1
|
Habib A, Liang Y, Zhu N. Exosomes multifunctional roles in HIV-1: insight into the immune regulation, vaccine development and current progress in delivery system. Front Immunol 2023; 14:1249133. [PMID: 37965312 PMCID: PMC10642161 DOI: 10.3389/fimmu.2023.1249133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Human Immunodeficiency Virus (HIV-1) is known to establish a persistent latent infection. The use of combination antiretroviral therapy (cART) can effectively reduce the viral load, but the treatment can be costly and may lead to the development of drug resistance and life-shortening side effects. It is important to develop an ideal and safer in vivo target therapy that will effectively block viral replication and expression in the body. Exosomes have recently emerged as a promising drug delivery vehicle due to their low immunogenicity, nanoscale size (30-150nm), high biocompatibility, and stability in the targeted area. Exosomes, which are genetically produced by different types of cells such as dendritic cells, neurons, T and B cells, epithelial cells, tumor cells, and mast cells, are designed for efficient delivery to targeted cells. In this article, we review and highlight recent developments in the strategy and application of exosome-based HIV-1 vaccines. We also discuss the use of exosome-based antigen delivery systems in vaccine development. HIV-1 antigen can be loaded into exosomes, and this modified cargo can be delivered to target cells or tissues through different loading approaches. This review also discusses the immunological prospects of exosomes and their role as biomarkers in disease progression. However, there are significant administrative and technological obstacles that need to be overcome to fully harness the potential of exosome drug delivery systems.
Collapse
Affiliation(s)
- Arslan Habib
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yulai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Naishuo Zhu
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
3
|
Paim AC, Badley AD, Cummins NW. Mechanisms of Human Immunodeficiency Virus-Associated Lymphocyte Regulated Cell Death. AIDS Res Hum Retroviruses 2020; 36:101-115. [PMID: 31659912 PMCID: PMC7044792 DOI: 10.1089/aid.2019.0213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) causes CD4 T cell depletion through a number of mechanisms, including programmed cell death pathways (both apoptotic and nonapoptotic). In the setting of HIV-1 infection, the enhanced lymphocyte cell death occurs as a consequence of complex interactions between the host immune system and viral factors, which are reviewed herein. On the other hand, the main challenge to HIV-1 eradication is the development of latent infection in a subset of long lived cells, including CD4+ T cells and macrophages, which resist HIV-induced cell death. Understanding the potential mechanisms of how HIV-1 induces lymphocyte cell death is critical to the "kick and kill" cure strategy, which relies on the effective killing of reactivated, HIV-1-infected cells.
Collapse
Affiliation(s)
- Ana C. Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
4
|
Chelvanambi S, Bogatcheva NV, Bednorz M, Agarwal S, Maier B, Alves NJ, Li W, Syed F, Saber MM, Dahl N, Lu H, Day RB, Smith P, Jolicoeur P, Yu Q, Dhillon NK, Weissmann N, Twigg Iii HL, Clauss M. HIV-Nef Protein Persists in the Lungs of Aviremic Patients with HIV and Induces Endothelial Cell Death. Am J Respir Cell Mol Biol 2019; 60:357-366. [PMID: 30321057 DOI: 10.1165/rcmb.2018-0089oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
It remains a mystery why HIV-associated end-organ pathologies persist in the era of combined antiretroviral therapy (ART). One possible mechanism is the continued production of HIV-encoded proteins in latently HIV-infected T cells and macrophages. The proapoptotic protein HIV-Nef persists in the blood of ART-treated patients within extracellular vesicles (EVs) and peripheral blood mononuclear cells. Here we demonstrate that HIV-Nef is present in cells and EVs isolated from BAL of patients on ART. We hypothesize that HIV-Nef persistence in the lung induces endothelial apoptosis leading to endothelial dysfunction and further pulmonary vascular pathologies. The presence of HIV-Nef in patients with HIV correlates with the surface expression of the proapoptotic endothelial-monocyte-activating polypeptide II (EMAPII), which was implicated in progression of pulmonary emphysema via mechanisms involving endothelial cell death. HIV-Nef protein induces EMAPII surface expression in human embryonic kidney 293T cells, T cells, and human and mouse lung endothelial cells. HIV-Nef packages itself into EVs and increases the amount of EVs secreted from Nef-expressing T cells and Nef-transfected human embryonic kidney 293T cells. EVs from BAL of HIV+ patients and Nef-transfected cells induce apoptosis in lung microvascular endothelial cells by upregulating EMAPII surface expression in a PAK2-dependent fashion. Transgenic expression of HIV-Nef in vascular endothelial-cadherin+ endothelial cells leads to lung rarefaction, characterized by reduced alveoli and overall increase in lung inspiratory capacity. These changes occur concomitantly with lung endothelial cell apoptosis. Together, these data suggest that HIV-Nef induces endothelial cell apoptosis via an EMAPII-dependent mechanism that is sufficient to cause pulmonary vascular pathologies even in the absence of inflammation.
Collapse
Affiliation(s)
- Sarvesh Chelvanambi
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Natalia V Bogatcheva
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Mariola Bednorz
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Stuti Agarwal
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Bernhard Maier
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nathan J Alves
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wei Li
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Farooq Syed
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Manal M Saber
- 6 Clinical Pathology Department, Faculty of Medicine, Minia University, Minia, Egypt; and
| | - Noelle Dahl
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Hongyan Lu
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Richard B Day
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Patricia Smith
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paul Jolicoeur
- 7 Institut de Recherches Cliniques de Montreal, Montreal, Canada
| | - Qigui Yu
- 5 Department of Microbiology and Immunology, Indiana University, Indianapolis, Indiana
| | - Navneet K Dhillon
- 4 Department of Medicine, Kansas University Medical Center, Kansas City, Kansas
| | - Norbert Weissmann
- 3 Excellence Cluster Cardiopulmonary System, Universities of Giessen and Marburg Lung Center, member of Deutsches Zentrum für Lungenforschung, Justus Liebig University, Giessen, Germany
| | - Homer L Twigg Iii
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Matthias Clauss
- 1 Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,2 R. L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
5
|
Patters BJ, Kumar S. The role of exosomal transport of viral agents in persistent HIV pathogenesis. Retrovirology 2018; 15:79. [PMID: 30577804 PMCID: PMC6303896 DOI: 10.1186/s12977-018-0462-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection, despite great advances in antiretroviral therapy, remains a lifelong affliction. Though current treatment regimens can effectively suppress viral load to undetectable levels and preserve healthy immune function, they cannot fully alleviate all symptoms caused by the presence of the virus, such as HIV-associated neurocognitive disorders. Exosomes are small vesicles that transport cellular proteins, RNA, and small molecules between cells as a mechanism of intercellular communication. Recent research has shown that HIV proteins and RNA can be packaged into exosomes and transported between cells, to pathogenic effect. This review summarizes the current knowledge on the diverse mechanisms involved in the sorting of viral elements into exosomes and the damage those exosomal agents can inflict. In addition, potential therapeutic options to counteract exosome-mediated HIV pathogenesis are reviewed and considered.
Collapse
Affiliation(s)
- Benjamin J Patters
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Santosh Kumar
- Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Hu G, Yelamanchili S, Kashanchi F, Haughey N, Bond VC, Witwer KW, Pulliam L, Buch S. Proceedings of the 2017 ISEV symposium on "HIV, NeuroHIV, drug abuse, & EVs". J Neurovirol 2017; 23:935-940. [PMID: 29147885 DOI: 10.1007/s13365-017-0599-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Despite the success of combination antiretroviral therapy (cART), there is increased prevalence of HIV-associated neurocognitive disorders (HAND) in HIV-1-infected individuals on cART, which poses a major health care challenge. Adding further complexity to this long-term antiretroviral use is the comorbidity with drugs of abuse such as morphine, cocaine, and methamphetamine, which can in turn, exacerbate neurologic and cognitive deficits associated with HAND. Furthermore, HIV proteins, such as the transactivator of transcription (Tat) and the envelope protein (gp120), as well as antiretrovirals themselves can also contribute to the progression of neurodegeneration underlying HAND. In the field of NeuroHIV and drug addiction, EVs hold the potential to serve as biomarkers of cognitive dysfunction, targets of therapy, and as vehicles for therapeutic delivery of agents that can ameliorate disease pathogenesis. Based on the success of a previous Satellite Symposium in 2015 at the ISEV meeting in Washington, experts again expanded on their latest research findings in the field, shedding light on the emerging trends in the field of Extracellular Vesicle (EV) biology in NeuroHIV and drug abuse. The satellite symposium sought to align experts in the fields of NeuroHIV and drug abuse to share their latest insights on the role of EVs in regulating neuroinflammation, neurodegeneration, peripheral immune response, and HIV latency in HIV-infected individuals with or without the comorbidity of drug abuse.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sowmya Yelamanchili
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincent C Bond
- Departments of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, University of California, Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Felli C, Vincentini O, Silano M, Masotti A. HIV-1 Nef Signaling in Intestinal Mucosa Epithelium Suggests the Existence of an Active Inter-kingdom Crosstalk Mediated by Exosomes. Front Microbiol 2017. [PMID: 28642743 PMCID: PMC5462933 DOI: 10.3389/fmicb.2017.01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human intestinal mucosal surface represents the first defense against pathogens and regulates the immune response through the combination of epithelial cell (EC) functions and immunological factors. ECs act as sensors of luminal stimuli and interact with the immune cells through signal-transduction pathways, thus representing the first barrier that HIV-1 virus encounters during infection. In particular, the HIV-1 Nef protein plays a crucial role in viral invasion and replication. Nef is expressed early during viral infection and interacts with numerous cellular proteins as a scaffold/adaptor. Nef is localized primarily to cellular membranes and affects several signaling cascades in infected cells modulating the expression of cell surface receptors critical for HIV-1 infection and transmission, also accompanied by the production of specific cytokines and progressive depletion of CD4+ T cells. At the intestinal level, Nef contributes to affect the mucosal barrier by increasing epithelial permeability, that results in the translocation of microbial antigens and consequently in immune system activation. However, the pathological role of Nef in mucosal dysfunction has not been fully elucidated. Interestingly, Nef is secreted also within exosomes and contributes to regulate the intercellular communication exploiting the vesicular trafficking machinery of the host. This can be considered as a potential inter-kingdom communication pathway between virus and humans, where viral Nef contributes to modulate and post-transcriptionally regulate the host gene expression and immune response. In this mini-review we discuss the effects of HIV-1 Nef protein on intestinal epithelium and propose the existence of an inter-kingdom communication process mediated by exosomes.
Collapse
Affiliation(s)
- Cristina Felli
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Olimpia Vincentini
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Marco Silano
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|