1
|
Lusetti F, Bezzio C, De Bernardi A, Dota M, Manes G, Saibeni S. The TL1A inhibitors in IBD: what's in the pot? Expert Rev Gastroenterol Hepatol 2025:1-11. [PMID: 39772947 DOI: 10.1080/17474124.2025.2450795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Inflammatory bowel diseases (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), present ongoing challenges despite advances in pathophysiological understanding and therapeutic options. Current therapies often fail to achieve sustained remission, necessitating exploration of novel treatment targets. AREAS COVERED This review explores the role of Tumor Necrosis Factor-like cytokine 1A (TL1A) and its receptor DR3 in IBD pathogenesis, detailing their involvement in mucosal homeostasis and immune modulation. Recent studies on TL1A inhibitors highlight their potential in mitigating inflammation and fibrosis in IBD. EXPERT OPINION TL1A inhibition emerges as a promising therapeutic strategy, supported by encouraging outcomes in clinical trials for moderate to severe IBD. Future research may elucidate TL1A's broader impact on immunity, epithelial integrity and fibrosis, offering new avenues for therapeutic intervention and biomarker discovery. Ongoing phase 3 trials are pivotal in assessing TL1A inhibitors as effective and safe treatments for IBD. Additionally, exploration of TL1A's role in fibrosis-associated complications and its potential as a biomarker for treatment response holds promise for personalized medicine approaches. Consideration of TL1A inhibition in concurrent immune-mediated inflammatory diseases suggests broader therapeutic implications beyond gastrointestinal manifestations of IBD.
Collapse
Affiliation(s)
- F Lusetti
- Gastroenterology Unit, Foundation Policlinico San Matteo IRCCS, University of Pavia, Pavia, Italy
- IBD Center, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - C Bezzio
- IBD Center, Humanitas Clinical and Research Centre, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - A De Bernardi
- IBD Center, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - M Dota
- Gastroenterology Unit, Foundation Policlinico San Matteo IRCCS, University of Pavia, Pavia, Italy
- IBD Center, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - G Manes
- IBD Center, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| | - S Saibeni
- IBD Center, Gastroenterology Unit, Rho Hospital, ASST Rhodense, Rho, Italy
| |
Collapse
|
2
|
Hansi RK, Ranjbar M, Whetstone CE, Gauvreau GM. Regulation of Airway Epithelial-Derived Alarmins in Asthma: Perspectives for Therapeutic Targets. Biomedicines 2024; 12:2312. [PMID: 39457624 PMCID: PMC11505104 DOI: 10.3390/biomedicines12102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Asthma is a chronic respiratory condition predominantly driven by a type 2 immune response. Epithelial-derived alarmins such as thymic stromal lymphopoietin (TSLP), interleukin (IL)-33, and IL-25 orchestrate the activation of downstream Th2 cells and group 2 innate lymphoid cells (ILC2s), along with other immune effector cells. While these alarmins are produced in response to inhaled triggers, such as allergens, respiratory pathogens or particulate matter, disproportionate alarmin production by airway epithelial cells can lead to asthma exacerbations. With alarmins produced upstream of the type 2 inflammatory cascade, understanding the pathways by which these alarmins are regulated and expressed is critical to further explore new therapeutics for the treatment of asthmatic patients. This review emphasizes the critical role of airway epithelium and epithelial-derived alarmins in asthma pathogenesis and highlights the potential of targeting alarmins as a promising therapeutic to improve outcomes for asthma patients.
Collapse
Affiliation(s)
| | | | | | - Gail M. Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (R.K.H.); (M.R.); (C.E.W.)
| |
Collapse
|
3
|
Niese ML, Pajulas AL, Rostron CR, Cheung CCL, Krishnan MS, Zhang J, Cannon AM, Kaplan MH. TL1A priming induces a multi-cytokine Th9 cell phenotype that promotes robust allergic inflammation in murine models of asthma. Mucosal Immunol 2024; 17:537-553. [PMID: 38493956 PMCID: PMC11354665 DOI: 10.1016/j.mucimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Multi-cytokine-producing Th9 cells secrete IL-9 and type 2 cytokines and mediate mouse and human allergic inflammation. However, the cytokines that promote a multi-cytokine secreting phenotype have not been defined. Tumor necrosis factor superfamily member TL1A signals through its receptor DR3 to increase IL-9. Here we demonstrate that TL1A increases expression of IL-9 and IL-13 co-expressing cells in murine Th9 cell cultures, inducing a multi-cytokine phenotype. Mechanistically, this is linked to histone modifications allowing for increased accessibility at the Il9 and Il13 loci. We further show that TL1A alters the transcription factor network underlying expression of IL-9 and IL-13 in Th9 cells and increases binding of transcription factors to Il9 and Il13 loci. TL1A-priming enhances the pathogenicity of Th9 cells in murine models of allergic airway disease through the increased expression of IL-9 and IL-13. Lastly, in both chronic and memory-recall models of allergic airway disease, blockade of TL1A signaling decreases the multi-cytokine Th9 cell population and attenuates the allergic phenotype. Taken together, these data demonstrate that TL1A promotes the development of multi-cytokine Th9 cells that drive allergic airway diseases and that targeting pathogenic T helper cell-promoting cytokines could be an effective approach for modifying disease.
Collapse
Affiliation(s)
- Michelle L Niese
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail L Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cameron R Rostron
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maya S Krishnan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony M Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Liu X, Zhang J, Zhang D, Pan Y, Zeng R, Xu C, Shi S, Xu J, Qi Q, Dong X, Wang J, Liu T, Dong L. Necroptosis plays a role in TL1A-induced airway inflammation and barrier damage in asthma. Respir Res 2024; 25:271. [PMID: 38987753 PMCID: PMC11238433 DOI: 10.1186/s12931-024-02900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Airway epithelial cell (AEC) necroptosis contributes to airway allergic inflammation and asthma exacerbation. Targeting the tumor necrosis factor-like ligand 1 A (TL1A)/death receptor 3 (DR3) axis has a therapeutic effect on asthmatic airway inflammation. The role of TL1A in mediating necroptosis of AECs challenged with ovalbumin (OVA) and its contribution to airway inflammation remains unclear. METHODS We evaluated the expression of the receptor-interacting serine/threonine-protein kinase 3(RIPK3) and the mixed lineage kinase domain-like protein (MLKL) in human serum and lung, and histologically verified the level of MLKL phosphorylation in lung tissue from asthmatics and OVA-induced mice. Next, using MLKL knockout mice and the RIPK3 inhibitor GSK872, we investigated the effects of TL1A on airway inflammation and airway barrier function through the activation of necroptosis in experimental asthma. RESULTS High expression of necroptosis marker proteins was observed in the serum of asthmatics, and necroptosis was activated in the airway epithelium of both asthmatics and OVA-induced mice. Blocking necroptosis through MLKL knockout or RIPK3 inhibition effectively attenuated parabronchial inflammation, mucus hypersecretion, and airway collagen fiber accumulation, while also suppressing type 2 inflammatory factors secretion. In addition, TL1A/ DR3 was shown to act as a death trigger for necroptosis in the absence of caspases by silencing or overexpressing TL1A in HBE cells. Furthermore, the recombinant TL1A protein was found to induce necroptosis in vivo, and knockout of MLKL partially reversed the pathological changes induced by TL1A. The necroptosis induced by TL1A disrupted the airway barrier function by decreasing the expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin, possibly through the activation of the NF-κB signaling pathway. CONCLUSIONS TL1A-induced airway epithelial necroptosis plays a significant role in promoting airway inflammation and barrier dysfunction in asthma. Inhibition of the TL1A-induced necroptosis pathway could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xiaofei Liu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Changjuan Xu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Shuochuan Shi
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Jiawei Xu
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Qian Qi
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Xueli Dong
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Junfei Wang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Tian Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China.
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
6
|
Zhu Y, Huang B, Jiang G. Correlation between changes in serum YKL-40, LXRs, PPM1A, and TGF-β1 levels and airway remodeling and lung function in patients with bronchial asthma. J Asthma 2024; 61:698-706. [PMID: 38164946 DOI: 10.1080/02770903.2023.2301426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study investigates the correlation between serum levels of YKL-40, LXRs, PPM1A, and TGF-β1 and airway remodeling and lung function in bronchial asthma patients. METHODS The study involved 80 bronchial asthma patients and 92 healthy individuals. Serum cytokines, airway remodeling, and lung function markers were compared across mild, moderate, and severe asthma cases using high-resolution CT, t-tests, ANOVA, and Pearson correlation analysis. RESULTS Asthmatic patients exhibited higher levels of serum YKL-40, LXRα, LXRβ, TGF-β1, airway wall thickness (T)/outer diameter (D), and WA% of total cross-sectional area compared to controls. Conversely, their serum PPM1A, Peak Expiratory Flow (PEF), and Forced Expiratory Volume in 1 s (FEV1) were lower. Serum YKL-40 and TGF-β1 levels were positively correlated with T/D and WA%, and negatively correlated with PEF and FEV1. PPM1A levels were strongly associated with T/D, WA%, PEF, and FEV1. CONCLUSION The severity of bronchial asthma is associated with increased serum levels of YKL-40, LXRα, LXRβ, and TGF-β1 and decreased PPM1A. The levels of YKL-40, PPM1A, and TGF-β1 have a significant correlation with airway remodeling and lung function.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| | - Bowen Huang
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| | - Guang Jiang
- Department of Pulmonary Disease, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, P. R. China
| |
Collapse
|
7
|
Niu W, Liu Q, Huo X, Luo Y, Zhang X. TL1A promotes metastasis and EMT process of colorectal cancer. Heliyon 2024; 10:e24392. [PMID: 38312710 PMCID: PMC10835226 DOI: 10.1016/j.heliyon.2024.e24392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Metastasis is the major problem of colorectal cancer (CRC) and is correlated with the high mortality. Tumor necrosis factor-like cytokine 1A (TL1A) is a novel regulatory factor for inflammatory diseases. This work aimed to investigate the role of TL1A in CRC metastasis. Method AOM/DSS-induced mouse model, xenograft tumor model and metastasis murine model were established to mimic the colitis-associated CRC and investigate CRC growth and metastasis in vivo. Colon tissues were assessed by hematoxylin/eosin (HE) staining and immunohistochemistry (IHC). CRC cell metastasis in vivo was observed using in vivo imaging system (IVIS). Cell viability and proliferation were examined using cell counting kit 8 (CCK-8) and EdU experiments. The expression of tumor growth factor β (TGFβ) and metastatic biomarkers were detected using western blotting experiment. The in vitro cell metastasis was measured by Transwell. Results Knockdown of TL1A notably suppressed the generation of colonic tumors in azoxymethane/dextran sodium sulfate (AOM/DSS) model, suppressed in vivo CRC cell growth, as well as lung and liver metastasis. The inflammation response and inflammatory cell infiltration in tumor sites were decreased by TL1A depletion. The in vitro CRC cell growth and metastasis was also suppressed by shTL1A, along with altered expression of epithelial mesenchymal transition (EMT) biomarkers. TL1A depletion suppressed the level of the TGF-β1 receptor (TβRI) and phosphorylation of Smad3 in CRC cells. Stimulation with TGF-β recovered the CRC cell migration and invasion that suppressed by shTL1A. Conclusion Our work implicated TL1A as a promoter of CRC generation and metastasis and defines TGF-β/Smad3 signaling as mediator of TL1A-regualated CRC cell metastasis.
Collapse
Affiliation(s)
- Weiwei Niu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Qian Liu
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaoxia Huo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Yuxin Luo
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| | - Xiaolan Zhang
- The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang City, Hebei province, 050000, China
| |
Collapse
|
8
|
Pan Y, Zhang D, Zhang J, Liu X, Xu J, Zeng R, Cui W, Liu T, Wang J, Dong L. Suppression of SPARC Ameliorates Ovalbumin-induced Airway Remodeling via TGFβ1/Smad2 in Chronic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:91-108. [PMID: 38262393 PMCID: PMC10823139 DOI: 10.4168/aair.2024.16.1.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/10/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Airway remodeling is a critical feature of asthma. Secreted protein acidic and rich in cysteine (SPARC), which plays a cardinal role in regulating cell-matrix interactions, has been implicated in various fibrotic diseases. However, the effect of SPARC in asthma remains unknown. METHODS We studied the expression of SPARC in human bronchial epithelial cells and serum of asthmatics as well as in the lung tissues of chronic asthma mice. The role of SPARC was examined by using a Lentivirus-mediated SPARC knockdown method in the ovalbumin (OVA)-induced asthma mice. The biological processes regulated by SPARC were identified using RNA sequencing. The function of SPARC in the remodeling process induced by transforming growth factor β1 (TGFβ1) was conducted by using SPARC small interfering RNA (siRNA) or recombinant human SPARC protein in 16HBE cells. RESULTS We observed that SPARC was up-regulated in human bronchial epithelia of asthmatics and the asthmatic mice. The levels of serum SPARC in asthmatics were also elevated and negatively correlated with the forced expiratory volume in one second (FEV1) to forced vital capacity ratio (FVC) (r = -0.485, P < 0.01) and FEV1 (%predicted) (r = -0.425, P = 0.001). In the chronic asthmatic mice, Lentivirus-mediated SPARC knockdown significantly decreased airway remodeling and airway hyper-responsiveness. According to gene set enrichment analysis, negatively enriched pathways found in the OVA + short hairpin-SPARC group included ECM organization and collagen formation. In the lung function studies, knockdown of SPARC by siRNA reduced the expression of remodeling-associated biomarkers, cell migration, and contraction by blocking the TGFβ1/Smad2 pathway. Addition of human recombinant SPARC protein promoted the TGFβ1-induced remodeling process, cell migration, and contraction in 16HBE cells via the TGFβ1/Smad2 pathway. CONCLUSIONS Our studies provided evidence for the involvement of SPARC in the airway remodeling of asthma via the TGFβ1/Smad2 pathway.
Collapse
Affiliation(s)
- Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xiaofei Liu
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jiawei Xu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjing Cui
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Tian Liu
- Department of Pulmonary and Critical Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Junfei Wang
- Department of Pulmonary and Critical Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
9
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
10
|
Wang G, Shen J, Zhai L, Lin Y, Guan Q, Shen H. TL1A promotes the postoperative cognitive dysfunction in mice through NLRP3-mediated A1 differentiation of astrocytes. CNS Neurosci Ther 2023; 29:3588-3597. [PMID: 37269079 PMCID: PMC10580360 DOI: 10.1111/cns.14290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
AIM We investigated the mechanism, whereby tumor necrosis factor-like ligand 1A (TL1A) mediates the A1 differentiation of astrocytes in postoperative cognitive dysfunction (POCD). METHODS The cognitive and behavioral abilities of mice were assessed by Morris water maze and open field tests, while the levels of key A1 and A2 astrocyte factors were detected by RT-qPCR. Immunohistochemical (IHC) staining was used to examine the expression of GFAP, western blot was used to assay the levels of related proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory cytokines. RESULTS The results showed that TL1A could promote the progression of cognitive dysfunction in mice. Astrocytes differentiated into A1 phenotype, while unobvious changes were noted in astrocyte A2 biomarkers. Knockout of NLRP3 or intervention with NLRP3 inhibitor could inhibit the effect of TL1A, improving the cognitive dysfunction and suppressing the A1 differentiation. CONCLUSION Our results demonstrate that TL1A plays an important role in POCD in mice, which promotes the A1 differentiation of astrocytes through NLRP3, thereby exacerbating the progression of cognitive dysfunction.
Collapse
Affiliation(s)
- Genghuan Wang
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
| | - Jian Shen
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
| | - Liping Zhai
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
| | - Yingcong Lin
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
- Zhejiang Chinese Medical UniversityZhejiangChina
| | - Qiaobing Guan
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
| | - Heping Shen
- Department of NeurosurgeryThe Second Affiliated Hospital of Jiaxing UniversityZhejiangChina
| |
Collapse
|
11
|
Zhang D, Zhang J, Zhang J, Ji X, Qi Q, Xu J, Pan Y, Liu X, Sun F, Zeng R, Dong L. Identification of a novel role for TL1A/DR3 deficiency in acute respiratory distress syndrome that exacerbates alveolar epithelial disruption. Respir Res 2023; 24:182. [PMID: 37434162 DOI: 10.1186/s12931-023-02488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
Alveolar epithelial barrier is a potential therapeutic target for acute respiratory distress syndrome (ARDS). However, an effective intervention against alveolar epithelial barrier has not been developed. Here, based on single-cell RNA and mRNA sequencing results, death receptor 3 (DR3) and its only known ligand tumor necrosis factor ligand-associated molecule 1A (TL1A) were significantly reduced in epithelium from an ARDS mice and cell models. The apparent reduction in the TL1A/DR3 axis in lungs from septic-ARDS patients was correlated with the severity of the disease. The examination of knockout (KO) and alveolar epithelium conditional KO (CKO) mice showed that TL1A deficiency exacerbated alveolar inflammation and permeability in lipopolysaccharide (LPS)-induced ARDS. Mechanistically, TL1A deficiency decreased glycocalyx syndecan-1 and tight junction-associated zonula occludens 3 by increasing cathepsin E level for strengthening cell-to-cell permeability. Additionally, DR3 deletion aggravated barrier dysfunction and pulmonary edema in LPS-induced ARDS through the above mechanisms based on the analyses of DR3 CKO mice and DR3 overexpression cells. Therefore, the TL1A/DR3 axis has a potential value as a key therapeutic signaling for the protection of alveolar epithelial barrier.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Jianning Zhang
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jintao Zhang
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiang Ji
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Qian Qi
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Jiawei Xu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Yun Pan
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaofei Liu
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Fang Sun
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Rong Zeng
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Respiratory and Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Jinan, China.
| |
Collapse
|
12
|
Steele H, Cheng J, Willicut A, Dell G, Breckenridge J, Culberson E, Ghastine A, Tardif V, Herro R. TNF superfamily control of tissue remodeling and fibrosis. Front Immunol 2023; 14:1219907. [PMID: 37465675 PMCID: PMC10351606 DOI: 10.3389/fimmu.2023.1219907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Fibrosis is the result of extracellular matrix protein deposition and remains a leading cause of death in USA. Despite major advances in recent years, there remains an unmet need to develop therapeutic options that can effectively degrade or reverse fibrosis. The tumor necrosis super family (TNFSF) members, previously studied for their roles in inflammation and cell death, now represent attractive therapeutic targets for fibrotic diseases. In this review, we will summarize select TNFSF and their involvement in fibrosis of the lungs, the heart, the skin, the gastrointestinal tract, the kidney, and the liver. We will emphasize their direct activity on epithelial cells, fibroblasts, and smooth muscle cells. We will further report on major clinical trials targeting these ligands. Whether in isolation or in combination with other anti-TNFSF member or treatment, targeting this superfamily remains key to improve efficacy and selectivity of currently available therapies for fibrosis.
Collapse
Affiliation(s)
- Hope Steele
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Jason Cheng
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ashley Willicut
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Garrison Dell
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Joey Breckenridge
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- University of Cincinnati, Cincinnati, OH, United States
| | - Erica Culberson
- University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Andrew Ghastine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Virginie Tardif
- Normandy University, UniRouen, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1096 (EnVI Laboratory), Rouen, France
| | - Rana Herro
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
13
|
Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1612829. [PMID: 35990822 PMCID: PMC9385299 DOI: 10.1155/2022/1612829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Background Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.
Collapse
|