1
|
Tam IYS, Lee TH, Lau HYA, Tam SY. Combinatorial Genomic Biomarkers Associated with High Response in IgE-Dependent Degranulation in Human Mast Cells. Cells 2024; 13:1237. [PMID: 39120269 PMCID: PMC11311466 DOI: 10.3390/cells13151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024] Open
Abstract
Mast cells are the major effector cells that mediate IgE-dependent allergic reactions. We sought to use integrated network analysis to identify genomic biomarkers associated with high response in IgE-mediated activation of primary human mast cells. Primary human mast cell cultures derived from 262 normal donors were categorized into High, Average and Low responder groups according to their activation response profiles. Transcriptome analysis was used to identify genes that were differentially expressed in different responder cultures in their baseline conditions, and the data were analyzed by constructing a personalized perturbed profile (PEEP). For upregulated genes, the construction of PEEP for each individual sample of all three responder groups revealed that High responders exhibited a higher percentage of "perturbed" samples whose PEEP values lay outside the normal range of expression. Moreover, the integration of PEEP of four selected upregulated genes into distinct sets of combinatorial profiles demonstrated that the specific pattern of upregulated expression of these four genes, in a tandem combination, was observed exclusively among the High responders. In conclusion, this combinatorial approach was useful in identifying a set of genomic biomarkers that are associated with high degranulation response in human mast cell cultures derived from the blood of a cohort of normal donors.
Collapse
Affiliation(s)
- Issan Yee San Tam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; (I.Y.S.T.); (H.Y.A.L.)
| | - Tak Hong Lee
- Allergy Centre, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong;
| | - Hang Yung Alaster Lau
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; (I.Y.S.T.); (H.Y.A.L.)
| | - See-Ying Tam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Elst J, van der Poorten MLM, Van Gasse AL, De Puysseleyr L, Hagendorens MM, Faber MA, Van Houdt M, Passante E, Bahri R, Walschot M, Mertens C, Bridts CH, Sabato V, Ebo DG. Mast cell activation tests by flow cytometry: A new diagnostic asset? Clin Exp Allergy 2021; 51:1482-1500. [PMID: 34233046 DOI: 10.1111/cea.13984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
Since the late nineties, evidence has accumulated that flow-assisted basophil activation test (BAT) might be an accessible and reliable method to explore the mechanisms governing basophil degranulation and diagnostic allowing correct prediction of the clinical outcome following exposure to the offending allergen(s) and cross-reactive structures for different IgE-dependent allergies and particular forms of autoimmune urticaria. Although the BAT offers many advantages over mediator release tests, it is left with some weaknesses that hinder a wider application. It is preferable to perform the BAT analysis within 4 h of collection, and the technique does not advance diagnosis in patients with non-responsive cells. Besides, the BAT is difficult to standardize mainly because of the difficulty to perform large batch analyses that might span over several days. This article reviews the status of flow cytometric mast cell activation test (MAT) using passively sensitized mast cells (MCs) with patients' sera or plasma (henceforth indicated as passive MAT; pMAT) using both MC lines and cultured MCs in the diagnosis of IgE-dependent allergies. In addition, this paper provides guidance for generating human MCs from peripheral blood CD34+ progenitor cells (PBCMCs) and correct interpretation of flow cytometric analyses of activated and/or degranulating cells. With the recent recognition of the mas-related G protein-coupled receptor X2 (MRGPRX2) occupation as a putative mechanism of immediate drug hypersensitivity reactions (IDHRs), we also speculate how direct activation of MCs (dMAT)-that is direct activation by MRGPRX2 agonists without prior passive sensitization-could advance paradigms for this novel endotype of IDHRs.
Collapse
Affiliation(s)
- Jessy Elst
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Marie-Line M van der Poorten
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Athina L Van Gasse
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Leander De Puysseleyr
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Margo M Hagendorens
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Paediatrics, Faculty of Medicine and Health Science, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Margaretha A Faber
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Michel Van Houdt
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | | | - Rajia Bahri
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Mark Walschot
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Christel Mertens
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Chris H Bridts
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Vito Sabato
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | - Didier G Ebo
- Department of Immunology - Allergology - Rheumatology, Faculty of Medicine and Health Science and the Infla-Med Centre of Excellence, University of Antwerp, Antwerp University Hospital, Antwerp, Belgium.,Department of Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| |
Collapse
|
3
|
Kröger M, Scheffel J, Nikolaev VV, Shirshin EA, Siebenhaar F, Schleusener J, Lademann J, Maurer M, Darvin ME. In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Sci Rep 2020; 10:14930. [PMID: 32913196 PMCID: PMC7484787 DOI: 10.1038/s41598-020-71901-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are multifunctional cells of the immune system and are found in skin and all major tissues of the body. They contribute to the pathology of several diseases including urticaria, psoriasis, atopic dermatitis and mastocytosis where they are increased at lesional sites. Histomorphometric analysis of skin biopsies serves as a routine method for the assessment of MC numbers and their activation status, which comes with major limitations. As of now, non-invasive techniques to study MCs in vivo are not available. Here, we describe a label-free imaging technique to visualize MCs and their activation status in the human papillary dermis in vivo. This technique uses two-photon excited fluorescence lifetime imaging (TPE-FLIM) signatures, which are different for MCs and other dermal components. TPE-FLIM allows for the visualization and quantification of dermal MCs in healthy subjects and patients with skin diseases. Moreover, TPE-FLIM can differentiate between two MC populations in the papillary dermis in vivo-resting and activated MCs with a sensitivity of 0.81 and 0.87 and a specificity of 0.85 and 0.84, respectively. Results obtained on healthy volunteers and allergy and mastocytosis patients indicate the existence of other MC subpopulations within known resting and activated MC populations. The developed method may become an important tool for non-invasive in vivo diagnostics and therapy control in dermatology and immunology, which will help to better understand pathomechanisms involving MC accumulation, activation and degranulation and to characterize the effects of therapies that target MCs.
Collapse
Affiliation(s)
- Marius Kröger
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Viktor V Nikolaev
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Faculty of Physics, Tomsk State University, Lenin Ave. 36, 634050, Tomsk, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Frank Siebenhaar
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
4
|
Rasmussen P, Spillner E, Hoffmann HJ. Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunol Lett 2019; 210:40-46. [PMID: 31004680 DOI: 10.1016/j.imlet.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/20/2022]
Abstract
IgE-mediated activation of basophil granulocytes and mast cells follows a bell-shaped dose-response curve. The decreased activation at supraoptimal allergen stimulation is thought to be associated with SH2-containing inositol-5'-phosphatase 1 (SHIP-1). SHIP-1 phosphorylation is inversely related to IgE-mediated releasability of basophils. This study sought to clarify the regulatory role of SHIP-1 in degranulation of basophil granulocytes and mast cells by selective inhibition of the phosphatase function of SHIP-1with 3-α-aminocholestane (3-α-AC). Six grass pollen allergic patients, six non-responder patients and six cultured human primary mast cell lines were included. The effect of 3-α-AC (1-60 μM, 30 min, 37 °C) was analyzed at individual suboptimal, optimal and supra-optimal allergen concentrations. The activity, upregulation of CD63, measured at different conditions was compared to evaluate the maximal effect of selective SHIP-1 inhibition. Basophils of five non-responder patients were treated with 3-α-AC (10 μM, 30 min, 37 °C). At high concentrations (>60 μM) of 3-α-AC, cells appeared to enter apoptosis. The median reactivity increased from 27.1% to 44.9% CD63+ basophils at 10 μM of 3-α-AC and suboptimal allergen stimulation (p = 0.0153). There was no effect on blood basophils of 3-α-AC at optimal or supra-optimal allergen concentrations. In contrast, treatment with more than 6 μM 3-α-AC significantly inhibited mast cell reactivity. 10 μM 3-α-AC reduced median reactivity from 32.85% to 16.5% CD63+ mast cells (p = 0.0465). Treatment with 3-α-AC did not increase response of basophils of non-responder patients. Modulating blood basophils with 3-α-AC enhanced reactivity only at suboptimal allergen concentration, and basophils from non-responders did not regain responsiveness to IgE stimulation. 3-α-AC inhibited the IgE response of mast cells in a dose dependent manner.
Collapse
Affiliation(s)
- Pernille Rasmussen
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Denmark
| | | | | |
Collapse
|
5
|
Just J, Munk Ipsen P, Kruhøffer M, Lykkemark S, Skjold T, Schiøtz PO, Hoffmann HJ. Human Mast Cell Sensitization with IgE Increases miRNA-210 Expression. Int Arch Allergy Immunol 2019; 179:102-107. [PMID: 30965334 DOI: 10.1159/000496513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) represent important post-transcriptional regulators with a dynamic expression profile during health and disease. OBJECTIVES We explored the miRNA profile of human mast cells (MCs) during sen-sitization with IgE, during activation through IgE, and relat ed it to prostaglandin D2 synthesis and histamine release. METHOD We investigated the expression pattern of 762 miRNAs during the IgE-mediated sensitization and activation of MCs cultured from CD133+ stem cells that were isolated from allergic asthmatic patients and nonatopic controls. RESULTS IgE-mediated sensitization increased the expression of miRNA-210 eight-fold. This increase was sustained during IgE-mediated MC activation. Furthermore, we confirmed the increase of the miRNA-132/212 cluster after MC activation. Predicted target genes of miRNA-210/132/212 were enriched in several pathways known to be involved in MC activation. Histamine release was significantly higher in MCs from allergic patients when compared to controls, and a number of miRNAs correlated with histamine release and prostaglandin D2 synthesis during MC activation. CONCLUSION The miRNAs and analysis presented here can help to elucidate the role of miRNAs in mediator release during MC activation. We speculate that miRNA-210 could be important in MC sensitization that leads to allergic symptoms.
Collapse
Affiliation(s)
- Jesper Just
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Pernille Munk Ipsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Simon Lykkemark
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Tina Skjold
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Oluf Schiøtz
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark, .,Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark,
| |
Collapse
|
6
|
Ikuno T, Ito S, Inoue T. Human induced pluripotent stem cell-derived mast cells useful for in vitro mast cell activation assay exhibiting phenotypes and morphological characteristics of human mast cells. J Toxicol Sci 2019; 44:789-797. [DOI: 10.2131/jts.44.789] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Shunsuke Ito
- Research Division, Chugai Pharmaceutical Co., Ltd
| | | |
Collapse
|
7
|
Maric J, Ravindran A, Mazzurana L, Van Acker A, Rao A, Kokkinou E, Ekoff M, Thomas D, Fauland A, Nilsson G, Wheelock CE, Dahlén SE, Ferreirós N, Geisslinger G, Friberg D, Heinemann A, Konya V, Mjösberg J. Cytokine-induced endogenous production of prostaglandin D 2 is essential for human group 2 innate lymphoid cell activation. J Allergy Clin Immunol 2018; 143:2202-2214.e5. [PMID: 30578872 DOI: 10.1016/j.jaci.2018.10.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/08/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a key role in the initiation and maintenance of type 2 immune responses. The prostaglandin (PG) D2-chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2) receptor axis potently induces cytokine production and ILC2 migration. OBJECTIVE We set out to examine PG production in human ILC2s and the implications of such endogenous production on ILC2 function. METHODS The effects of the COX-1/2 inhibitor flurbiprofen, the hematopoietic prostaglandin D2 synthase (HPGDS) inhibitor KMN698, and the CRTH2 antagonist CAY10471 on human ILC2s were determined by assessing receptor and transcription factor expression, cytokine production, and gene expression with flow cytometry, ELISA, and quantitative RT-PCR, respectively. Concentrations of lipid mediators were measured by using liquid chromatography-tandem mass spectrometry and ELISA. RESULTS We show that ILC2s constitutively express HPGDS and upregulate COX-2 upon IL-2, IL-25, and IL-33 plus thymic stromal lymphopoietin stimulation. Consequently, PGD2 and its metabolites can be detected in ILC2 supernatants. We reveal that endogenously produced PGD2 is essential in cytokine-induced ILC2 activation because blocking of the COX-1/2 or HPGDS enzymes or the CRTH2 receptor abolishes ILC2 responses. CONCLUSION PGD2 produced by ILC2s is, in a paracrine/autocrine manner, essential in cytokine-induced ILC2 activation. Hence we provide the detailed mechanism behind how CRTH2 antagonists represent promising therapeutic tools for allergic diseases by controlling ILC2 function.
Collapse
Affiliation(s)
- Jovana Maric
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Mazzurana
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Efthymia Kokkinou
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ekoff
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Alexander Fauland
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institutet, and Clinical Immunology and transfusion medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Pharmazentrum Frankfurt/ZAFES, Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project group Translational Medicine & Pharmacology TMP, Frankfurt, Germany
| | - Danielle Friberg
- Department of Clinical Science, Intervention and Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden; Department of Surgical Science, Uppsala University, Uppsala, Sweden
| | - Akos Heinemann
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria
| | - Viktoria Konya
- Otto Loewi Research Center, Pharmacology Section, Medical University of Graz, and BioTechMed, Graz, Austria; Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
8
|
Benedé S, Cody E, Agashe C, Berin MC. Immune Characterization of Bone Marrow-Derived Models of Mucosal and Connective Tissue Mast Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:268-277. [PMID: 29676074 PMCID: PMC5911446 DOI: 10.4168/aair.2018.10.3.268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 12/15/2022]
Abstract
Purpose It is well appreciated that mast cells (MCs) demonstrate tissue-specific imprinting, with different biochemical and functional properties between connective tissue MCs (CTMCs) and mucosal MCs (MMCs). Although in vitro systems have been developed to model these different subsets, there has been limited investigation into the functional characteristics of the 2 major MC subsets. Here, we report the immunologic characterization of 2 MCs subsets developed in vitro from bone marrow progenitors modeling MMCs and CTMCs. Methods We grew bone marrow for 4 weeks in the presence of transforming growth factor (TGF)-β, interleukin (IL)-9, IL-3, and stem cell factor (SCF) to generate MMCs, and IL-4, IL-3, and SCF to generate CTMCs. Results CTMCs and MMCs differed in growth rate and protease content, but their immune characteristics were remarkably similar. Both subsets responded to immunoglobulin E (IgE)-mediated activation with signaling, degranulation, and inflammatory cytokine release, although differences between subsets were noted in IL-10. CTMCs and MMCs showed a similar toll-like receptor (TLR) expression profile, dominated by expression of TLR4, TLR6, or both subsets were responsive to lipopolysaccharide (LPS), but not poly(I:C). CTMCs and MMCs express receptors for IL-33 and thymic stromal lymphopoietin (TSLP), and respond to these cytokines alone or with modified activation in response to IgE cross-linking. Conclusions The results of this paper show the immunologic characterization of bone marrow-derived MMCs and CTMCs, providing useful protocols for in vitro modeling of MC subsets.
Collapse
Affiliation(s)
- Sara Benedé
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Evan Cody
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Department of Pediatrics, Mindich Child Health and Development Institute, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Sandham DA, Barker L, Brown L, Brown Z, Budd D, Charlton SJ, Chatterjee D, Cox B, Dubois G, Duggan N, Hall E, Hatto J, Maas J, Manini J, Profit R, Riddy D, Ritchie C, Sohal B, Shaw D, Stringer R, Sykes DA, Thomas M, Turner KL, Watson SJ, West R, Willard E, Williams G, Willis J. Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP 2 Receptor Antagonist for Treatment of Asthma. ACS Med Chem Lett 2017; 8:582-586. [PMID: 28523115 DOI: 10.1021/acsmedchemlett.7b00157] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
Further optimization of an initial DP2 receptor antagonist clinical candidate NVP-QAV680 led to the discovery of a follow-up molecule 2-(2-methyl-1-(4-(methylsulfonyl)-2-(trifluoromethyl)benzyl)-1H-pyrrolo[2,3-b]pyridin-3-yl)acetic acid (compound 11, NVP-QAW039, fevipiprant), which exhibits improved potency on human eosinophils and Th2 cells, together with a longer receptor residence time, and is currently in clinical trials for severe asthma.
Collapse
Affiliation(s)
- David A. Sandham
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Lucy Barker
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Lyndon Brown
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Zarin Brown
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - David Budd
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Steven J. Charlton
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Devnandan Chatterjee
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Brian Cox
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Gerald Dubois
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Nicholas Duggan
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Edward Hall
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Julia Hatto
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Janet Maas
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jodie Manini
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Rachael Profit
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Darren Riddy
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Catherine Ritchie
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Bindi Sohal
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Duncan Shaw
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Rowan Stringer
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - David A. Sykes
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Matthew Thomas
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Katharine L. Turner
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Simon J. Watson
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Ryan West
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Elisabeth Willard
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Gareth Williams
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| | - Jennifer Willis
- Novartis Institutes for Biomedical Research, Horsham Research Centre, Wimblehurst Road, Horsham, West Sussex RH12 5AB, United Kingdom
| |
Collapse
|
10
|
Hoffmann HJ. News in Cellular Allergology: A Review of the Human Mast Cell and Basophil Granulocyte Literature from January 2013 to May 2015. Int Arch Allergy Immunol 2016; 168:253-62. [DOI: 10.1159/000443960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Herbal Medicines Prevent the Development of Atopic Dermatitis by Multiple Mechanisms. Chin J Integr Med 2016; 25:151-160. [PMID: 26740223 DOI: 10.1007/s11655-015-2438-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 12/22/2022]
Abstract
Atopic dermatitis (AD) is among the most common skin disorders in humans. Although a variety of regimens are available for the treatment of AD, preventive approaches are limited. Recent studies have demonstrated that certain naturally-occurring herbal medicines are effective in preventing the development of AD via divergent mechanisms, such as inhibiting cytokine and chemokine expression, IgE production, inflammatory cell infiltration, histamine release, and/or enhancement of epidermal permeability barrier function. Yet, they exhibit few adverse effects. Since herbal medicines are widely available, inexpensive and generally safe, they could represent an ideal approach for preventing the development of AD, in both highly developed and developing countries.
Collapse
|
12
|
Cop N, Uyttebroek AP, Sabato V, Bridts CH, De Clerck LS, Ebo DG. Flow cytometric analysis of drug-Induced basophil histamine release. CYTOMETRY PART B-CLINICAL CYTOMETRY 2015; 90:285-8. [DOI: 10.1002/cyto.b.21226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- N. Cop
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| | - A. P. Uyttebroek
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| | - V. Sabato
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| | - C. H. Bridts
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| | - L. S. De Clerck
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| | - D. G. Ebo
- Department of Immunology; Allergology; Rheumatology; Faculty of Medicine and Health Science; University of Antwerp, Antwerp University Hospital; Antwerpen 2610 Belgium
| |
Collapse
|
13
|
Lowe APP, Broadley KJ, Nials AT, Ford WR, Kidd EJ. Adjustment of sensitisation and challenge protocols restores functional and inflammatory responses to ovalbumin in guinea-pigs. J Pharmacol Toxicol Methods 2014; 72:85-93. [PMID: 25450500 PMCID: PMC4370377 DOI: 10.1016/j.vascn.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/26/2023]
Abstract
Introduction Inhalation of antigen in atopic asthma induces early (EAR) and late asthmatic responses (LARs), inflammatory cell infiltration and airways hyperresponsiveness (AHR). Previously, we have established a protocol of sensitisation and subsequent ovalbumin (Ova) inhalation challenge in guinea-pigs which induced these 4 features (Smith & Broadley, 2007). However, the responses of guinea-pigs to Ova challenge have recently declined, producing no LAR or AHR and diminished EAR and cells. By making cumulative modifications to the protocol, we sought to restore these features. Methods Guinea-pigs were sensitised with Ova (i.p. 100 or 150 μg) on days 1 and 5 or days 1, 4 and 7 and challenged with nebulised Ova (100 or 300 μg/ml, 1 h) on day 15. Airway function was measured in conscious guinea-pigs by whole-body plethysmography to record specific airway conductance (sGaw). Airway responsiveness to aerosolized histamine (0.3 mM) was determined before and 24 h after Ova challenge. Bronchoalveolar lavage was performed for total and differential inflammatory cell counts. Lung sections were stained for counting of eosinophils. Results Lack of AHR and LAR with the original protocol was confirmed. Increasing the Ova challenge concentration from 100 to 300 μg/ml restored AHR and eosinophils and increased the peak of the EAR. Increasing the number of sensitisation injections from 2 to 3 did not alter the responses. Increasing the Ova sensitisation concentration from 100 to 150 μg significantly increased total cells, particularly eosinophils. A LAR was revealed and lymphocytes and eosinophils increased when either the Al(OH)3 concentration was increased or the duration between the final sensitisation injection and Ova challenge was extended from 15 to 21 days. Discussion This study has shown that declining allergic responses to Ova in guinea-pigs could be restored by increasing the sensitisation and challenge conditions. It has also demonstrated an important dissociation between EAR, LAR, AHR and inflammation.
Collapse
Affiliation(s)
- Alexander P P Lowe
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Kenneth J Broadley
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom.
| | - Anthony T Nials
- Discovery Biology, Respiratory Centre of Excellence for Drug Discovery, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, SG1 2NY Stevenage, United Kingdom
| | - William R Ford
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| | - Emma J Kidd
- Cardiff School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Ave, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|