1
|
Xie YZ, Peng CW, Su ZQ, Huang HT, Liu XH, Zhan SF, Huang XF. A Practical Strategy for Exploring the Pharmacological Mechanism of Luteolin Against COVID-19/Asthma Comorbidity: Findings of System Pharmacology and Bioinformatics Analysis. Front Immunol 2022; 12:769011. [PMID: 35069542 PMCID: PMC8777084 DOI: 10.3389/fimmu.2021.769011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Asthma patients may increase their susceptibility to SARS-CoV-2 infection and the poor prognosis of coronavirus disease 2019 (COVID-19). However, anti-COVID-19/asthma comorbidity approaches are restricted on condition. Existing evidence indicates that luteolin has antiviral, anti-inflammatory, and immune regulation capabilities. We aimed to evaluate the possibility of luteolin evolving into an ideal drug and explore the underlying molecular mechanisms of luteolin against COVID-19/asthma comorbidity. We used system pharmacology and bioinformatics analysis to assess the physicochemical properties and biological activities of luteolin and further analyze the binding activities, targets, biological functions, and mechanisms of luteolin against COVID-19/asthma comorbidity. We found that luteolin may exert ideal physicochemical properties and bioactivity, and molecular docking analysis confirmed that luteolin performed effective binding activities in COVID-19/asthma comorbidity. Furthermore, a protein–protein interaction network of 538 common targets between drug and disease was constructed and 264 hub targets were obtained. Then, the top 6 hub targets of luteolin against COVID-19/asthma comorbidity were identified, namely, TP53, AKT1, ALB, IL-6, TNF, and VEGFA. Furthermore, the enrichment analysis suggested that luteolin may exert effects on virus defense, regulation of inflammation, cell growth and cell replication, and immune responses, reducing oxidative stress and regulating blood circulation through the Toll-like receptor; MAPK, TNF, AGE/RAGE, EGFR, ErbB, HIF-1, and PI3K–AKT signaling pathways; PD-L1 expression; and PD-1 checkpoint pathway in cancer. The possible “dangerous liaison” between COVID-19 and asthma is still a potential threat to world health. This research is the first to explore whether luteolin could evolve into a drug candidate for COVID-19/asthma comorbidity. This study indicated that luteolin with superior drug likeness and bioactivity has great potential to be used for treating COVID-19/asthma comorbidity, but the predicted results still need to be rigorously verified by experiments.
Collapse
Affiliation(s)
- Yi-Zi Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen-Wen Peng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Qing Su
- Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiu-Fang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Yuan L, Wang L, Du X, Qin L, Yang M, Zhou K, Wu M, Yang Y, Zheng Z, Xiang Y, Qu X, Liu H, Qin X, Liu C. The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma. J Transl Med 2020; 18:467. [PMID: 33298101 PMCID: PMC7726856 DOI: 10.1186/s12967-020-02643-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Late-onset asthma (LOA) is beginning to account for an increasing proportion of asthma patients, which is often underdiagnosed in the elderly. Studies on the possible relations between aging-related genes and LOA contribute to the diagnosis and treatment of LOA. Forkhead Box O3 (FOXO3) and TP53 are two classic aging-related genes. DNA methylation varies greatly with age which may play an important role in the pathogenesis of LOA. We supposed that the differentially methylated sites of FOXO3 and TP53 associated with clinical phenotypes of LOA may be useful biomarkers for the early screening of LOA. METHODS The mRNA expression and DNA methylation of FOXO3 and TP53 in peripheral blood of 43 LOA patients (15 mild LOA, 15 moderate LOA and 13 severe LOA) and 60 healthy controls (HCs) were determined. The association of methylated sites with age was assessed by Cox regression to control the potential confounders. Then, the correlation between differentially methylated sites (DMSs; p-value < 0.05) and clinical lung function in LOA patients was evaluated. Next, candidate DMSs combining with age were evaluated to predict LOA by receiver operating characteristic (ROC) analysis and principal components analysis (PCA). Finally, HDM-stressed asthma model was constructed, and DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-AZA) were used to determine the regulation of DNA methylation on the expression of FOXO3 and TP53. RESULTS Compared with HCs, the mRNA expression and DNA methylation of FOXO3 and TP53 vary significantly in LOA patients. Besides, 8 DMSs from LOA patients were identified. Two of the DMSs, chr6:108882977 (FOXO3) and chr17:7591672 (TP53), were associated with the severity of LOA. The combination of the two DMSs and age could predict LOA with high accuracy (AUC values = 0.924). In HDM-stressed asthma model, DNA demethylation increased the expression of FOXO3 and P53. CONCLUSIONS The mRNA expression of FOXO3 and TP53 varies significantly in peripheral blood of LOA patients, which may be due to the regulation of DNA methylation. FOXO3 and TP53 methylation is a suitable blood biomarker to predict LOA, which may be useful targets for the risk diagnosis and clinical management of LOA.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Leyuan Wang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xizi Du
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Kai Zhou
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Mengping Wu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Yu Yang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Zhiyuan Zheng
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Physiology, Xiangya School of Basic Medicine Science, Central South University, Changsha, 410078, Hunan, China.
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Mizuno S, Bogaard HJ, Ishizaki T, Toga H. Role of p53 in lung tissue remodeling. World J Respirol 2015; 5:40-46. [DOI: 10.5320/wjr.v5.i1.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor gene p53 regulates a wide range of cellular processes including cell cycle progression, proliferation, apoptosis and tissue development and remodeling. Lung cell apoptosis and tissue remodeling have critical roles in many lung diseases. Abnormal proliferation or resistance to apoptosis of lung cells will lead to structural changes of many lung tissues, including the pulmonary vascular wall, small airways and lung parenchyma. Among the many lung diseases caused by vascular cell apoptosis and tissue remodeling are chronic obstructive pulmonary disease, bronchial asthma and pulmonary arterial hypertension. Recent advances in biology and medicine have provided new insights and have resulted in new therapeutic strategies for tissue remodeling in human and animal models. This review is focused on lung disease susceptibility associated with the p53 pathway and describes molecular mechanisms upstream and downstream of p53 in lung tissue remodeling. Improved understanding of structural changes associated with pulmonary vascular remodeling and lung cell apoptosis induced by the p53 pathway may new provide therapeutic targets.
Collapse
|