1
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Koh J, Woo YD, Yoo HJ, Choi JP, Kim SH, Chang YS, Jung KC, Kim JH, Jeon YK, Kim HY, Chung DH. De novo fatty-acid synthesis protects invariant NKT cells from cell death, thereby promoting their homeostasis and pathogenic roles in airway hyperresponsiveness. eLife 2023; 12:RP87536. [PMID: 37917548 PMCID: PMC10622147 DOI: 10.7554/elife.87536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Invariant natural-killer T (iNKT) cells play pathogenic roles in allergic asthma in murine models and possibly also humans. While many studies show that the development and functions of innate and adaptive immune cells depend on their metabolic state, the evidence for this in iNKT cells is very limited. It is also not clear whether such metabolic regulation of iNKT cells could participate in their pathogenic activities in asthma. Here, we showed that acetyl-coA-carboxylase 1 (ACC1)-mediated de novo fatty-acid synthesis is required for the survival of iNKT cells and their deleterious functions in allergic asthma. ACC1, which is a key fatty-acid synthesis enzyme, was highly expressed by lung iNKT cells from WT mice that were developing asthma. Cd4-Cre::Acc1fl/fl mice failed to develop OVA-induced and HDM-induced asthma. Moreover, iNKT cell-deficient mice that were reconstituted with ACC1-deficient iNKT cells failed to develop asthma, unlike when WT iNKT cells were transferred. ACC1 deficiency in iNKT cells associated with reduced expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity that promoted iNKT-cell death. Furthermore, circulating iNKT cells from allergic-asthma patients expressed higher ACC1 and PPARG levels than the corresponding cells from non-allergic-asthma patients and healthy individuals. Thus, de novo fatty-acid synthesis prevents iNKT-cell death via an ACC1-FABP-PPARγ axis, which contributes to their homeostasis and their pathogenic roles in allergic asthma.
Collapse
Affiliation(s)
- Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Duk Woo
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Yoo
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sae Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Council, Seoul, Republic of Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Kim
- Laboratory of Immunology and Vaccine Innovation, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Hong H, Wang L, Qi Y. Characteristics of the oropharyngeal microbiota among infants with pneumonia and their effects on immune response and subsequent respiratory morbidity. Eur J Pediatr 2023; 182:3649-3658. [PMID: 37261548 DOI: 10.1007/s00431-023-05037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Changes in airway microbiota among infants with pneumonia and their impact on subsequent respiratory health are largely unknown. The present study aimed to analyze the oropharyngeal microbiota of infants with pneumonia and to explore the impact of disturbances of the microbiota on disease severity and long-term respiratory morbidities. The oropharyngeal microbiome was characterized using 16S ribosomal RNA-based sequencing, while serum immune mediators were assessed using cytometric bead array, and invariant natural killer T (iNKT) cells were detected using flow cytometry in infants with pneumonia < 6 months of age. Patients were followed up to 3 years of age, and clinical and respiratory morbidity data were collected. A total of 106 infants with pneumonia were enrolled in this study. Diversity of the respiratory microbiota was inversely correlated with the severity of pneumonia and length of hospitalization. Patients who experienced wheezing during pneumonia exhibited lower percentages of total iNKT cells, CD8-positive ( +), and CD4-CD8- subsets, and higher CD4 + subsets than those without. The relative abundances of Prevotella and Veillonella species were lower in patients with severe pneumonia. The abundance of Veillonella was higher in patients who experienced wheezing during pneumonia and in those with subsequent recurrent wheezing than in those without wheezing. The relative abundance and total counts of Bifidobacterium, Lactobacillus, and Neisseria were higher in patients who did not experience subsequent recurrent wheezing. CONCLUSIONS Diversity of the respiratory microbiota was inversely associated with pneumonia severity, and the percentage of iNKT cells was associated with wheezing during pneumonia. Several species may be associated with subsequent respiratory morbidities and warrant further investigation. WHAT IS KNOWN • Early life airway microbiota symbiosis affects the severity of respiratory infection and the risk for the development of asthma. • Changes in airway microbiota among infants with pneumonia and their impact on subsequent respiratory health are largely unknown. WHAT IS NEW • The diversity of the airway microbiome was inversely associated with the severity of pneumonia and length of hospitalization. • The abundance of Veillonella was higher in patients who experienced wheezing during pneumonia and in those with subsequent recurrent wheezing.
Collapse
Affiliation(s)
- Huihui Hong
- Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Libo Wang
- Department of Respiratory Disease, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China
| | - Yuanyuan Qi
- Department of Respiratory Disease, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
4
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
5
|
Victor JR, Lezmi G, Leite-de-Moraes M. New Insights into Asthma Inflammation: Focus on iNKT, MAIT, and γδT Cells. Clin Rev Allergy Immunol 2021; 59:371-381. [PMID: 32246390 DOI: 10.1007/s12016-020-08784-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Asthma is a chronic immunological disease affecting all age groups, but often starting in childhood. Although it has long been ascribed to a single pathology, recent studies have highlighted its heterogeneity due to the potential involvement of various pathogenic mechanisms. Here, we present our current understanding of the role of innate-like T (ILT) cells in asthma pathogenesis. These cells constitute a specific family mainly comprising γδT, invariant natural killer (iNKT) and mucosal-associated invariant (MAIT) T cells. They all share the ability to massively secrete a wide range of cytokines in a T-cell receptor (TCR)-dependent or -independent manner. ILT cells are prevalent in mucosal tissues, including airways, where their innate and adaptive immune functions consist primarily in protecting tissue integrity. However, ILT cells may also have detrimental effects leading to asthma symptoms. The immune mechanisms through which this pathogenic effect occurs will be discussed in this overview.
Collapse
Affiliation(s)
- Jefferson Russo Victor
- Laboratory of Medical Investigation LIM 56, Division of Clinical Dermatology, Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Division of Environmental Health, FMU, Laureate International Universities, Sao Paulo, Brazil
| | - Guillaume Lezmi
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et d'Allergologie Pédiatriques, Paris, France
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253, INSERM UMR1151, and Université Paris Descartes, 75015, Paris, France.
| |
Collapse
|
6
|
Lan F, Zhang N, Bachert C, Zhang L. Stability of regulatory T cells in T helper 2-biased allergic airway diseases. Allergy 2020; 75:1918-1926. [PMID: 32124987 DOI: 10.1111/all.14257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Regulatory T (Treg) cells potentially suppress the deleterious activities of effector T cells and maintain a state of tolerance against antigens in the airway mucosa. A decrease in the number and function of Treg cells is observed in T helper 2 (Th2)-biased allergic airway diseases. However, adoptive transfer of naturally occurring Treg (tTreg) cells or peripherally derived Treg (pTreg) cells in asthmatic mouse models did not yield satisfactory results in any previous studies. Here, we review the recent progress in the identification and plasticity of tTreg and pTreg cells in Th2-biased airway diseases and summarize the factors affecting the stability and function of Treg cells. This review may serve as foundation for understanding the molecular mechanisms underlying the stability of tTreg and pTreg cells and development of effective strategies for treating allergic airway diseases.
Collapse
Affiliation(s)
- Feng Lan
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| | - Nan Zhang
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Department Ghent University Ghent Belgium
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing TongRen HospitalCapital Medical University Beijing China
- Beijing Key Laboratory of Nasal Disease Beijing Institute of Otolaryngology Beijing China
| |
Collapse
|
7
|
Hoppenbrouwers T, Fogliano V, Garssen J, Pellegrini N, Willemsen LEM, Wichers HJ. Specific Polyunsaturated Fatty Acids Can Modulate in vitro Human moDC2s and Subsequent Th2 Cytokine Release. Front Immunol 2020; 11:748. [PMID: 32431702 PMCID: PMC7212991 DOI: 10.3389/fimmu.2020.00748] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Allergy is becoming a rapidly increasing problem worldwide, and in vitro models are frequently used to study the mechanisms behind the different types of allergic response. The dendritic cell (DC)–T-cell model can be used to study sensitization. However, lipopolysaccharide (LPS) is often used to maturate the DCs, but it gives rise to a DC1 phenotype, whereas Th2-driven inflammatory diseases such as allergy are characterized by the involvement of the DC2 phenotype. Our aim was to create a DC2–T-cell human model (human moDC2s) to study in vitro sensitization and validate the model using polyunsaturated fatty acids (PUFAs) that were previously shown to have immunomodulatory properties. We found that the generated DC2s expressed OX40L and drove naive T-cells into IL-13 production of CD4+ effector T-cells. In line with in vivo findings, n−3 long-chain (LC)PUFA docosahexaenoic acid (DHA) effectively decreased the DC2's surface expression of OX40L, as well as the IL-12p40 and IL-23 cytokine production by DC2s and subsequently lowered IL-13 production by DC2-induced effector T-cells. Similar cytokine production effects were found with eicosapentaenoic acid (EPA) and arachidonic acid (AA), whereas linoleic acid (LA) increased OX40L surface expression and subsequent T-cell-derived IL-13/IFNγ ratios, suggesting an increased risk of allergy development. Altogether, these data show that human moDC2s are able to induce Th2-type IL-13 secretion by T-cell differentiated in the presence of these DC2s and that this model can be differentially modulated by PUFAs. These results are in line with previous in vivo studies using PUFAs, indicating that this model may be of use to predict in vivo outcomes.
Collapse
Affiliation(s)
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, Wageningen, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Department of Immunology, Nutricia Research BV, Utrecht, Netherlands
| | - Nicoletta Pellegrini
- Food Quality and Design, Wageningen University & Research, Wageningen, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
8
|
Yip KH, Papadopoulos M, Pant H, Tumes DJ. The role of invariant T cells in inflammation of the skin and airways. Semin Immunopathol 2019; 41:401-410. [PMID: 30989319 DOI: 10.1007/s00281-019-00740-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/20/2023]
Abstract
Invariant and semi-invariant T cells are emerging as important regulators of host environment interactions at barrier tissues such as the airway and skin. In contrast to conventional T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells express T cell receptors of very limited diversity. iNKT and MAIT cells recognise antigens presented by the MHC class 1-like monomorphic molecules CD1d and MR1, respectively. Both iNKT cells and MAIT cells have been identified in the skin and airways and can rapidly produce cytokines after activation. Numerous studies have implicated iNKT cells in the pathology of both skin and airway disease, but conflicting evidence in human disease means that more studies are necessary to resolve the exact roles of iNKT in inflammation. The functions of MAIT cells in skin and lung inflammation are even less well defined. We herein describe the current literature on iNKT and MAIT cells in allergic and non-allergic skin diseases (dermatitis and psoriasis) and airway diseases (asthma, chronic obstructive pulmonary disease, rhinitis, and chronic rhinosinusitis).
Collapse
Affiliation(s)
- Kwok Ho Yip
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia
| | - Magdalene Papadopoulos
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan
| | - Harshita Pant
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia.,Department of Otolaryngology, Head and Neck Surgery, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, The University of South Australia and SA Pathology, North Terrace, Adelaide, SA, 5000, Australia. .,Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba, 260-8670, Japan. .,South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
9
|
Altman MC, Whalen E, Togias A, O'Connor GT, Bacharier LB, Bloomberg GR, Kattan M, Wood RA, Presnell S, LeBeau P, Jaffee K, Visness CM, Busse WW, Gern JE. Allergen-induced activation of natural killer cells represents an early-life immune response in the development of allergic asthma. J Allergy Clin Immunol 2018; 142:1856-1866. [PMID: 29518416 PMCID: PMC6123299 DOI: 10.1016/j.jaci.2018.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Childhood asthma in inner-city populations is a major public health burden, and understanding early-life immune mechanisms that promote asthma onset is key to disease prevention. Children with asthma demonstrate a high prevalence of aeroallergen sensitization and TH2-type inflammation; however, the early-life immune events that lead to TH2 skewing and disease development are unknown. OBJECTIVE We sought to use RNA sequencing of PBMCs collected at age 2 years to determine networks of immune responses that occur in children with allergy and asthma. METHODS In an inner-city birth cohort with high asthma risk, we compared gene expression using RNA sequencing in PBMCs collected at age 2 years between children with 2 or more aeroallergen sensitizations, including dust mite, cockroach, or both, by age 3 years and asthma by age 7 years (cases) and matched control subjects who did not have any aeroallergen sensitization or asthma by age 7 years. RESULTS PBMCs from the cases showed higher levels of expression of natural killer (NK) cell-related genes. After cockroach or dust mite allergen but not tetanus antigen stimulation, PBMCs from the cases compared with the control subjects showed differential expression of 244 genes. This gene set included upregulation of a densely interconnected NK cell-like gene network reflecting a pattern of cell activation and induction of inflammatory signaling molecules, including the key TH2-type cytokines IL9, IL13, and CCL17, as well as a dendritic cell-like gene network, including upregulation of CD1 lipid antigen presentation molecules. The NK cell-like response was reproducible in an independent group of children with later-onset allergic sensitization and asthma and was found to be specific to only those children with both aeroallergen sensitization and asthma. CONCLUSION These findings provide important mechanistic insight into an early-life immune pathway involved in TH2 polarization, leading to the development of allergic asthma.
Collapse
Affiliation(s)
- Matthew C Altman
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash; Department of Medicine, University of Washington, Seattle, Wash.
| | - Elizabeth Whalen
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | | | | | | | - Meyer Kattan
- Columbia University College of Physicians and Surgeons, New York, NY
| | - Robert A Wood
- Johns Hopkins University School of Medicine, Baltimore, Md
| | - Scott Presnell
- Benaroya Research Institute Systems Immunology Division, Seattle, Wash
| | | | | | | | - William W Busse
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, Wis
| |
Collapse
|
10
|
Iwamura C, Nakayama T. Role of CD1d- and MR1-Restricted T Cells in Asthma. Front Immunol 2018; 9:1942. [PMID: 30210497 PMCID: PMC6121007 DOI: 10.3389/fimmu.2018.01942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Innate T lymphocytes are a group of relatively recently identified T cells that are not involved in either innate or adaptive immunity. Unlike conventional T cells, most innate T lymphocytes express invariant T cell receptor to recognize exogenous non-peptide antigens presented by a family of non-polymorphic MHC class I-related molecules, such as CD1d and MHC-related molecule-1 (MR1). Invariant natural killer T (iNKT) cells and mucosal-associated invariant T (MAIT) cells quickly respond to the antigens bound to CD1d and MR1 molecules, respectively, and immediately exert effector functions by secreting various cytokines and granules. This review describes the detrimental and beneficial roles of iNKT cells in animal models of asthma and in human asthmatic patients and also addresses the mechanisms through which iNKT cells are activated by environmental or extracellular factors. We also discuss the potential for therapeutic interventions of asthma by specific antibodies against NKT cells. Furthermore, we summarize the recent reports on the role of MAIT cells in allergic diseases.
Collapse
Affiliation(s)
- Chiaki Iwamura
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Lezmi G, Leite-de-Moraes M. Invariant Natural Killer T and Mucosal-Associated Invariant T Cells in Asthmatic Patients. Front Immunol 2018; 9:1766. [PMID: 30105031 PMCID: PMC6077286 DOI: 10.3389/fimmu.2018.01766] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies have highlighted the heterogeneity of asthma. Distinct patient phenotypes (symptoms, age at onset, atopy, and lung function) may result from different pathogenic mechanisms, including airway inflammation, remodeling, and immune and metabolic pathways in a specific microbial environment. These features, which define the asthma endotype, may have significant consequences for the development and progression of the disease. Asthma is generally associated with Th2 cells, which produce a panel of cytokines (IL-4, IL-5, IL-13) that act in synergy to drive lung inflammatory responses, mucus secretion, IgE production, and fibrosis, causing the characteristic symptoms of asthma. In addition to conventional CD4+ T lymphocytes, other T-cell types can produce Th2 or Th17 cytokines rapidly. Promising candidate cells for studies of the mechanisms underlying the pathophysiology of asthma are unconventional T lymphocytes, such as invariant natural killer T (iNKT) and mucosal-associated invariant T (MAIT) cells. This review provides an overview of our current understanding of the impact of iNKT and MAIT cells on asthmatic inflammation, focusing particularly on pediatric asthma.
Collapse
Affiliation(s)
- Guillaume Lezmi
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et d'Allergologie Pédiatriques, Paris, France.,Université Paris Descartes, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Descartes, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| |
Collapse
|
12
|
Chandra S, Wingender G, Greenbaum JA, Khurana A, Gholami AM, Ganesan AP, Rosenbach M, Jaffee K, Gern JE, Wood R, O'Connor G, Sandel M, Kattan M, Bacharier L, Togias A, Horner AA, Kronenberg M. Development of Asthma in Inner-City Children: Possible Roles of MAIT Cells and Variation in the Home Environment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:1995-2003. [PMID: 29431692 PMCID: PMC5840005 DOI: 10.4049/jimmunol.1701525] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/10/2018] [Indexed: 12/11/2022]
Abstract
Humans have populations of innate-like T lymphocytes with an invariant TCR α-chain that recognize nonpeptide Ags, including invariant NKT (iNKT) cells and mucosal-associated invariant T (MAIT) cells. iNKT cell involvement in human asthma is controversial, whereas there has been little analysis of MAIT cells. Using peripheral blood cells from 110 participants from the Urban Environment and Childhood Asthma (URECA) birth cohort study, these cells were analyzed for number and function. We determined whether iNKT cell or MAIT cell frequency at 1 y is correlated with the cytokine polarization of mainstream CD4+ T cells and/or the development of asthma by age 7 y. Dust samples from 300 houses were tested for iNKT cell antigenic activity. Our results show that a higher MAIT cell frequency at 1 y of age was associated with a decreased risk of asthma by age 7 y. The frequency of MAIT cells was associated with increased production of IFN-γ by activated CD4+ T cells from the URECA cohort. iNKT cell antigenic activity in bedroom dust samples was associated with higher endotoxin concentration and also with reduced risk of asthma. In conclusion, MAIT cell frequency at 1 y may reflect the tendency of the immune system toward Th1 responses and is associated with protection from asthma. Additionally, iNKT cell antigenic activity may be a marker of houses with increased microbial exposures and therefore also with protection from asthma.
Collapse
Affiliation(s)
- Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Gerhard Wingender
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
- Izmir International Biomedicine and Genome Institute, Balcova, 35340 Izmir, Turkey
| | - Jason A Greenbaum
- Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Amin M Gholami
- Bioinformatics Core Facility, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Anusha-Preethi Ganesan
- Division of Pediatric Hematology-Oncology, Rady Children's Hospital, University of California San Diego, San Diego, CA 92093
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Michael Rosenbach
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Katy Jaffee
- Division of Federal Systems, Rho Inc., Chapel Hill, NC 27517
| | - James E Gern
- Department of Pediatrics and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726
| | - Robert Wood
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 212876
| | - George O'Connor
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Megan Sandel
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Meyer Kattan
- Division of Pediatric Pulmonology, Department of Pediatrics, New York Presbyterian/Columbia University Medical Center, New York, NY 10032
| | - Leonard Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Alkis Togias
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Rockville, MD 20852; and
| | - Anthony A Horner
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037;
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
13
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
14
|
Shim JU, Rhee JH, Jeong JU, Koh YI. Flagellin Modulates the Function of Invariant NKT Cells From Patients With Asthma via Dendritic Cells. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2016; 8:206-15. [PMID: 26922930 PMCID: PMC4773208 DOI: 10.4168/aair.2016.8.3.206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Invariant natural killer T (iNKT) cells play a critical role in the pathogenesis of asthma. We previously reported the association between circulating Th2-like iNKT cells and lung function in asthma patients and the suppressive effect of Toll-like receptor 5 ligand flagellin B (FlaB) on asthmatic in a mouse model. Thus, we investigated whether FlaB modulates the function of circulating iNKT cells in asthmatic patients. METHODS Peripheral blood mononuclear cells (PBMCs) were treated with FlaB, and the secreted and intracellular cytokines of iNKT cells were evaluated by using ELISA and flow cytometry, respectively, following stimulation with α-galactosylceramide. Foxp3⁺ iNKT cells were also measured. To determine the effect of FlaB-treated dendritic cells (DCs) on iNKT cells, we co-cultured CD14⁺ monocyte-derived DCs and T cells from patients with house dust mite-sensitive asthma and analyzed intracellular cytokines in iNKT cells. RESULTS A reduction of IL-4 and IL-17 production by iNKT cells in PBMCs after FlaB treatment was alleviated following blocking of IL-10 signaling. A decrease in the frequencies of IL-4⁺ and IL-17⁺ iNKT cells by FlaB-treated DCs was reversed after blocking of IL-10 signaling. Simultaneously, an increase in Foxp3⁺ iNKT cells induced by FlaB treatment disappeared after blocking of IL-10. CONCLUSIONS FlaB may inhibit Th2- and Th17-like iNKT cells and induce Foxp3⁺ iNKT cells by DCs via an IL-10-dependent mechanism in asthmatic patients. In patients with a specific asthma phenotype associated with iNKT cells, FlaB may be an effective immunomodulator for iNKT cell-targeted immunotherapy.
Collapse
Affiliation(s)
- Jae Uoong Shim
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Joon Haeng Rhee
- Clinical Vaccine R&D Center, Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Ji Ung Jeong
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea
| | - Young Il Koh
- Department of Internal Medicine, Chonnam National University Medical School & Hospital, Gwangju, Korea.
| |
Collapse
|
15
|
Berga-Bolaños R, Sharma A, Steinke FC, Pyaram K, Kim YH, Sultana DA, Fang JX, Chang CH, Xue HH, Heller NM, Sen JM. β-Catenin is required for the differentiation of iNKT2 and iNKT17 cells that augment IL-25-dependent lung inflammation. BMC Immunol 2015; 16:62. [PMID: 26482437 PMCID: PMC4615569 DOI: 10.1186/s12865-015-0121-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023] Open
Abstract
Background Invariant Natural Killer T (iNKT) cells have been implicated in lung inflammation in humans and also shown to be a key cell type in inducing allergic lung inflammation in mouse models. iNKT cells differentiate and acquire functional characteristics during development in the thymus. However, the correlation between development of iNKT cells in the thymus and role in lung inflammation remains unknown. In addition, transcriptional control of differentiation of iNKT cells into iNKT cell effector subsets in the thymus during development is also unclear. In this report we show that β-catenin dependent mechanisms direct differentiation of iNKT2 and iNKT17 subsets but not iNKT1 cells. Methods To study the role for β-catenin in lung inflammation we utilize mice with conditional deletion and enforced expression of β-catenin in a well-established mouse model for IL-25-dependen lung inflammation. Results Specifically, we demonstrate that conditional deletion of β-catenin permitted development of mature iNKT1 cells while impeding maturation of iNKT2 and 17 cells. A role for β-catenin expression in promoting iNKT2 and iNKT17 subsets was confirmed when we noted that enforced transgenic expression of β-catenin in iNKT cell precursors enhanced the frequency and number of iNKT2 and iNKT17 cells at the cost of iNKT1 cells. This effect of expression of β-catenin in iNKT cell precursors was cell autonomous. Furthermore, iNKT2 cells acquired greater capability to produce type-2 cytokines when β-catenin expression was enhanced. Discussion This report shows that β-catenin deficiency resulted in a profound decrease in iNKT2 and iNKT17 subsets of iNKT cells whereas iNKT1 cells developed normally. By contrast, enforced expression of β-catenin promoted the development of iNKT2 and iNKT17 cells. It was important to note that the majority of iNKT cells in the thymus of C57BL/6 mice were iNKT1 cells and enforced expression of β-catenin altered the pattern to iNKT2 and iNKT17 cells suggesting that β-catenin may be a major factor in the distinct pathways that critically direct differentiation of iNKT effector subsets. Conclusions Thus, we demonstrate that β-catenin expression in iNKT cell precursors promotes differentiation toward iNKT2 and iNKT17 effector subsets and supports enhanced capacity to produce type 2 and 17 cytokines which in turn augment lung inflammation in mice.
Collapse
Affiliation(s)
- Rosa Berga-Bolaños
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Archna Sharma
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.,Present addresses: Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Farrah C Steinke
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yeung-Hyen Kim
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dil A Sultana
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.,Present addresses: Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, 12208, USA
| | - Jessie X Fang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hai-Hui Xue
- Department of Microbiology, Interdisciplinary Immunology Graduate Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jyoti Misra Sen
- Immune Cells and Inflammation Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA. .,Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
16
|
Abstract
Asthma is an immune-mediated disease of the airways characterized by reversible airway obstruction, bronchial eosinophilic inflammation, and airway hyperresponsiveness (AHR). The immune dysregulation in asthma has been attributed to the involvement of diverse immune cells that contribute to the immunopathology of the disease. Natural killer (NK) cells play critical roles in host defense against viruses and various cancers. Accumulating evidence demonstrates additional important roles for these cells in T cell priming, dendritic cell maturation, and the development of inflammation, all of which have the potential to enhance or dampen allergic responses. The ability of NK cells to produce Th2-type cytokines and their pivotal role in combating respiratory infections which cause airway dysfunction in asthmatics further suggest that they may directly contribute to the immunopathogenesis of allergic airway disease. In this review, we examine emerging evidence and discuss the putative roles of NK cells in the sensitization, progression, and resolution of asthma.
Collapse
Affiliation(s)
- Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, 01119, USA,
| |
Collapse
|