1
|
Nan F, Liu B, Yao C. Discovering the role of microRNAs and exosomal microRNAs in chest and pulmonary diseases: a spotlight on chronic obstructive pulmonary disease. Mol Genet Genomics 2024; 299:107. [PMID: 39527303 DOI: 10.1007/s00438-024-02199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive respiratory condition and ranks as the fourth leading cause of mortality worldwide. Despite extensive research efforts, a reliable diagnostic or prognostic tool for COPD remains elusive. The identification of novel biomarkers may facilitate improved therapeutic strategies for patients suffering from this debilitating disease. MicroRNAs (miRNAs), which are small non-coding RNA molecules, have emerged as promising candidates for the prediction and diagnosis of COPD. Studies have demonstrated that dysregulation of miRNAs influences critical cellular and molecular pathways, including Notch, Wnt, hypoxia-inducible factor-1α, transforming growth factor, Kras, and Smad, which may contribute to the pathogenesis of COPD. Extracellular vesicles, particularly exosomes, merit further investigation due to their capacity to transport various biomolecules such as mRNAs, miRNAs, and proteins between cells. This intercellular communication can significantly impact the progression and severity of COPD by modulating signaling pathways in recipient cells. A deeper exploration of circulating miRNAs and the content of extracellular vesicles may lead to the discovery of novel diagnostic and prognostic biomarkers, ultimately enhancing the management of COPD. The current review focus on the pathogenic role of miRNAs and their exosomal counterparts in chest and respiratory diseases, centering COPD.
Collapse
Affiliation(s)
- FangYuan Nan
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Bo Liu
- Thoracic Surgery Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China
| | - Cheng Yao
- Infectious Diseases Department of the First People's Hospital of Jiangxia District, Wuhan, 430200, Hubei Province, China.
| |
Collapse
|
2
|
Kim BK, Yang MS, Srivastava U, Piparia S, Sharma R, Tiwari A, Kho A, Wong R, Celedón JC, Weiss ST, McGeachie M, Tantisira K. MiR-107 and Its Association With House Dust Mite Sensitisation: Implications for Asthma. Clin Exp Allergy 2024. [PMID: 39489493 DOI: 10.1111/cea.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION MicroRNAs (miRNAs) have been linked to allergic diseases but their effects on sensitisation to allergens in individuals with asthma are unknown. We aimed to identify miRNAs associated with house dust mite (HDM) sensitisation in childhood asthma. METHODS Serum samples from 1126 children with asthma who participated in the Genetics of Asthma in Costa Rica Study (GACRS) were profiled for 304 miRNAs. We first divided according to HDM sensitisation and then tested whether miRNAs were differentially expressed (DE) between the two groups. Gene enrichment analysis for target genes of the DE miRNAs was then performed to identify potential causal pathways. Replication analysis was performed in the Childhood Asthma Management Program (CAMP), in which expression data of 258 miRNAs in 491 children were available. A mediation analysis was conducted to discern relationships between miRNA and phenotype differences according to HDM sensitisation in GACRS cohort. RESULTS There were 906 (80.5%) and 220 (19.5%) subjects in the GACRS HDM+ and HDM- groups. Compared with HDM- participants, those in the HDM+ group were more likely to be severe in variables including pulmonary function, oral corticosteroid use and blood tests. A total of 17 miRNAs were DE (p < 0.05) between the two groups, with miR-642a-3p, let-7c-5p and miR-107 most significantly associated with HDM sensitisation. In CAMP, there were 39 DE miRNAs, and increased expression of miR-107 in HDM+ children was replicated in this cohort. In both GACRS and CAMP, the cadherin-binding pathway was enriched in an analysis of target genes for DE miRNA. In a mediation analysis, miR-107 showed significant indirect effects on eosinophil count and total IgE that were mediated by HDM sensitisation. CONCLUSION In children with asthma, miR-107 is associated with HDM sensitisation. Furthermore, miR-107 was indirectly associated with total IgE and eosinophil count through HDM sensitisation.
Collapse
Affiliation(s)
- Byung-Keun Kim
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Suk Yang
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Korea
| | - Upasna Srivastava
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Shraddha Piparia
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anshul Tiwari
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alvin Kho
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Richard Wong
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, San Diego, California, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Kelan Tantisira
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Division of Pediatric Respiratory Medicine, Department of Pediatrics, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
3
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
4
|
Jeong HR, Hwang IT. MicroRNAs as novel biomarkers for the diagnosis and treatment of pediatric diseases. Clin Exp Pediatr 2024; 67:119-125. [PMID: 37232075 PMCID: PMC10915459 DOI: 10.3345/cep.2023.00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
MicroRNAs (miRNAs) are highly conserved noncoding RNAs that regulate gene expression by silencing or degrading messenger RNAs. Many of the approximately 2,500 miRNAs discovered in humans are known to regulate vital biological processes, including cell differentiation, proliferation, apoptosis, and embryonic tissue development. Aberrant miRNA expression may have pathological and malignant consequences. Therefore, miRNAs have emerged as novel diagnostic markers and potential therapeutic targets for various diseases. Children undergo various stages of growth, development, and maturation between birth and adulthood. It is important to study the role of miRNA expression in normal growth and disease development during these developmental stages. In this mini-review, we discuss the role of miRNAs as diagnostic and prognostic biomarkers in various pediatric diseases.
Collapse
Affiliation(s)
- Hwal Rim Jeong
- Department of Pediatrics, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Il Tae Hwang
- Department of Pediatrics, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Zhang T, Huang H, Liang L, Lu H, Liang D. Long non-coding RNA (LncRNA) non-coding RNA activated by DNA damage (NORAD) knockdown alleviates airway remodeling in asthma via regulating miR-410-3p/RCC2 and inhibiting Wnt/β-catenin pathway. Heliyon 2024; 10:e23860. [PMID: 38261955 PMCID: PMC10796956 DOI: 10.1016/j.heliyon.2023.e23860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Background Asthma is a chronic inflammatory disorder with high prevalence in childhood. Airway remodeling, an important structural change of the airways, is resulted from epithelial-mesenchymal transition. Long non-coding RNA non-coding RNA activated by DNA damage (NORAD) has been found to promote epithelial-mesenchymal transition in multiple cancers. This study aimed to analyze the role of NORAD in asthma, mainly focusing on epithelial-mesenchymal transition-mediated airway remodeling, and further explored the NORAD-miRNA-mRNA network. Methods NORAD expression was analyzed in transforming growth factor-β1-induced BEAS-2B human bronchial epithelial cells and ovalbumin-challenged asthmatic mice. The influences of NORAD on the epithelial-mesenchymal transition characteristics and Wnt/β-catenin pathway activation were analyzed in vitro. The interactions between NORAD and miR-410-3p as well as miR-410-3p and regulator of chromosome condensation 2 were detected by dual-luciferase reporter assay and RNA pull-down assay. Rescue experiments using miR-410-3p antagonist and chromosome condensation 2 overexpression were used to confirm the mechanism of NORAD. Additionally, the role and mechanism of NORAD were further evaluated in asthmatic mice. Results NORAD expression was elevated in both asthmatic models. Knockdown of NORAD impeded spindle-like morphology changes, elevated E-cadherin expression, decreased N-cadherin expression, suppressed cell migration, and inactivated the Wnt/β-catenin pathway in transforming growth factor-β1-stimulated BEAS-2B cells. NORAD acted as a sponge of miR-410-3p to regulate chromosome condensation 2 expression. Rescue assays demonstrated that silencing of NORAD ameliorated transforming growth factor-β1-induced EMT via miR-410-3p/chromosome condensation 2/Wnt/β-catenin axis. In vivo, knockdown of NORAD led to the reduction of inflammatory cell infiltration and collagen deposition, suppression of IL-4, IL-13, transforming growth factor-β1 and immunoglobulin E production, decreasing of N-cadherin, chromosome condensation 2, β-catenin and c-Myc expression, but increasing of E-cadherin and miR-410-3p expression. Conclusions Silencing of NORAD alleviated epithelial-mesenchymal transition-mediated airway remodeling in asthma via mediating miR-410-3p/chromosome condensation 2/Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Han Huang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Lihong Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Hongxia Lu
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| | - Dongge Liang
- Department of Respiratory, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450000, China
| |
Collapse
|
6
|
The Potential Role of Serum and Exhaled Breath Condensate miRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030763. [PMID: 36979742 PMCID: PMC10045893 DOI: 10.3390/biomedicines11030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asthma is the most common chronic disease of the respiratory system in children and the number of new cases is constantly increasing. It is characterized by dyspnea, wheezing, tightness in the chest, or coughing. Due to diagnostic difficulties, disease monitoring, and the selection of safe and effective drugs, it has been shown that among the youngest patients, miRNAs fulfilling the above roles can be successfully used in common clinical practice. These biomolecules, by regulating the expression of the body’s genes, influence various biological processes underlying the pathogenesis of asthma, such as the inflammatory process, remodeling, and intensification of airway obstruction. They can be detected in blood serum and in exhaled breath condensate (EBC). Among children, common factors responsible for the onset or exacerbation of asthma, such as infections, allergens, air pollution, or tobacco smoke present in the home environment, cause a change the concentration of miRNAs in the body. This is related to their significant impact on the modulation of the disease process. In the following paper, we review the latest knowledge on miRNAs and their use, especially as diagnostic markers in assessing asthma exacerbation, with particular emphasis on the pediatric population.
Collapse
|
7
|
MiR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of airway smooth muscle cells by regulating the PTEN/Akt pathway. Allergol Immunopathol (Madr) 2023; 51:151-159. [PMID: 36916101 DOI: 10.15586/aei.v51i2.767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND Recent studies have shown that the up-regulation of microRNA miR-328-3p expression increases seasonal allergy and asthma symptoms in children, but the specific mechanism remains unclear. Therefore, the aim of this study was to explore the role and mechanism of -miR-328-3p in transforming growth factor (TGF)-β1-induced airway smooth muscle cells (ASMCs). METHODS The effect of TGF-β1 on the expression of miR-328-3p in ASMCs was examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cells proliferation, migration, and inflammatory factors in TGF-β1-induced ASMCs were measured by cell counting kit-8 (CCK-8), transwell, and enzyme-linked immunosorbent assay (ELISA), respectively. Besides, TargetScan was used to predict phosphatase and tensin homolog (PTEN), the downstream target of miR-328-3p; double-luciferase reporter assay, western blot, and qRT-PCR were used to verify the targeting relationship between miR-328-3p and PTEN; western blot was also used to examine the effects of PTEN and miR-328-3p knockdown on the expression levels of PTEN, Akt, and p-Akt proteins. RESULTS The expression of miR-328-3p was up-regulated in TGF-β1-induced ASMCs. Knockdown of miR-328-3p significantly inhibited proliferation, migration, and inflammation of ASMCs induced by TGF-β1 and decreased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β. The dual--luciferase reporter assay results confirmed that PTEN was a target gene of miR-328-3p. Moreover, inhibition of PTEN expression reversed the inhibitory effect of low miR-328-3p expression on -TGF-β1-induced ASMC's proliferation, migration, and inflammation. In comparison to the knockdown of miR-328-3p alone, the simultaneous knockdown of miR-328-3p with PTEN decreased PTEN protein expression levels and increased p-Akt/Akt ratio in TGF-β1-induced ASMCs. CONCLUSION Through regulating the expression of PTEN and the activity of Akt signaling pathway, miR-328-3p promotes TGF-β1-induced proliferation, migration, and inflammation of ASMCs.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The study of microRNA in asthma has revealed a vibrant new level of gene regulation underlying asthma pathology. Several miRNAs have been shown to be important in asthma, influencing various biological mechanisms which lead to asthma pathology and symptoms. In addition, miRNAs have been proposed as biomarkers of asthma affection status, asthma severity, and asthma treatment response. We review all recent asthma-miRNA work, while also presenting comprehensive tables of all miRNA results related to asthma. RECENT FINDINGS We here reviewed 63 recent studies published reporting asthma and miRNA research, and an additional 14 reviews of the same. We summarized the information for both adult and childhood asthma, as well as research on miRNAs in asthma-COPD overlap syndrome (ACOs), and virus-induced asthma exacerbations. We attempted to present a comprehensive collection of recently published asthma-associated miRNAs as well as tables of all published asthma-related miRNA results.
Collapse
Affiliation(s)
- Rinku Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Fu Y, Gao H, Hou X, Chen Y, Xu K. Pretreatment with IPA ameliorates colitis in mice: Colon transcriptome and fecal 16S amplicon profiling. Front Immunol 2022; 13:1014881. [PMID: 36159803 PMCID: PMC9495931 DOI: 10.3389/fimmu.2022.1014881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
3-Indolepropionic acid (IPA) is a tryptophan metabolite that has anti-inflammatory properties. The present study try to investigate the phylactic effects of IPA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that IPA pretreatment ameliorated the DSS-induced decrease in growth performance, and intestinal damage and enhanced immunity in mice. RNA-seq analysis of mouse colon samples revealed that the differentially expressed genes (DEGs) were mainly enriched in immune-related pathways. 16S rRNA sequencing showed that IPA pretreatment ameliorated DSS-induced colonic microbiota dysbiosis. Moreover, the expression levels of gut immune genes were positively correlated with the relative abundance of several probiotics, such as Alloprevotella and Catenibacterium. In conclusion, IPA alleviates DSS-induced acute colitis in mice by regulating inflammatory cytokines, balancing the colonic microbiota and modulating the expression of genes related to inflammation, which would also provide a theoretical basis for IPA as a strategy to improve intestinal health.
Collapse
Affiliation(s)
- Yawei Fu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Hu Gao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiaohong Hou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yue Chen
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kang Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kang Xu,
| |
Collapse
|
10
|
Zhang X, Zhang X, Feng S, Wang X, Guo B, Liu J, Xu D, Liu F. The Specific microRNA Profile and Functional Networks for Children with Allergic Asthma. J Asthma Allergy 2022; 15:1179-1194. [PMID: 36059920 PMCID: PMC9439701 DOI: 10.2147/jaa.s378547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Allergic asthma is the most common type of asthma and often occurs in early life with increasing comorbidities, including atopic dermatitis and allergic rhinitis. MicroRNAs (miRNAs) are involved in the pathogenesis of numerous immune and inflammatory disorders, particularly allergic inflammation. The specific miRNA profiles of children with allergic asthma have not been fully delineated and still require in-depth study. Objective This study aimed to identify the expression profile of miRNAs and constructed a network of the interactions between differentially expressed miRNAs and target mRNAs to provide novel insights into understanding the pathogenesis of allergic asthma. Materials and Methods In this study, we performed high-throughput sequencing of peripheral blood mononuclear cells (PBMCs) from children in the acute phase of asthma. Bioinformatics approaches, including miRanda, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, were employed to predict novel therapeutic and diagnostic targets for allergic asthma. Real-time quantitative PCR was conducted to detect the expression of aberrantly expressed miRNAs. Results One hundred and sixty-one differentially expressed miRNAs were identified in children with allergic asthma, including 140 conserved miRNAs and 21 novel miRNAs. A total of 8929 targeted mRNAs (44,186 transcripts) associated with differentially expressed miRNAs were predicted and significantly enriched in the cGMP-PKG signalling pathway, cholinergic synapse, and salivary secretion. We also found that miRNA-370-3p targeted PKG and MLCP molecules in the cGMP-PKG signalling pathway and was involved in the pathogenesis of allergic asthma. Conclusion We identified the miRNA profile of PBMCs in children with allergic asthma and also found that miRNA-370-3p targeted PKG and MLCP molecules in the cGMP-PKG signalling pathway, which provides a novel insight into understanding the pathogenesis of allergic asthma and investigating new targets for the treatment of allergic asthma in children.
Collapse
Affiliation(s)
- Xiyan Zhang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Xijuan Wang
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Beibei Guo
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jingjing Liu
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Clinical Medicine College, Weifang Medical University, Weifang, People’s Republic of China
- Department of Rheumatology, The First Affiliated Hospital of Weifang Medical University, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Weifang, People’s Republic of China
- Correspondence: Fengxia Liu; Donghua Xu, Email ;
| |
Collapse
|
11
|
Sun D, Cai X, Shen F, Fan L, Yang H, Zheng S, Zhou L, Chen K, Wang Z. Transcriptome-Wide m6A Methylome and m6A-Modified Gene Analysis in Asthma. Front Cell Dev Biol 2022; 10:799459. [PMID: 35712670 PMCID: PMC9197130 DOI: 10.3389/fcell.2022.799459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
N6-methyladenosine (m6A) modification is one of the most prevalent RNA modification forms and is an important posttranscriptional mechanism for regulating genes. In previous research, we found that m6A regulator–mediated RNA methylation modification was involved in asthma; however, the specific modified genes are not clear. In this study, we systematically evaluated the transcriptome-wide m6A methylome and m6A-modified genes in asthma. Here, we performed two high-throughput sequencing methods, methylated RNA immunoprecipitation sequencing (MeRIP-seq), and RNA sequencing (RNA-seq) to identify key genes with m6A modification in asthma. Through difference analysis, we found that 416 methylation peaks were significantly upregulated and 152 methylation peaks were significantly downregulated, and it was mainly distributed in 3′ UTR. Furthermore, compared with the control group, there were 2,505 significantly upregulated genes and 4,715 significantly downregulated genes in the asthma group. Next, through a combined analysis of transcriptome and differential peaks, 14 differentially expressed genes related to RNA methylation modification were screened. Finally, through 87 health controls and 411 asthma cases from the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) program, we verified three m6A-modified key genes (BCL11A, MATK, and CD300A) and found that they were mainly distributed in exons and enriched in 3' UTR. Our findings suggested that intervening in m6A-modified genes may provide a new idea for the treatment of asthma.
Collapse
Affiliation(s)
- Deyang Sun
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Cai
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fenglin Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming Fan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huan Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suqun Zheng
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Linshui Zhou
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Wang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zhen Wang,
| |
Collapse
|