1
|
Contreras M, Sobrino I, de la Fuente J. Paratransgenic quantum vaccinology. Trends Parasitol 2024:S1471-4922(24)00295-2. [PMID: 39462754 DOI: 10.1016/j.pt.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Tick vaccines are an environmentally friendly intervention for the prevention and control of tick-borne diseases affecting humans and animals worldwide. From our perspective, the challenges in tick vaccinology have encouraged the implementation of new interventions. In this opinion article we propose paratransgenic quantum vaccinology as a new approach that integrates platform trends in biotechnology, such as omics datasets combined with big data analytics, machine learning, and paratransgenesis with a systems biology perspective. This innovative approach allows the identification of protective epitopes in tick- and/or pathogen-derived proteins for the design of chimeric vaccine candidate antigens which can be produced by commensal/symbiotic microorganisms eliciting a protective response in the host.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain.
| | - Isidro Sobrino
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
2
|
Rudra DS, Chatterjee S, Pal U, Mandal M, Chaudhuri SR, Bhunia M, Maiti NC, Besra SE, Jaisankar P, Swarnakar S. Newly Synthesized 3-Indolyl Furanoid Inhibits Matrix Metalloproteinase-9 Activity and Prevents Nonsteroidal Anti-inflammatory Drug-Induced Gastric Ulceration. J Med Chem 2023. [PMID: 37186543 DOI: 10.1021/acs.jmedchem.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Indomethacin, a known nonsteroidal anti-inflammatory drug (NSAID) induces gastric inflammation, causing degradation of the extracellular matrix by specific matrix metalloproteinases (MMPs). We investigated the antiulcer efficacy of 3-indolyl furanoids (3g and 3c, i.e., methoxy substitution at 4- and 5-positions of the indole ring, respectively), derived from indomethacin. Interestingly, 3g protected against indomethacin-induced gastropathy in vivo by inhibiting MMP-9. Our work established a chemical modification strategy for the development of safer NSAIDs. Moreover, in vitro and in silico studies confirmed that 3g inhibited MMP-9 activity with an IC50 value of 50 μM by binding to the catalytic cleft of MMP-9, leading to ulcer prevention. Pharmacokinetics was presented as the mean concentration-time profile in the rat plasma, and the extraction efficiency was greater than 70%, showing a Cmax of 104.48 μg/mL after 6.0 h (tmax) treatment with half-life and area under the curve being 7.0 h and 1273.8 h μg/mL, respectively, indicating the higher antiulcer potency of 3g.
Collapse
|
3
|
Eickhoff CS, Terry FE, Peng L, Meza KA, Sakala IG, Van Aartsen D, Moise L, Martin WD, Schriewer J, Buller RM, De Groot AS, Hoft DF. Highly conserved influenza T cell epitopes induce broadly protective immunity. Vaccine 2019; 37:5371-5381. [PMID: 31331771 DOI: 10.1016/j.vaccine.2019.07.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/30/2022]
Abstract
Influenza world-wide causes significant morbidity and mortality annually, and more severe pandemics when novel strains evolve to which humans are immunologically naïve. Because of the high viral mutation rate, new vaccines must be generated based on the prevalence of circulating strains every year. New approaches to induce more broadly protective immunity are urgently needed. Previous research has demonstrated that influenza-specific T cells can provide broadly heterotypic protective immunity in both mice and humans, supporting the rationale for developing a T cell-targeted universal influenza vaccine. We used state-of-the art immunoinformatic tools to identify putative pan-HLA-DR and HLA-A2 supertype-restricted T cell epitopes highly conserved among > 50 widely diverse influenza A strains (representing hemagglutinin types 1, 2, 3, 5, 7 and 9). We found influenza peptides that are highly conserved across influenza subtypes that were also predicted to be class I epitopes restricted by HLA-A2. These peptides were found to be immunoreactive in HLA-A2 positive but not HLA-A2 negative individuals. Class II-restricted T cell epitopes that were highly conserved across influenza subtypes were identified. Human CD4+ T cells were reactive with these conserved CD4 epitopes, and epitope expanded T cells were responsive to both H1N1 and H3N2 viruses. Dendritic cell vaccines pulsed with conserved epitopes and DNA vaccines encoding these epitopes were developed and tested in HLA transgenic mice. These vaccines were highly immunogenic, and more importantly, vaccine-induced immunity was protective against both H1N1 and H3N2 influenza challenges. These results demonstrate proof-of-principle that conserved T cell epitopes expressed by widely diverse influenza strains can induce broadly protective, heterotypic influenza immunity, providing strong support for further development of universally relevant multi-epitope T cell-targeting influenza vaccines.
Collapse
Affiliation(s)
- Christopher S Eickhoff
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Frances E Terry
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Linda Peng
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Krystal A Meza
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Isaac G Sakala
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Daniel Van Aartsen
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Leonard Moise
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - William D Martin
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States
| | - Jill Schriewer
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - R Mark Buller
- Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States
| | - Anne S De Groot
- EpiVax, Inc., 188 Valley Street, Suite 424, Providence, RI 02909, United States; University of Rhode Island, Institute for Immunology and Informatics, Department of Cell and Molecular Biology, 80 Washington Street, Providence, RI 02903, United States
| | - Daniel F Hoft
- Saint Louis University, Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States; Saint Louis University, Department of Molecular Microbiology & Immunology, 1100 S. Grand Blvd., Edward A. Doisy Research Center - 8th Floor, Saint Louis, MO 63104, United States.
| |
Collapse
|
4
|
Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine 2017; 35:5981-5989. [DOI: 10.1016/j.vaccine.2017.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
5
|
Moise L, Gutierrez A, Kibria F, Martin R, Tassone R, Liu R, Terry F, Martin B, De Groot AS. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines. Hum Vaccin Immunother 2016; 11:2312-21. [PMID: 26155959 PMCID: PMC4635942 DOI: 10.1080/21645515.2015.1061159] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Computational vaccine design, also known as computational vaccinology, encompasses epitope mapping, antigen selection and immunogen design using computational tools. The iVAX toolkit is an integrated set of tools that has been in development since 1998 by De Groot and Martin. It comprises a suite of immunoinformatics algorithms for triaging candidate antigens, selecting immunogenic and conserved T cell epitopes, eliminating regulatory T cell epitopes, and optimizing antigens for immunogenicity and protection against disease. iVAX has been applied to vaccine development programs for emerging infectious diseases, cancer antigens and biodefense targets. Several iVAX vaccine design projects have had success in pre-clinical studies in animal models and are progressing toward clinical studies. The toolkit now incorporates a range of immunoinformatics tools for infectious disease and cancer immunotherapy vaccine design. This article will provide a guide to the iVAX approach to computational vaccinology.
Collapse
Affiliation(s)
- Leonard Moise
- a Institute for Immunology and Informatics; University of Rhode Island ; Providence , RI USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tambunan USF, Sipahutar FRP, Parikesit AA, Kerami D. Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights 2016; 10:27-35. [PMID: 27147821 PMCID: PMC4852757 DOI: 10.4137/bbi.s38378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
From 2003 to 2013, Indonesia had the highest number of avian influenza A cases in humans, with 192 cases and 160 fatalities. Avian influenza is caused by influenza virus type A, such as subtype H5N1. This virus has two glycoproteins: hemagglutinin and neuraminidase, which will become the primary target to be neutralized by vaccine. Vaccine is the most effective immunologic intervention. In this study, we use the epitope-based vaccine design from hemagglutinin and neuraminidase of H5N1 Indonesian strain virus by using immunoinformatics approach in order to predict the binding of B-cell and T-cell epitopes (class I and class II human leukocyte antigen [HLA]). BCPREDS was used to predict the B-cell epitope. Propred, Propred I, netMHCpan, and netMHCIIpan were used to predict the T-cell epitope. Two B-cell epitopes of hemagglutinin candidates and one B-cell epitope of neuraminidase candidates were obtained to bind T-cell CD4(+) (class II HLA), and also five T-cell epitope hemagglutinin and four T-cell epitope neuraminidase were obtained to bind T-cell CD8(+) (class I HLA). The visualization of epitopes was done using MOE 2008.10. It shows that the binding affinity of epitope-HLA was based on minimum binding free energy (ΔG binding). Based on this result, visualization, and dynamic simulation, four hemagglutinin epitopes (MEKIVLLLA, CPYLGSPSF, KCQTPMGAI, and IGTSTLNQR) and two neuraminidase epitopes (NPNQKIITI and CYPDAGEIT) were computed as having the best binding affinity from HLA ligand. The results mentioned above are from in silico experiments and need to be validated using wet experiment.
Collapse
Affiliation(s)
- Usman Sumo Friend Tambunan
- Bioinformatics Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Feimmy Ruth Pratiwi Sipahutar
- Bioinformatics Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Arli Aditya Parikesit
- Bioinformatics Group, Department of Chemistry, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| | - Djati Kerami
- Mathematics Computation Group, Department of Mathematics, Faculty of Mathematics and Natural Science, University of Indonesia, Depok, Indonesia
| |
Collapse
|
7
|
C3d adjuvant effects are mediated through the activation of C3d-specific autoreactive T cells. Immunol Cell Biol 2014; 93:189-97. [PMID: 25385064 PMCID: PMC4323994 DOI: 10.1038/icb.2014.89] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
Abstract
Complement fragment C3d covalently attached to antigens enhances immune responses, particularly for antigens lacking T cell epitopes. Enhancement has been attributed to receptor cross-linking between complement receptor CR2 (CD21) and polysaccharide antigen to surface IgM on naïve B cells. Paradoxically, C3d has still been shown to increase immune responses in CD21 KO mice, suggesting that an auxiliary activation pathway exists. In prior studies, we demonstrated the CD21-independent C3d adjuvant effect might be due to T cell recognition of C3d T helper epitopes processed and presented by MHC class II on the B cell surface. C3d peptide sequences containing concentrated clusters of putative human C3 T cell epitopes were identified using the epitope-mapping algorithm, EpiMatrix. These peptide sequences were synthesized and shown in vitro to bind multiple HLA-DR alleles with high affinity, and induce IFNγ responses in healthy donor PBMCs. In the present studies, we establish further correlations between HLA binding and HLA-specific lymphocyte reactions with select epitope clusters. Additionally, we show that the T cell phenotype of C3d-specific reactive T cells is CD4+CD45RO+ memory T cells. Finally, mutation of a single T cell epitope residing within the P28 peptide segment of C3d resulted in significantly diminished adjuvant activity in BALB/c mice. Collectively, these studies support the hypothesis that the paradoxical enhancement of immune responses by C3d in the absence of CD21 is due to internalization and processing of C3d into peptides that activate autoreactive CD4+ T helper cells in the context of HLA class II.
Collapse
|
8
|
Terry FE, Moise L, Martin RF, Torres M, Pilotte N, Williams SA, De Groot AS. Time for T? Immunoinformatics addresses vaccine design for neglected tropical and emerging infectious diseases. Expert Rev Vaccines 2014; 14:21-35. [PMID: 25193104 PMCID: PMC4743591 DOI: 10.1586/14760584.2015.955478] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world's poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere.
Collapse
|
9
|
De Groot AS, Einck L, Moise L, Chambers M, Ballantyne J, Malone RW, Ardito M, Martin W. Making vaccines "on demand": a potential solution for emerging pathogens and biodefense? Hum Vaccin Immunother 2013; 9:1877-84. [PMID: 23877094 PMCID: PMC3906351 DOI: 10.4161/hv.25611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/18/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
The integrated US Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has made great strides in strategic preparedness and response capabilities. There have been numerous advances in planning, biothreat countermeasure development, licensure, manufacturing, stockpiling and deployment. Increased biodefense surveillance capability has dramatically improved, while new tools and increased awareness have fostered rapid identification of new potential public health pathogens. Unfortunately, structural delays in vaccine design, development, manufacture, clinical testing and licensure processes remain significant obstacles to an effective national biodefense rapid response capability. This is particularly true for the very real threat of "novel pathogens" such as the avian-origin influenzas H7N9 and H5N1, and new coronaviruses such as hCoV-EMC. Conventional approaches to vaccine development, production, clinical testing and licensure are incompatible with the prompt deployment needed for an effective public health response. An alternative approach, proposed here, is to apply computational vaccine design tools and rapid production technologies that now make it possible to engineer vaccines for novel emerging pathogen and WMD biowarfare agent countermeasures in record time. These new tools have the potential to significantly reduce the time needed to design string-of-epitope vaccines for previously unknown pathogens. The design process-from genome to gene sequence, ready to insert in a DNA plasmid-can now be accomplished in less than 24 h. While these vaccines are by no means "standard," the need for innovation in the vaccine design and production process is great. Should such vaccines be developed, their 60-d start-to-finish timeline would represent a 2-fold faster response than the current standard.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc.; Providence, RI USA
- Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Moise L, Terry F, Ardito M, Tassone R, Latimer H, Boyle C, Martin WD, De Groot AS. Universal H1N1 influenza vaccine development: identification of consensus class II hemagglutinin and neuraminidase epitopes derived from strains circulating between 1980 and 2011. Hum Vaccin Immunother 2013; 9:1598-607. [PMID: 23846304 DOI: 10.4161/hv.25598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Immune responses to cross-conserved T cell epitopes in novel H1N1 influenza may explain reports of diminished influenza-like illnesses and confirmed infection among older adults, in the absence of cross-reactive humoral immunity, during the 2009 pandemic. These cross-conserved epitopes may prove useful for the development of a universal H1N1 influenza vaccine, therefore, we set out to identify and characterize cross-conserved H1N1 T cell epitopes. An immunoinformatic analysis was conducted using all available pandemic and pre-pandemic HA-H1 and NA-N1 sequences dating back to 1980. Using an approach that balances potential for immunogenicity with conservation, we derived 13 HA and four NA immunogenic consensus sequences (ICS) from a comprehensive analysis of 5,738 HA-H1 and 5,396 NA-N1 sequences. These epitopes were selected because their combined epitope content is representative of greater than 84% of pre-pandemic and pandemic H1N1 influenza strains, their predicted immunogenicity (EpiMatrix) scores were greater than or equal to the 95th percentile of all comparable epitopes, and they were also predicted to be presented by more than four HLA class II archetypal alleles. We confirmed the ability of these peptides to bind in HLA binding assays and to stimulate interferon-γ production in human peripheral blood mononuclear cell cultures. These studies support the selection of the ICS as components of potential group-common H1N1 vaccine candidates and the application of this universal influenza vaccine development approach to other influenza subtypes.
Collapse
Affiliation(s)
- Leonard Moise
- EpiVax, Inc.; Providence, RI USA; Institute for Immunology and Informatics; University of Rhode Island; Providence, RI USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rudra DS, Pal U, Maiti NC, Reiter RJ, Swarnakar S. Melatonin inhibits matrix metalloproteinase-9 activity by binding to its active site. J Pineal Res 2013; 54:398-405. [PMID: 23330737 DOI: 10.1111/jpi.12034] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022]
Abstract
The zinc-dependent matrix metalloproteinases (MMPs) are key enzymes associated with extracellular matrix (ECM) remodeling; they play critical roles under both physiological and pathological conditions. MMP-9 activity is linked to many pathological processes, including rheumatoid arthritis, atherosclerosis, gastric ulcer, tumor growth, and cancer metastasis. Specific inhibition of MMP-9 activity may be a promising target for therapy for diseases characterized by dysregulated ECM turnover. Potent MMP-9 inhibitors including an indole scaffold were recently reported in an X-ray crystallographic study. Herein, we addressed whether melatonin, a secretory product of pineal gland, has an inhibitory effect on MMP-9 function. Gelatin zymographic analysis showed a significant reduction in pro- and active MMP-9 activity in vitro in a dose- and time-dependent manner. In addition, a human gastric adenocarcinoma cell line (AGS) exhibited a reduced (~50%) MMP-9 expression when incubated with melatonin, supporting an inhibitory effect of melatonin on MMP-9. Atomic-level interaction between melatonin and MMP-9 was probed with computational chemistry tools. Melatonin docked into the active site cleft of MMP-9 and interacted with key catalytic site residues including the three histidines that form the coordination complex with the catalytic zinc as well as proline 421 and alanine 191. We hypothesize that under physiological conditions, tight binding of melatonin in the active site might be involved in reducing the catalytic activity of MMP-9. This finding could provide a novel approach to physical docking of biomolecules to the catalytic site of MMPs, which inhibits this protease, to arrest MMP-9-mediated inflammatory signals.
Collapse
Affiliation(s)
- Deep Sankar Rudra
- Drug Development Diagnostics and Biotechnology Division, Department of Physiology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | |
Collapse
|
12
|
Wei R, Yang C, Zeng M, Terry F, Zhu K, Yang C, Altmeyer R, Martin W, De Groot AS, Leng Q. A dominant EV71-specific CD4+ T cell epitope is highly conserved among human enteroviruses. PLoS One 2012; 7:e51957. [PMID: 23251663 PMCID: PMC3522610 DOI: 10.1371/journal.pone.0051957] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/09/2012] [Indexed: 11/30/2022] Open
Abstract
CD4+ T cell-mediated immunity plays a central role in determining the immunopathogenesis of viral infections. However, the role of CD4+ T cells in EV71 infection, which causes hand, foot and mouth disease (HFMD), has yet to be elucidated. We applied a sophisticated method to identify promiscuous CD4+ T cell epitopes contained within the sequence of the EV71 polyprotein. Fifteen epitopes were identified, and three of them are dominant ones. The most dominant epitope is highly conserved among enterovirus species, including HFMD-related coxsackieviruses, HFMD-unrelated echoviruses and polioviruses. Furthermore, the CD4+ T cells specific to the epitope indeed cross-reacted with the homolog of poliovirus 3 Sabin. Our findings imply that CD4+ T cell responses to poliovirus following vaccination, or to other enteroviruses to which individuals may be exposed in early childhood, may have a modulating effect on subsequent CD4+ T cell response to EV71 infection or vaccine.
Collapse
Affiliation(s)
- Ruicheng Wei
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chunfu Yang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Frances Terry
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Kai Zhu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chunhui Yang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ralf Altmeyer
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - William Martin
- EpiVax, Inc., Providence, Rhode Island, United States of America
| | - Anne S. De Groot
- EpiVax, Inc., Providence, Rhode Island, United States of America
- Institute for Immunology and Informatics, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Qibin Leng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Cousens LP, Tassone R, Mazer BD, Ramachandiran V, Scott DW, De Groot AS. Tregitope update: mechanism of action parallels IVIg. Autoimmun Rev 2012; 12:436-43. [PMID: 22944299 DOI: 10.1016/j.autrev.2012.08.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 08/22/2012] [Indexed: 12/12/2022]
Abstract
In the course of screening immunoglobulin G (IgG) sequences for T cell epitopes, we identified novel Treg epitope peptides, now called Tregitopes, contained in the highly conserved framework regions of Fab and Fc. Tregitopes may provide one explanation for the expansion and stimulation of Treg cells following intravenous immunoglobulin (IVIg) therapy. Their distinguishing characteristics include in silico signatures that suggest high-affinity binding to multiple human HLA class II DR and conservation across IgG isotypes and mammalian species with only minor amino acid modifications. Tregitopes induce expansion of CD4(+)/CD25(hi)/FoxP3(+) T cells and suppress immune responses to co-incubated antigens in vitro. By comparing the human IgG Tregitopes (hTregitopes 167 and 289, located in the IgG CH1 and CH2 domains) and Fab to murine sequences, we identified class II-restricted murine Tregitope homologs (mTregitopes). In vivo, mTregitopes suppress inflammation and reproducibly induce Tregs to expand. In vitro studies suggest that the Tregitope mechanism of action is to induce Tregs to respond, leading to production of regulatory signals, followed by modulation of dendritic cell phenotype. The identification of Treg epitopes in IgG suggests that additional Tregitopes may also be present in other autologous proteins; methods for identifying and validating such peptides are described here. The discovery of Tregitopes in IgG and other autologous proteins may lead to the development of new insights as to the role of Tregs in autoimmune diseases.
Collapse
|