1
|
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM, Li H. Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol 2024; 134:112236. [PMID: 38744174 DOI: 10.1016/j.intimp.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Chronic rhinosinusitis (CRS) represents a heterogeneous disorder primarily characterized by the persistent inflammation of the nasal cavity and paranasal sinuses. The subtype known as chronic rhinosinusitis with nasal polyposis (CRSwNP) is distinguished by a significantly elevated recurrence rate and augmented challenges in the management of nasal polyps. The pathogenesis underlying this subtype remains incompletely understood. Macrophages play a crucial role in mediating the immune system's response to inflammatory stimuli. These cells exhibit remarkable plasticity and heterogeneity, differentiating into either the pro-inflammatory M1 phenotype or the anti-inflammatory and reparative M2 phenotype depending on the surrounding microenvironment. In CRSwNP, macrophages demonstrate reduced production of Interleukin 10 (IL-10), compromised phagocytic activity, and decreased autophagy. Dysregulation of pro-resolving mediators may occur during the inflammatory resolution process, which could potentially hinder the adequate functioning of anti-inflammatory macrophages in facilitating resolution. Collectively, these factors may contribute to the prolonged inflammation observed in CRSwNP. Additionally, macrophages may enhance fibrin cross-linking through the release of factor XIII-A (FAXIII), promoting fibrin deposition and plasma protein retention. Macrophages also modulate vascular permeability by releasing Vascular endothelial growth factor (VEGF). Moreover, they may disrupt the balance between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs), which favors extracellular matrix (ECM) degradation, edema formation, and pseudocyst development. Accumulating evidence suggests a close association between macrophage infiltration and CRSwNP; however, the precise mechanisms underlying this relationship warrant further investigation. In different subtypes of CRSwNP, different macrophage phenotypic aggregations trigger different types of inflammatory features. Increasing evidence suggests that macrophage infiltration is closely associated with CRSwNP, but the mechanism and the relationship between macrophage typing and CRSwNP endophenotyping remain to be further explored. This review discusses the role of different types of macrophages in the pathogenesis of different types of CRSwNP and their contribution to polyp formation, in the hope that a better understanding of the role of macrophages in specific CRSwNP will contribute to a precise and individualized understanding of the disease.
Collapse
Affiliation(s)
- Hong-Li Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhou-Tong Han
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Ru Gong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu-Qi Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Jie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Tian-Min Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Shimizu S, Tojima I, Nakamura K, Arai H, Kouzaki H, Shimizu T. Nasal polyp fibroblasts (NPFs)-derived exosomes are important for the release of vascular endothelial growth factor from cocultured eosinophils and NPFs. Auris Nasus Larynx 2021; 49:407-414. [PMID: 34736807 DOI: 10.1016/j.anl.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Significant eosinophil infiltration and tissue remodeling are common characteristics of conditions associated with chronic airway inflammation, such as chronic rhinosinusitis with nasal polyp and bronchial asthma. This study was designed to elucidate the role of eosinophil-fibroblast interactions in tissue remodeling during chronic airway inflammation. METHODS Peripheral blood eosinophils or EoL-1 eosinophilic leukemia cells were cocultured with nasal polyp fibroblasts (NPFs). Coculture-induced release of exosomes, major components of extracellular vesicles (EVs), and a profibrotic cytokine, vascular endothelial growth factor (VEGF), were evaluated by enzyme-linked immunosorbent assay. RESULTS Eosinophil-NPF interactions stimulated the release of exosomes and VEGF into culture supernatants. Coculture-induced release of exosomes was stimulated earlier than VEGF release, at 3 h of incubation. The average size of the EVs released by NPFs was 133 ± 3.6 nm. NPF-derived EVs (exosome concentration: 25 pg/mL) significantly stimulated VEGF release from EoL-1 cells. Pretreatment of NPFs with exosome inhibitor, GW4869 or DMA attenuated the release of exosomes and VEGF from cocultured EoL-1 cells and NPFs. CONCLUSION The results of this study indicate that eosinophil-fibroblast interactions are important in the pathophysiology of tissue remodeling in eosinophil-predominant airway inflammation and that NPF-derived exosomes play a crucial role in the release of VEGF.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Ichiro Tojima
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Keigo Nakamura
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroyuki Arai
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hideaki Kouzaki
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
3
|
Nor Azlan AYH, Katas H, Mohamad Zin N, Fauzi MB. Dual Action Gels Containing DsiRNA Loaded Gold Nanoparticles: Augmenting Diabetic Wound Healing by Promoting Angiogenesis and Inhibiting Infection. Eur J Pharm Biopharm 2021; 169:78-90. [PMID: 34582971 DOI: 10.1016/j.ejpb.2021.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/08/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Hyperglycemia induces the prostaglandin transporter (PGT) gene overexpression, leading to poor vascularization and wound healing. Dicer substrate small interfering RNA (DsiRNA) and gold nanoparticles (AuNPs) co-loaded into PF127 gel was developed to overcome the disturbance and infections. The AuNPs were biosynthesized using cold and hot water extracts of Lignosus rhinocerotis (abbreviated CLRE and HLRE, respectively). The wound healing efficacy of a PF127 gel containing DsiRNA-AuNPs-CLRE and -HLRE (assigned as F2 and F3, respectively) was evaluated in a diabetes-induced Wistar rat model. The F2 (DC) and F3 (DH) treated groups revealed a faster wound closure (92.67 ± 3.4% and 85.1 ± 7.3%, respectively) than the positive control (commercial gel, DTI)(74.9 ± 13.3%). DH and DC groups presented an increased blood vessel density, along with decreased inflammatory cells. In comparison to positive control, higher prostaglandin E2 (PGE2) (495 ±79 and 50 ±121 pg/mL, for DC and DH group, respectively), vascular endothelial growth factor (VEGF) (49 ±15 and 38 ±3 pg/mL, for DC and DH group, respectively) and VEGF-A levels were detected in both groups (DC and DH), indicating the effectiveness of DsiRNA in enhancing PGE2 production and vascularization. On evaluating microbiomes adhered to the wound areas, Gram-positive bacteria Staphylococcus and Corynebacterium, as well as Gram-negative Pseudomonas, Rodentibacter, and Acinetobacter, were found to be sensitive to the gel. Collectively, the gel was confirmed as a promising dressing for diabetic wound therapy, warranting further studies for clinical use.
Collapse
Affiliation(s)
- Ahmad Yasser Hamdi Nor Azlan
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 3, Jalan Greentown, 30450 Ipoh, Perak, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Noraziah Mohamad Zin
- Center For Diagnostic, Therapeutic and Investigative Studies, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Cheras, Malaysia
| |
Collapse
|
4
|
Wallsh JO, Gallemore RP. Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options. Cells 2021; 10:cells10051049. [PMID: 33946803 PMCID: PMC8145407 DOI: 10.3390/cells10051049] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-vascular endothelial growth factor (anti-VEGF) therapy currently plays a central role in the treatment of numerous retinal diseases, most notably exudative age-related macular degeneration (eAMD), diabetic retinopathy and retinal vein occlusions. While offering significant functional and anatomic benefits in most patients, there exists a subset of 15–40% of eyes that fail to respond or only partially respond. For these cases, various treatment options have been explored with a range of outcomes. These options include steroid injections, laser treatment (both thermal therapy for retinal vascular diseases and photodynamic therapy for eAMD), abbreviated anti-VEGF treatment intervals, switching anti-VEGF agents and topical medications. In this article, we review the effectiveness of these treatment options along with a discussion of the current research into future directions for anti-VEGF-resistant eyes.
Collapse
Affiliation(s)
- Josh O. Wallsh
- Department of Ophthalmology, Albany Medical College, Albany, NY 12208, USA;
| | | |
Collapse
|
5
|
Lee K, Lee SH, Kim TH. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int J Mol Sci 2020; 21:ijms21051851. [PMID: 32182661 PMCID: PMC7084947 DOI: 10.3390/ijms21051851] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Prostaglandins (PGs) are a family of lipid compounds that are derived from arachidonic acid via the cyclooxygenase pathway, and consist of PGD2, PGI2, PGE2, PGF2, and thromboxane B2. PGs signal through G-protein coupled receptors, and individual PGs affect allergic inflammation through different mechanisms according to the receptors with which they are associated. In this review article, we have focused on the metabolism of the cyclooxygenase pathway, and the distinct biological effect of each PG type on various cell types involved in allergic airway diseases, including asthma, allergic rhinitis, nasal polyposis, and aspirin-exacerbated respiratory disease.
Collapse
|
6
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
7
|
The Role of Periostin in the Occurrence and Progression of Eosinophilic Chronic Sinusitis with Nasal Polyps. Sci Rep 2017; 7:9479. [PMID: 28842563 PMCID: PMC5572682 DOI: 10.1038/s41598-017-08375-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a highly heterogeneous disease with different host defence responses. However, whether periostin and vascular endothelial growth factor (VEGF) are similarly impaired in patients with eosinophilic CRSwNP (ENP) and those with non-eosinophilic CRSwNP (nENP) remains unclear. We sought to evaluate the expression and possible modulation of periostin and VEGF, regulated on activation normal T expressed and secreted (RANTES) and eotaxin-2 in the polyp tissues from 30 patients with ENP and from 36 patients with nENP and in middle turbinate tissues from 12 control subjects. We found that ENP tissues exhibited a significantly increased expression of periostin and VEGF compared with tissues from patients with nENP and control subjects (P < 0.05, respectively). Accordingly, the expression of VEGF, RANTES, and eotaxin-2 in ENP fibroblasts was significantly up-regulated after stimulation with up-regulated periostin in vitro, but the expression of VEGF and RANTES was significantly inhibited by stimulation with down-regulated periostin. Our findings suggest that periostin might play an important role in the occurrence and progression of ENP and might be a potential therapeutic target.
Collapse
|
8
|
Lachmann P, Hickmann L, Steglich A, Al-Mekhlafi M, Gerlach M, Jetschin N, Jahn S, Hamann B, Wnuk M, Madsen K, Djonov V, Chen M, Weinstein LS, Hohenstein B, Hugo CPM, Todorov VT. Interference with Gs α-Coupled Receptor Signaling in Renin-Producing Cells Leads to Renal Endothelial Damage. J Am Soc Nephrol 2017; 28:3479-3489. [PMID: 28775003 DOI: 10.1681/asn.2017020173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Intracellular cAMP, the production of which is catalyzed by the α-subunit of the stimulatory G protein (Gsα), controls renin synthesis and release by juxtaglomerular (JG) cells of the kidney, but may also have relevance for the physiologic integrity of the kidney. To investigate this possibility, we generated mice with inducible knockout of Gsα in JG cells and monitored them for 6 months after induction at 6 weeks of age. The knockout mapped exclusively to the JG cells of the Gsα-deficient animals. Progressive albuminuria occurred in Gsα-deficient mice. Compared with controls expressing wild-type Gsα alleles, the Gsα-deficient mice had enlarged glomeruli with mesangial expansion, injury, and FSGS at study end. Ultrastructurally, the glomerular filtration barrier of the Gsα-deficient animals featured endothelial gaps, thickened basement membrane, and fibrin-like intraluminal deposits, which are classic signs of thrombotic microangiopathy. Additionally, we found endothelial damage in peritubular capillaries and vasa recta. Because deficiency of vascular endothelial growth factor (VEGF) results in thrombotic microangiopathy, we addressed the possibility that Gsα knockout may result in impaired VEGF production. We detected VEGF expression in JG cells of control mice, and cAMP agonists regulated VEGF expression in cultured renin-producing cells. Our data demonstrate that Gsα deficiency in JG cells of adult mice results in kidney injury, and suggest that JG cells are critically involved in the maintenance and protection of the renal microvascular endothelium.
Collapse
Affiliation(s)
- Peter Lachmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Linda Hickmann
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Anne Steglich
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Moath Al-Mekhlafi
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Michael Gerlach
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Niels Jetschin
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Steffen Jahn
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Brigitte Hamann
- Institute of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Monika Wnuk
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; and
| | - Valentin Djonov
- Department of Anatomy, University of Bern, Bern, Switzerland
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda
| | - Bernd Hohenstein
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Christian P M Hugo
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| | - Vladimir T Todorov
- Experimental Nephrology and Division of Nephrology, Department of Internal Medicine III and
| |
Collapse
|
9
|
Kanai K, Okano M, Fujiwara T, Kariya S, Haruna T, Omichi R, Makihara SI, Hirata Y, Nishizaki K. Effect of prostaglandin D2 on VEGF release by nasal polyp fibroblasts. Allergol Int 2016; 65:414-419. [PMID: 27091669 DOI: 10.1016/j.alit.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is known to be associated with the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). VEGF is produced by a variety of cells including fibroblasts. It was recently reported that prostaglandin (PG) E2 induces VEGF release by nasal polyp fibroblasts. However, little is known regarding possible regulation of VEGF by other PGs. We have reported that molecules that regulate PGD2 metabolism play roles in the pathogenesis of CRS including in local eosinophilia and type 2 cytokine production. In the present study, we sought to determine whether PGD2 regulates VEGF release by nasal polyp fibroblasts. METHODS Nasal polyp fibroblasts were established from nasal polyps. These fibroblasts were stimulated with serial dilutions of PGD2 or PGD2 receptor (DP/CRTH2)-selective agonists in the presence or absence of receptor-selective antagonists. The concentration of VEGF in the culture supernatants was determined using ELISA. RESULTS 5 μM of PGD2 significantly induced VEGF release by nasal polyp fibroblasts. VEGF release was also obtained by stimulation with a DP receptor-selective, but not with a CRTH2 receptor-selective agonist. In addition, PGD2-induced VEGF release was significantly inhibited by pre-treatment with DP receptor-selective antagonists. In contrast, pre-treatment with a CRTH2 receptor-selective antagonist significantly enhanced PGD2-induced VEGF release. CONCLUSIONS PGD2 stimulates VEGF production via DP but not CRTH2 receptors in nasal polyp fibroblasts.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cells, Cultured
- Eosinophils/immunology
- Eosinophils/metabolism
- Female
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression
- Humans
- Immunoglobulin E/immunology
- Leukocyte Count
- Male
- Middle Aged
- Nasal Polyps/diagnosis
- Nasal Polyps/etiology
- Nasal Polyps/metabolism
- Prostaglandin D2/metabolism
- Prostaglandin D2/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Prostaglandin/agonists
- Receptors, Prostaglandin/antagonists & inhibitors
- Receptors, Prostaglandin/genetics
- Respiratory Function Tests
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Kengo Kanai
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Mitsuhiro Okano
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tazuko Fujiwara
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Kariya
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takenori Haruna
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryotaro Omichi
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Yuji Hirata
- Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Kazunori Nishizaki
- Department Otorhinolaryngology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| |
Collapse
|