2
|
Park HW, Cho SH. Management of Elderly Asthma: Key Questions and Tentative Answers. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:8-18. [PMID: 36693354 PMCID: PMC9880298 DOI: 10.4168/aair.2023.15.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
The aging lung undergoes structural changes, immunosenescence, and inflammation, rendering the elderly more susceptible to developing obstructive airway disease. Thus, asthma in those of chronological age ≥ 65 years is not rare. Elderly asthma (EA) imposes considerable burdens in terms of mortality and morbidity, and expenditure. However, clinicians lack knowledge of EA and thus often prescribe inappropriate management. In this review, we ask 3 key questions frequently encountered during EA diagnosis and treatment: 1) Is EA different?; 2) How can we appropriately diagnose EA?; 3) Are there management strategies specific to EA? Based on recent studies, we provide tentative answers as follows: 1) late-onset EA differs in clinical features and pathogenetic mechanisms from non-EA, and thus further phenotypic and endotypic characterization of EA is needed; 2) both over- and under-diagnosis of asthma in the elderly can be reduced if the objective diagnostic tests are appropriately performed; 3) cautious prescription of ICS to selected EA patients should be encouraged, and a multifaceted approach which involves increasing medical awareness and inhaler use proficiency and adherence, seeking the assistance of caregivers, and correcting micronutrient deficiencies is required to reduce acute exacerbations in EA patients.
Collapse
Affiliation(s)
- Heung-Woo Park
- Divison of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Heon Cho
- Divison of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
4
|
Lin CH, Wong LT, Hsu JY, Chao WC. Relationship between exposure to ozone and exacerbation requiring hospital admission among patients with asthma: a case-control study in central Taiwan. BMJ Open 2022; 12:e050861. [PMID: 35165108 PMCID: PMC8845173 DOI: 10.1136/bmjopen-2021-050861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE The convergence of asthma and air pollutants in ageing populations is currently a growing health issue worldwide, and hence there is an essential need to investigate the association between exposure to air pollution, particularly ozone (O3), and exacerbation requiring admission in patients with asthma. SETTING A case-control study at a tertiary referral hospital in central Taiwan. PARTICIPANTS We used an asthma cohort, which included 11 400 patients with asthma, for the period 2006-2018 at Taichung Veterans General Hospital. PRIMARY AND SECONDARY OUTCOME MEASURES We identified patients who had admitted for exacerbation as cases and selected patients with asthma without exacerbation, matching (1:4) the cases for age, gender and season of exacerbation, as controls. Data on hourly level of air pollutants were obtained from the Taiwan Environmental Protection Administration. We used conditional logistic regression and calculated adjusted ORs (adjORs) with 95% CIs. RESULTS We enrolled 11 400 participants with asthma, and 4.4% (501) of them had been admitted for exacerbation. Participants with asthma with exacerbation requiring hospitalisation were exposed to a higher level of O3 8-hour daily maximum (adjOR 1.009, 95% CI 1.001 to 1.016) and were more likely to have high Charlson Comorbidity Index (CCI ≥3; adjOR 2.198, 95% CI 1.729 to 2.794) and asthma-chronic obstructive pulmonary disease overlap (adjOR 4.542, 95% CI 3.376 to 6.611) compared with those without exacerbation. The aforementioned associations between exacerbation of asthma requiring hospitalisation and exposure to O3 were similar when defined by either O3 1-hour daily maximum or O3 24-hour average. Moreover, the O3 relevant exacerbation of asthma mainly existed in those aged older than 65 years and patients with medical comorbidities, including gastrointestinal diseases, cardiovascular diseases, neurological diseases, diabetes and renal disease. CONCLUSIONS Our findings highlight the need for vigilance of exposure to O3 among elderly with asthma, particularly those with medical comorbidities. Further studies are warranted to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Li-Ting Wong
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jeng-Yuan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Physical Therapy, Chung-Shan Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Cheng Chao
- Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Colledge of Medicine, Chung Hsing University, Taichung, Taiwan
- Big Data Center, Chung Hsing University, Taichung, Taiwan
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
7
|
Han YY, Zhang X, Wang J, Wang G, Oliver BG, Zhang HP, Kang DY, Wang L, Qiu ZX, Li WM, Wang G. Multidimensional Assessment of Asthma Identifies Clinically Relevant Phenotype Overlap: A Cross-Sectional Study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 9:349-362.e18. [PMID: 32791248 DOI: 10.1016/j.jaip.2020.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Asthma is a heterogeneous disease with multiple phenotypes; however, the relevance of phenotype overlap remains largely unexplored. OBJECTIVE To examine the relationship between phenotype overlap and clinical and inflammatory profiles of asthma. METHODS In this cross-sectional study, adult participants with stable asthma (n = 522) underwent multidimensional assessments. The 10 most common phenotypes of asthma were defined and then classified into those commonly associated with Type (T) 2 or non-T2 inflammation. Furthermore, phenotype overlap scores (POS), representing the cumulative concomitant phenotypes, were used to analyze its association with clinical and inflammatory asthmatic profiles. RESULTS Among the 522 participants, 73.4% (n = 383) had phenotype overlap, and mixed T2 and non-T2 inflammation coexisted in 47.5% (n = 248). T2 POS was positively associated with eosinophils, IgE, and fractional exhaled nitric oxide (FeNO), and negatively with Asthma Quality of Life Questionnaire (AQLQ), sputum neutrophils, IL-17A, IL-8, and TNF-α. Non-T2 POS was positively associated with Asthma Control Questionnaire, neutrophils and sputum IL-8, and negatively with AQLQ, forced expiratory volume in 1 s, blood eosinophils, IgE, and FeNO (all P < .05). Patients with phenotypes that are associated with mixed T2 and non-T2 inflammation had elevated T2 inflammation biomarkers but worse asthma control. Both T2 (adjusted β = -0.191, P = .035) and non-T2 (adjusted β = 0.310, P < .001) POS were significantly associated with severe exacerbations. CONCLUSIONS Phenotype overlap is extremely common in asthmatic patients and significantly associated with clinical and inflammatory profiles. Patients with phenotypes associated with mixed T2 and non-T2 inflammation might be unresponsive to medications owing to increased non-T2 inflammation. Multidimensional asthma assessment identifies clinically relevant phenotype overlap.
Collapse
Affiliation(s)
- Yu Yu Han
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Ji Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, Sydney, NSW, Australia; Respiratory Cellular and Molecule Biology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Hong Ping Zhang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - De Ying Kang
- Department of Evidence-based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Wang
- Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Pneumology Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Xin Qiu
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Park HW, Weiss ST. Understanding the Molecular Mechanisms of Asthma through Transcriptomics. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:399-411. [PMID: 32141255 PMCID: PMC7061151 DOI: 10.4168/aair.2020.12.3.399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/01/2020] [Accepted: 01/11/2020] [Indexed: 12/18/2022]
Abstract
The transcriptome represents the complete set of RNA transcripts that are produced by the genome under a specific circumstance or in a specific cell. High-throughput methods, including microarray and bulk RNA sequencing, as well as recent advances in biostatistics based on machine learning approaches provides a quick and effective way of identifying novel genes and pathways related to asthma, which is a heterogeneous disease with diverse pathophysiological mechanisms. In this manuscript, we briefly review how to analyze transcriptome data and then provide a summary of recent transcriptome studies focusing on asthma pathogenesis and asthma drug responses. Studies reviewed here are classified into 2 classes based on the tissues utilized: blood and airway cells.
Collapse
Affiliation(s)
- Heung Woo Park
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Scott T Weiss
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA.,Partners Center for Personalized Medicine, Partners Health Care, Boston, MA, USA.
| |
Collapse
|