1
|
Wang Z, Jia X, Sun W, Wang M, Yuan Q, Xu T, Liu Y, Chen Z, Huang M, Ji N, Zhang M. A micropeptide TREMP encoded by lincR-PPP2R5C promotes Th2 cell differentiation by interacting with PYCR1 in allergic airway inflammation. Allergol Int 2024; 73:587-602. [PMID: 39025723 DOI: 10.1016/j.alit.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Allergic asthma is largely dominated by Th2 lymphocytes. Micropeptides in Th2 cells and asthma remain unmasked. Here, we aimed to demonstrate a micropeptide, T-cell regulatory micropeptide (TREMP), in Th2 cell differentiation in asthma. METHODS TREMP translated from lincR-PPP2R5C was validated using Western blotting and mass spectrometry. TREMP knockout mice were generated using CRISPR/Cas9. Coimmunoprecipitation revealed that TREMP targeted pyrroline-5-carboxylate reductase 1 (PYCR1), which was further explored in vitro and in vivo. The levels of TREMP and PYCR1 in Th2 cells from clinical samples were determined by flow cytometry. RESULTS TREMP, encoded by lincR-PPP2R5C, was in the mitochondrion. The lentivirus encoding TREMP promoted Th2 cell differentiation. In contrast, Th2 differentiation was suppressed in TREMP-/- CD4+ T cells. In the HDM-induced model of allergic airway inflammation, TREMP was increased in pulmonary tissues. Allergic airway inflammation was relieved in TREMP-/- mice treated with HDM. Mechanistically, TREMP interacted with PYCR1, which regulated Th2 differentiation via glycolysis. Glycolysis was decreased in Th2 cells from TREMP-/- mice and PYCR1-/- mice. Similar to TREMP-/- mice, allergic airway inflammation was mitigated in HDM-challenged PYCR1-/- mice. Moreover, we measured TREMP and PYCR1 in asthma patients. And we found that, compared with those in healthy controls, the levels of TREMP and PYCR1 in Th2 cells were significantly increased in asthmatic patients. CONCLUSIONS The micropeptide TREMP encoded by lincR-PPP2R5C promoted Th2 differentiation in allergic airway inflammation by interacting with PYCR1 and enhancing glycolysis. Our findings highlight the importance of neglected micropeptides from noncoding RNAs in allergic diseases.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Affiliate to Southeast University, Wuxi, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Zhu Y, Huang B, Jiang G. Correlation between changes in serum YKL-40, LXRs, PPM1A, and TGF-β1 levels and airway remodeling and lung function in patients with bronchial asthma. J Asthma 2024; 61:698-706. [PMID: 38164946 DOI: 10.1080/02770903.2023.2301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study investigates the correlation between serum levels of YKL-40, LXRs, PPM1A, and TGF-β1 and airway remodeling and lung function in bronchial asthma patients. METHODS The study involved 80 bronchial asthma patients and 92 healthy individuals. Serum cytokines, airway remodeling, and lung function markers were compared across mild, moderate, and severe asthma cases using high-resolution CT, t-tests, ANOVA, and Pearson correlation analysis. RESULTS Asthmatic patients exhibited higher levels of serum YKL-40, LXRα, LXRβ, TGF-β1, airway wall thickness (T)/outer diameter (D), and WA% of total cross-sectional area compared to controls. Conversely, their serum PPM1A, Peak Expiratory Flow (PEF), and Forced Expiratory Volume in 1 s (FEV1) were lower. Serum YKL-40 and TGF-β1 levels were positively correlated with T/D and WA%, and negatively correlated with PEF and FEV1. PPM1A levels were strongly associated with T/D, WA%, PEF, and FEV1. CONCLUSION The severity of bronchial asthma is associated with increased serum levels of YKL-40, LXRα, LXRβ, and TGF-β1 and decreased PPM1A. The levels of YKL-40, PPM1A, and TGF-β1 have a significant correlation with airway remodeling and lung function.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| | - Bowen Huang
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| | - Guang Jiang
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| |
Collapse
|
3
|
Ji N, Chen Z, Wang Z, Sun W, Yuan Q, Zhang X, Jia X, Wu J, Jiang J, Song M, Xu T, Liu Y, Ma Q, Sun Z, Bao Y, Zhang M, Huang M. LincR-PPP2R5C Promotes Th2 Cell Differentiation Through PPP2R5C/PP2A by Forming an RNA-DNA Triplex in Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:71-90. [PMID: 38262392 PMCID: PMC10823138 DOI: 10.4168/aair.2024.16.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE The roles and mechanisms of long noncoding RNAs (lncRNAs) in T helper 2 (Th2) differentiation from allergic asthma are poorly understood. We aimed to explore a novel lncRNA, LincR-protein phosphatase 2 regulatory subunit B' gamma (PPP2R5C), in Th2 differentiation in a mouse model of asthma. METHODS LincR-PPP2R5C from RNA-seq data of CD4+ T cells of asthma-like mice were validated and confirmed by quantitative reverse transcription polymerase chain reaction, northern blotting, nuclear and cytoplasmic separation, and fluorescence in situ hybridization (FISH). Lentiviruses encoding LincR-PPP2R5C or shRNA were used to overexpress or silence LincR-PPP2R5C in CD4+ T cells. The interactions between LincR-PPP2R5C and PPP2R5C were explored with western blotting, chromatin isolation by RNA purification assay, and fluorescence resonance energy transfer. An ovalbumin-induced acute asthma model in knockout (KO) mice (LincR-PPP2R5C KO, CD4 conditional LincR-PPP2R5C KO) was established to explore the roles of LincR-PPP2R5C in Th2 differentiation. RESULTS LncR-PPP2R5C was significantly higher in CD4+ T cells from asthmatic mice ex vivo and Th2 cells in vitro. The lentivirus encoding LincR-PPP2R5C suppressed Th1 differentiation; in contrast, the short hairpin RNA (shRNA) lentivirus decreased LincR-PPP2R5C and Th2 differentiation. Mechanistically, LincR-PPP2R5C deficiency suppressed the phosphatase activity of the protein phosphatase 2A (PP2A) holocomplex, resulting in a decline in Th2 differentiation. The formation of an RNA-DNA triplex between LincR-PPP2R5C and the PPP2R5C promoter enhanced PPP2R5C expression and activated PP2A. LincR-PPP2R5C KO and CD4 conditional KO decreased Th2 differentiation, airway hyperresponsiveness and inflammatory responses. CONCLUSIONS LincR-PPP2R5C regulated PPP2R5C expression and PP2A activity by forming an RNA-DNA triplex with the PPP2R5C promoter, leading to Th2 polarization in a mouse model of acute asthma. Our data presented the first definitive evidence of lncRNAs in the regulation of Th2 cells in asthma.
Collapse
Affiliation(s)
- Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Xishan People's Hospital of Wuxi City, Wuxi Branch of Zhongda Hospital Affiliate to Southeast University, Wuxi, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xijie Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanmin Bao
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drugs, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Vasconcelos JA, Mota AS, Olímpio F, Rosa PC, Damaceno-Rodrigues N, de Paula Vieira R, Taddei CR, Aimbire F. Lactobacillus rhamnosus Modulates Lung Inflammation and Mitigates Gut Dysbiosis in a Murine Model of Asthma-COPD Overlap Syndrome. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10167-2. [PMID: 37837484 DOI: 10.1007/s12602-023-10167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
The asthma-COPD overlap syndrome (ACOS) presents lung inflammation similar to both asthma and chronic obstructive pulmonary disease (COPD). Due to the immune response between the lung and gut, it is possible that ACOS individuals present gut dysbiosis. Due to therapeutic limitations in ACOS, Lactobacillus rhamnosus (Lr) have received attention once Lr has been effective in asthma and COPD. However, there is no data about the Lr effect on both lung inflammation and gut dysbiosis in ACOS. Thus, our study investigated the Lr effect on lung inflammation, bronchoconstriction, airway remodeling, and gut dysbiosis in the murine ACOS model. Treated mice with Lr were exposed to HDM and cigarette smoke to induce ACOS. Sixty days after ACOS induction, mice were euthanized. Lung inflammation was evaluated in leukocytes in bronchoalveolar lavage fluid (BALF), airway remodeling, cytokine secretion, and transcription factor expression in the lung. The gut microbiota was assayed by 16S mRNA sequencing from a fecal sample. Leukocyte population, bronchial hyperreactivity, pro-inflammatory cytokines, and airway remodeling were attenuated in Lr-treated ACOS mice. Likewise, IL-4, IL-5, and IL-13, STAT6 and GATA3, as well as IL-17, IL-21, IL-22, STAT3, and RORɣt were reduced after Lr. In addition, IL-2, IL-12, IFN-γ, STAT1, and T-bet as well as IL-10, TGF-β, STAT5, and Foxp3 were restored after the Lr. Firmicutes was reduced, while Deferribacteres was increased after Lr. Likewise, Lr decreased Staphylococcus and increased Mucispirillum in ACOS mice. Lr improves fecal bacterial β-diversity. Our findings show for the first time the Lr effect on lung inflammation and gut dysbiosis in murine ACOS.
Collapse
Affiliation(s)
- Jéssica Aparecida Vasconcelos
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Amanda Sodre Mota
- Department of Clinical and Toxicological Analyses - São Paulo, School of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, Cidade Universitária, 05508-000, São Paulo, SP, Brazil
| | - Fabiana Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Paloma Cristina Rosa
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil
| | - Nilsa Damaceno-Rodrigues
- Laboratory of Cell Biology, Department of Pathology, School of Medicine, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Rodolfo de Paula Vieira
- Post-graduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, UniEvangelica, Avenida Universitária Km 3,5, Anapolis, GP, 75083-515, Brazil
| | - Carla Romano Taddei
- Department of Clinical and Toxicological Analyses - São Paulo, School of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, Cidade Universitária, 05508-000, São Paulo, SP, Brazil
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro De Toledo, 720 - 2° Andar, Vila Clementino, 04039-002, Sao Paulo, SP, Brazil.
- Lab. Immunopharmacology, Department of Science and Technology, Federal University of São Paulo (UNIFESP), Rua Talim, 330, Vila Nair, 12231-280, Sao Jose dos Campos, SP, Brazil.
| |
Collapse
|
5
|
Lv J, Shen X, Shen X, Zhao S, Xu R, Yan Q, Lu J, Zhu D, Zhao Y, Dong J, Wang J, Shen X. NPLC0393 from Gynostemma pentaphyllum ameliorates Alzheimer's disease-like pathology in mice by targeting protein phosphatase magnesium-dependent 1A phosphatase. Phytother Res 2023; 37:4771-4790. [PMID: 37434441 DOI: 10.1002/ptr.7945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with clinical hallmarks of progressive cognitive impairment and memory loss. Gynostemma pentaphyllum ameliorates cognitive impairment, but the mechanisms remain obscure. Here, we determine the effect of triterpene saponin NPLC0393 from G. pentaphyllum on AD-like pathology in 3×Tg-AD mice and elucidate the underlying mechanisms. NPLC0393 was administered daily in vivo by intraperitoneal injection for 3 months and its amelioration on the cognitive impairment in 3×Tg-AD mice was assessed by new object recognition (NOR), Y-maze, Morris water maze (MWM), and elevated plus-maze (EPM) tests. The mechanisms were investigated by RT-PCR, western blot, and immunohistochemistry techniques, while verified by the 3×Tg-AD mice with protein phosphatase magnesium-dependent 1A (PPM1A) knockdown (KD) through brain-specific injection of adeno-associated virus (AAV)-ePHP-KD-PPM1A. NPLC0393 ameliorated AD-like pathology targeting PPM1A. It repressed microglial NLRP3 inflammasome activation by reducing NLRP3 transcription during priming and promoting PPM1A binding to NLRP3 to disrupt NLRP3 assembly with apoptosis-associated speck-like protein containing a CARD and pro-caspase-1. Moreover, NPLC0393 suppressed tauopathy by inhibiting tau hyperphosphorylation through PPM1A/NLRP3/tau axis and promoting microglial phagocytosis of tau oligomers through PPM1A/nuclear factor-κB/CX3CR1 pathway. PPM1A mediates microglia/neurons crosstalk in AD pathology, whose activation by NPLC0393 represents a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jianlu Lv
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingyi Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinya Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shimei Zhao
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Xu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiuying Yan
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Danyang Zhu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jiajia Dong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaying Wang
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing, China
| |
Collapse
|
6
|
Wang Z, Ma Q, Jiang J, Yang X, Zhang E, Tao Y, Hu H, Huang M, Ji N, Zhang M. A comparative study of IL-33 and its receptor ST2 in a C57BL/6 J mouse model of pulmonary Cryptococcus neoformans infection. Med Microbiol Immunol 2023; 212:53-63. [PMID: 36367554 DOI: 10.1007/s00430-022-00755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
It has been reported that IL-33 receptor ST2 deficiency mitigates Cryptococcus neoformans (C. neoformans) pulmonary infection in BALB/c mice. IL-33 may modulate immune responses in ST2-dependent and ST2-independent manners. The host genetic background (i.e., BALB/c, C57BL/6 J) influences immune responses against C. neoformans. In the present study, we aimed to explore the roles of IL-33 and ST2 in pulmonary C. neoformans-infected mice on a C57BL/6 J genetic background. C. neoformans infection increased IL-33 expression in lung tissues. IL-33 deficiency but not ST2 deficiency significantly extended the survival time of C. neoformans-infected mice. In contrast, either IL-33 or ST2 deficiency reduced fungal burdens in lung, spleen and brain tissues from the mice following C. neoformans intratracheal inoculation. Similarly, inflammatory responses in the lung tissues were more pronounced in both the IL-33-/- and ST2-/- infected mice. However, mucus production was decreased in IL-33-/- infected mice alone, and the level of IL-5 in bronchoalveolar lavage fluid (BALF) was substantially decreased in the IL-33-/- infected mice but not ST2-/- infected mice. Moreover, IL-33 deficiency but not ST2 deficiency increased iNOS-positive macrophages. At the early stage of infection, the reduced pulmonary fungal burden in the IL-33-/- and ST2-/- mice was accompanied by increased neutrophil infiltration. Collectively, IL-33 regulated pulmonary C. neoformans infection in an ST2-dependent and ST2-independent manner in C57BL/6 J mice.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Respiratory and Critical Care Medicine, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, 223300, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofan Yang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huidi Hu
- Department of Pathology, Nanjing Chest Hospital, Nanjing, 210029, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
7
|
Liu M, Liu S, Li F, Li C, Chen S, Gao X, Wang X. The miR-124-3p regulates the allergic airway inflammation and remodeling in an ovalbumin-asthmatic mouse model by inhibiting S100A4. Immun Inflamm Dis 2023; 11:e730. [PMID: 36799806 PMCID: PMC9896513 DOI: 10.1002/iid3.730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Asthma is a chronic respiratory disease with an increasing incidence every year. microRNAs (miRNAs) have been demonstrated to have implications for asthma. However, limited information is available regarding the effect of miR-124-3p on this disease. Therefore, this study aimed to explore the possible effects of miR-124-3p and S100A4 on inflammation and epithelial-mesenchymal transition (EMT) in asthma using mouse models. METHOD Ovalbumin was used to induce asthmatic mouse models. Lung injury in mouse models was assessed, and the bronchoalveolar lavage fluid of mice was collected to determine the number of eosinophilic granulocytes and assess inflammation. The expression levels of miR-124-3p, S100A4, E-cadherin, N-cadherin, Snail1, vimentin, and TGF-β1/Smad2 signaling pathway-related proteins were measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. In vitro experiments, cells were transfected with miR-124-3p mimics or inhibitors to test the expression of S100A4 by RT-qPCR and western blot analysis, and the mutual binding of miR-124-3p and S100A4 was validated by dual-luciferase reporter gene assay. RESULTS Overexpression of miR-124-3p or inhibition of S100A4 expression attenuated bronchial mucus secretion and collagenous fibers and suppressed inflammatory cell infiltration. Additionally, upon miR-124-3p overexpression or S100A4 suppression, eosinophilic granulocytes were decreased, interleukin-4 (IL-4) and IL-13 expression levels were reduced in the bronchoalveolar lavage fluid, serum total IgE level was reduced, and the TGF-β1/Smad2 signaling pathway was suppressed. Mechanically, a dual-luciferase reporter gene assay verified the binding relationship between miR-124-3p and S100A4. CONCLUSION miR-124-3p can negatively target S100A4 to attenuate inflammation in asthmatic mouse models by suppressing the EMT process and the TGF-β/smad2 signaling pathway.
Collapse
Affiliation(s)
- Min Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shuang Liu
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Fajiu Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Chenghong Li
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Shi Chen
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaoyan Gao
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| | - Xiaojiang Wang
- Department of Pulmonary and Critical Care MedicineAffiliated Hospital of Jianghan UniversityWuhanHubeiP.R. China
| |
Collapse
|
8
|
Wang Z, Wu J, Jiang J, Ma Q, Song M, Xu T, Liu Y, Chen Z, Bao Y, Huang M, Zhang M, Ji N. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:55. [PMID: 35718777 PMCID: PMC9208156 DOI: 10.1186/s13223-022-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022]
Abstract
Background The microtubule-dependent molecular motor protein Kinesin Family Member 2A (KIF2A) is down-regulated in asthmatic human airway epithelium. However, little is known about the roles of KIF2A as well as the possible underlying mechanisms in asthma. Methods House dust mite (HDM) extract was administered to establish a murine model of asthma. The expression of KIF2A, IL-33 and the autophagy pathways were detected. The plasmid pCMV-KIF2A was used to overexpress KIF2A in the airway epithelial cells in vitro and in vivo. IL-4, IL-5, IL-33 and other cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues homogenates were measured. Results In response to the challenge of house dust mite (HDM) in vitro and in vivo, airway epithelial cells displayed decreased production of KIF2A. Meanwhile, autophagy and IL-33 were increased in HMD-treated epithelial cells. Mechanistically, KIF2A decreased autophagy via suppressing mTORC1 pathway in HDM-treated epithelial cells, which contributed to the reduced production of IL-33. Moreover, in vivo KIF2A transfection reduced IL-33 and autophagy in the lung, leading to the attenuation of allergic asthma. Conclusion KIF2A suppressed mTORC1-mediated autophagy and decreased the production of epithelial-derived cytokine IL-33 in allergic airway inflammation. These data indicate that KIF2A may be a novel target in allergic asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00697-9.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanmin Bao
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Han D, Song N, Wang W, Chen T, Miao Z. Subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16576-16587. [PMID: 34648162 DOI: 10.1007/s11356-021-16883-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), as a common environmental pollutant, has been reported to cause T lymphocyte dysfunction and cell apoptosis in multiple organs. However, whether subacute Cd exposure can induce apoptosis of hepatocytes and the relationship with Th1/Th2 imbalance were still unclear. In this study, ten 6-week-old piglets were selected and randomly assigned into two groups, the control group and the Cd group. The control group was fed with the standard diet, and for the Cd group, the standard diet was supplemented with 20 mg/kg CdCl2; liver tissue was collected on the 40th day of the experiment. Immunofluorescence, qRT-PCR, and western blot were performed to detect the expression of miR-369, Th1/Th2 biomarkers, endoplasmic reticulum (ER) stress-related genes, and apoptotic genes. TUNEL assay was applied to stain apoptotic hepatocytes. In the Cd group, the apoptosis of hepatocytes was significantly increased, and associated with the declined expression of miR-369, Th1 polarization, the elevated expression of ER stress pathway genes and their downstream pro-apoptosis genes, and downregulated expression of anti-apoptotic genes. These results manifest that subacute Cd exposure mediates Th1 polarization to promote ER stress-induced porcine hepatocyte apoptosis via regulating miR-369-TNFα. These results not only provide a basis for the enrichment of Cd toxicology but also support a theoretical foundation for the prevention and therapy of Cd poisoning. Schematic diagram illustrating the proposed mechanism of subacute cadmium exposure modulates Th1 polarization to trigger ER stress-induced porcine hepatocyte apoptosis via regulation of miR-369-TNFα axis.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Nuan Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Wei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
10
|
Wang X, Chen H, Liu J, Gai L, Yan X, Guo Z, Liu F. Emerging Advances of Non-coding RNAs and Competitive Endogenous RNA Regulatory Networks in Asthma. Bioengineered 2021; 12:7820-7836. [PMID: 34635022 PMCID: PMC8806435 DOI: 10.1080/21655979.2021.1981796] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by airway remodeling and bronchial hyperresponsiveness. A variety of effector cells and cytokines jointly stimulate the occurrence of inflammatory response in asthma. Although the pathogenesis of asthma is not entirely clear, the possible roles of non-coding RNAs (ncRNAs) have been recently demonstrated. NcRNAs are non-protein-coding RNA molecules, such as circular RNAs (circRNAs), long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), which are involved in the regulation of a variety of biological processes. Mounting studies have shown that ncRNAs play pivotal roles in the occurrence and progression of asthma via competing endogenous RNA (ceRNA) regulatory networks. However, the specific mechanism and clinical application of ncRNAs and ceRNA regulatory networks in asthma have not been fully elucidated, which are worthy of further investigation. This paper comprehensively summarized the current progress on the roles of miRNAs, lncRNAs, circRNAs, and ceRNA regulatory networks in asthma, which can provide a better understanding for the disease pathogenesis and is helpful for identifying novel biomarkers for asthma.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Hui Chen
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Jingjing Liu
- Clinical Medicine College, Weifang Medical University, WeifangChina
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| | - Linlin Gai
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Xinyi Yan
- Department of Central Laboratory, The First Affiliated Hospital of Weifang Medical University/Weifang People’s Hospital, WeifangChina
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese PLA, WeifangChina
| | - Fengxia Liu
- Department of Allergy, The First Affiliated Hospital of Weifang Medical University/ Weifang People’s Hospital, WeifangChina
| |
Collapse
|
11
|
Lee HY, Hur J, Kang JY, Rhee CK, Lee SY. MicroRNA-21 Inhibition Suppresses Alveolar M2 Macrophages in an Ovalbumin-Induced Allergic Asthma Mice Model. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:312-329. [PMID: 33474864 PMCID: PMC7840870 DOI: 10.4168/aair.2021.13.2.312] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Purpose MicroRNA-21 (miR-21) influences the Th2 immune pathway by suppressing the expressions of interleukin (IL)-12 and interferon (IFN)-γ. The effects of miR-21 suppression on alveolar macrophage polarization and airway inflammation are not known. Methods BALB/c and miR-21 knockout (KO) mice were sensitized and challenged with ovalbumin (OVA). The anti-miR-21 antagomir was administered to BALB/c mice by intranasal inhalation from the day of OVA sensitization. Changes in cell counts, cytokine levels in bronchoalveolar lavage fluid (BALF), and airway hyperresponsiveness (AHR) were examined. Total, M1, and M2 macrophages were examined in the lung tissues by immunohistochemistry (IHC). M2 macrophages from the OVA mice lung were inhaled into the anti-miR-21 antagomir-treated asthmatic mice. Moreover, the polarization of M0 to M2 macrophages upon IL-4 stimulation was analyzed after anti-miR-21 antagomir transfection. Results The miR-21 KO mice showed decreases in AHR, total cell and eosinophil counts in BALF, and in the levels of IL-4, IL-5, IL-10, and IL-13. Expression of IL-12 and IFN-γ were increased in the miR-21 KO mice. Peribronchial inflammation and goblet cell dysplasia were significantly decreased in the lung tissues of miR-21 KO OVA mice compared to the wild type OVA mice. IHC for M1, M2, and total macrophage in the lung tissues showed that miR-21 inhalation suppressed alveolar M2 macrophages in KO mice. M2 macrophage inhalation restored AHR and eosinophilic airway inflammation in the miR-21 antagomir-treated mice. Moreover, anti-miR-21 antagomir transfection decreased the expression of M2 markers and increased the expression of M1 markers in M0 macrophages after IL-4 stimulation. Conclusions The results suggest that miR-21 antagonism could suppress alveolar M2 macrophage polarization, decreasing not only the Th2 eosinophilic airway inflammation but also AHR and airway remodeling process.
Collapse
Affiliation(s)
- Hwa Young Lee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hur
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Young Kang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chin Kook Rhee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
12
|
Xu L, Yi M, Tan Y, Yi Z, Zhang Y. A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis 2020; 14:1753466620981863. [PMID: 33357010 PMCID: PMC7768876 DOI: 10.1177/1753466620981863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: It is unclear whether microRNAs could be a potential diagnostic biomarker for asthma or not. The objective of this study is to figure out the diagnostic value of microRNAs in asthma. Methods: Literature retrieval, screening of publications, specific data extraction, and quality evaluation were conducted according to the standard criteria. Stata 14.0 software was used to analyze the diagnostic value of microRNA for asthma, including the combined sensitivity (Sen), specificity (Spe), the area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Results: A total of 72 studies, containing 4143 cases and 2188 controls, were included for this comprehensive analysis. None of the included publications were rated low in quality. We summarized that, compared with controls, more than 100 miRNAs were reported differently expressed in asthma, although the expression trends were inconsistent. Besides, there were five studies among these 72 articles that applied the diagnostic evaluation of microRNAs in asthma. We found that the pooled Sen, Spe, and AUC for the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p in asthma were 0.87 (95%CI: 0.72–0.95), 0.84 (95%CI: 0.74–0.91), and 0.93 (95%CI: 0.89–0.94) individually, and the PLR, NLR, and DOR were 5.5 (95%CI: 3.1–9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 10–127) in asthma, respectively. In terms of subgroup analyses, we found that the Sen for these combination miRNAs from serum was higher than that in plasma, while the Spe in plasma worked better than that in serum. Furthermore, compared with children, the combination of above miRNAs from adults had higher Spe and similar Sen. Conclusions: From our analysis, the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially act as a diagnostic biomarker for asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixun Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
13
|
Andrea M, Susanna B, Francesca N, Enrico M, Alessandra V. The emerging role of type 2 inflammation in asthma. Expert Rev Clin Immunol 2020; 17:63-71. [PMID: 33280431 DOI: 10.1080/1744666x.2020.1860755] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Bronchial asthma (BA) is a chronic airways inflammatory disease. Based on the biological mechanisms that underline the disease, asthma has been classified as type 2 or non-type 2 phenotype.Areas covered: An emerging role has been identified for group 2 innate lymphoid cells (ILC2s) able to produce the classical type 2 cytokines. The role of Th2 cells and IL-4 is crucial in the pathogenesis of allergic BA as supported by asthma models. IL-13, shares many biological functions with IL-4 such as induction of IgE synthesis and regulation of eosinophil trafficking. However, IL-13 does not induce Th2 cell differentiation. The Authors reviewed evidence on the new concept of type 2 inflammation and the cellular and molecular network behind this process. Literature data in the PubMed were analyzed for peer-reviewed articles published until September 2020.Expert opinion: The current trend is to consider Th2- and ILC2-driven pathways as two separate pathogenic mechanisms, recent data underscore that adaptive Th2- and innate cell responses represent two integrated systems in the production of IL-4, IL-5, and IL-13 leading to the current 'concept' of type 2 inflammation. This review highlights the role of Th2 cells and ILC2 in the recent new concept of type 2 inflammation.
Collapse
Affiliation(s)
- Matucci Andrea
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Bormioli Susanna
- Immunology and Cellular Therapy, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Nencini Francesca
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Maggi Enrico
- Immunology Department, Children Hospital Bambino Gesù, IRCCS, Rome, Italy
| | - Vultaggio Alessandra
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|