RM group compared with those in UVC group. Eight phenolic compounds, including quercitrin (quercetin-3-O-rhamnoside), were identified in RMF extracts. Quercitrin treatment to dermal fibroblasts significantly attenuated an increase of MMP-1 expression and a decrease of type I procollagen expression caused by UV. Collectively, RMF extracts showed protective effects from UV-induced photoaging in the skin through suppression of ROS generation, proinflammatory cytokine production, and MMP expression. Quercitrin is suggested to be one of the effective compounds.
Collapse
Affiliation(s)
- Chung Shil Kwak
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea
| | - Jiwon Yang
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea
| | - Chang-Yup Shin
- Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jin Ho Chung
- Institute on Aging, Seoul National University College of Medicine, Seoul, Korea.,Institute of Human-Environment Interface Biology, Seoul National University College of Medicine, Seoul, Korea.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
15
|
Seo KH, Choi SY, Jin Y, Son H, Kang YS, Jung SH, Kim YI, Eum S, Bach TT, Yoo HM, Whang WK, Jung SY, Kang W, Ko HM, Lee SH. Anti‑inflammatory role of Prunus persica L. Batsch methanol extract on lipopolysaccharide‑stimulated glial cells. Mol Med Rep 2020; 21:2030-2040. [PMID: 32186769 PMCID: PMC7115241 DOI: 10.3892/mmr.2020.11016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/19/2019] [Indexed: 11/29/2022] Open
Abstract
Glial cells are the resident immune cells of the central nervous system. Reactive glial cells release inflammatory mediators that induce neurotoxicity or aggravate neurodegeneration. Regulation of glial activation is crucial for the initiation and progression of neuropathological conditions. Constituents of the peach tree (Prunus persica L. Batsch), which has a global distribution, have been found to exert therapeutic effects in pathological conditions, such as rashes, eczema and allergies. However, the therapeutic potential of its aerial parts (leaves, fruits and twigs) remains to be elucidated. The present study aimed to evaluate the anti-inflammatory role of P. persica methanol extract (PPB) on lipopolysaccharide (LPS)-stimulated glial cells. High-performance liquid chromatography coupled with tandem mass spectrometry analysis showed that PPB contained chlorogenic acid and catechin, which have antioxidant properties. Western blot and reverse transcription polymerase chain reaction results indicated that PPB reduced the transcription of various proinflammatory enzymes (nitric oxide synthase and cyclooxygenase-2) and cytokines [tumor necrosis factor-α, interleukin (IL)-1β and IL-6] in LPS-stimulated BV2 cells. In addition, PPB inhibited the activation of NF-κB and various mitogen-activated protein kinases required for proinflammatory mediator transcription. Finally, nitrite measurement and immunocytochemistry results indicated that PPB also suppressed nitrite production and NF-κB translocation in LPS-stimulated primary astrocytes. Thus, PPB may be used as a potential therapeutic agent for neurodegenerative diseases and neurotoxicity via the suppression of glial cell activation.
Collapse
Affiliation(s)
- Kyoung Hee Seo
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - So Young Choi
- Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeonsun Jin
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Heebin Son
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Young Sun Kang
- Department of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Yong-In Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sangmi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tran The Bach
- Department of Botany, Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Cau Giay, Hanoi 10000, Vietnam
| | - Hee Min Yoo
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Wan Kyunn Whang
- Pharmaceutical Botany Laboratory, College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Sun-Young Jung
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Chungcheongbuk 27841, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Fu Y, Sun R, Yang J, Wang L, Zhao P, Chen S. Characterization and Quantification of Phenolic Constituents in Peach Blossom by UPLC-LTQ-Orbitrap-MS and UPLC-DAD. Nat Prod Commun 2020. [DOI: 10.1177/1934578x19884437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Peach blossom comes from the flower of Prunus persica (L.) Batsch, which is used as herbal tea and medicine in China and Korea. It could promote defecation and alleviate the abdominal pain. In this paper, the methods, ultra-performance liquid chromatography (UPLC) method coupled with electrospray ionization hybrid linear trap quadrupole orbitrap mass spectrometry (LTQ OrbitrapMS) and UPLC system coupled with a diode array detector (DAD), were developed for the qualitative and quantitative analysis of the flavonoids and phenolic acids in peach blossoms. Eight standards were divided into 3 types according to their basic skeletons: phenolic acids, quercetin-type flavonoids, and kaempferol-type flavonoids. The MSn fragmentation behaviors and diagnostic ions of these 3 types of compounds were proposed to aid the structural identification of components in peach blossom extract. By extracting the diagnostic ions from the mass spectrum in negative mode, a total of 25 compounds, including 8 phenolic acids and 17 flavonoids, were screened out. Among these compounds, 5 compounds (chlorogenic acid, ferulic acid, rutin, hyperoside, and isoquercetrin) were quantitated by UPLC-DAD. The linearity, precision, accuracy, limit of detection, and limit of quantitation were validated for the quantification method. The validated method was applied to assay 9 batches of peach blossoms from different regions. This study was the first report on the systematic qualitative analysis of compounds in peach blossom, providing insights into the quality control of peach blossom.
Collapse
Affiliation(s)
- Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruiqin Sun
- Center for Scientific Research, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingfan Yang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lili Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
17
|
Zhi Q, Lei L, Li F, Zhao J, Yin R, Ming J. The anthocyanin extracts from purple-fleshed sweet potato exhibited anti-photoaging effects on ultraviolent B-irradiated BALB/c-nu mouse skin. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Anti-Obesity Effects of the Flower of Prunus persica in High-Fat Diet-Induced Obese Mice. Nutrients 2019; 11:nu11092176. [PMID: 31514294 PMCID: PMC6770263 DOI: 10.3390/nu11092176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Prunus persica (L.) Batsch is a deciduous fruit tree cultivated worldwide. The flower of P. persica (PPF), commonly called the peach blossom, is currently consumed as a tea for weight loss in East Asia; however, its anti-obesity effects have yet to be demonstrated in vitro or in vivo. Since PPF is rich in phytochemicals with anti-obesity properties, we aimed to investigate the effects of PPF on obesity and its underlying mechanism using a diet-induced obesity model. Male C57BL/6 mice were fed either normal diet, high-fat diet (HFD), or HFD containing 0.2% or 0.6% PPF water extract for 8 weeks. PPF significantly reduced body weight, abdominal fat mass, serum glucose, alanine transaminase and aspartate aminotransferase levels, and liver and spleen weights compared to the HFD control group. Real-time quantitative polymerase chain reaction analysis revealed that PPF suppressed lipogenic gene expression, including stearoyl-CoA desaturase-1 and -2 and fatty acid synthase, and up-regulated the fatty acid β-oxidation gene, carnitine palmitoyltransferase-1, in the liver. Our results suggest that PPF exerts anti-obesity effects in obese mice and these beneficial effects might be mediated through improved hepatic lipid metabolism by reducing lipogenesis and increasing fatty acid oxidation.
Collapse
|
19
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Kong CS. Protective effect of 3,5‑dicaffeoyl‑epi‑quinic acid against UVB‑induced photoaging in human HaCaT keratinocytes. Mol Med Rep 2019; 20:763-770. [PMID: 31115540 DOI: 10.3892/mmr.2019.10258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/28/2019] [Indexed: 11/05/2022] Open
Abstract
Derivatives of caffeoylquinic acid (CQA) have been studied and reported as potent bioactive molecules possessing various health benefits including antioxidant and anti‑inflammatory activities. In the present study, the protective effect of 3,5‑dicaffeoyl‑epi‑quinic acid (DCEQA) isolated from Atriplex gmelinii on UVB‑induced damages was investigated in human HaCaT keratinocytes. The effect of DCEQA against UVB‑induced oxidative stress‑mediated damages was determined measuring its ability to alleviate UVB‑induced elevation of oxidative stress, proinflammatory response and antioxidant enzyme suppression through nuclear factor‑like 2 (Nrf2). Treatment with DCEQA hindered the generation of intracellular reactive oxygen species. Increased levels of proinflammatory cytokines TNF‑α, COX‑2, IL‑6 and IL‑1β following UVB exposure were suppressed by the introduction of DCEQA. Additionally, DCEQA upregulated the mRNA and protein expression of antioxidant enzymes superoxide dismutase‑1 and heme oxygenase‑1 which were inhibited under UVB irradiation. Antioxidant enzyme regulation transcription factor Nrf2 was also upregulated in the presence of DCEQA. These results suggest that DCEQA prevents photoaging via protection of keratinocytes from UVB irradiation by ameliorating the oxidative stress and pro‑inflammatory response.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Fatih Karadeniz
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|