1
|
Le NPK, do Nascimento AF, Schneberger D, Quach CC, Zhang X, Aulakh GK, Dawicki W, Liu L, Gordon JR, Singh B. Deficiency of leukocyte-specific protein 1 (LSP1) alleviates asthmatic inflammation in a mouse model. Respir Res 2022; 23:165. [PMID: 35733161 PMCID: PMC9219131 DOI: 10.1186/s12931-022-02078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background Asthma is a major cause of morbidity and mortality in humans. The mechanisms of asthma are still not fully understood. Leukocyte-specific protein-1 (LSP-1) regulates neutrophil migration during acute lung inflammation. However, its role in asthma remains unknown. Methods An OVA-induced mouse asthma model in LSP1-deficient (Lsp1−/−) and wild-type (WT) 129/SvJ mice were used to test the hypothesis that the absence of LSP1 would inhibit airway hyperresponsiveness and lung inflammation. Results Light and electron microscopic immunocytochemistry and Western blotting showed that, compared with normal healthy lungs, the levels of LSP1 were increased in lungs of OVA-asthmatic mice. Compared to Lsp1−/− OVA mice, WT OVA mice had higher levels of leukocytes in broncho-alveolar lavage fluid and in the lung tissues (P < 0.05). The levels of OVA-specific IgE but not IgA and IgG1 in the serum of WT OVA mice was higher than that of Lsp1−/− OVA mice (P < 0.05). Deficiency of LSP1 significantly reduced the levels of IL-4, IL-5, IL-6, IL-13, and CXCL1 (P < 0.05) but not total proteins in broncho-alveolar lavage fluid in asthmatic mice. The airway hyper-responsiveness to methacholine in Lsp1−/− OVA mice was improved compared to WT OVA mice (P < 0.05). Histology revealed more inflammation (inflammatory cells, and airway and blood vessel wall thickening) in the lungs of WT OVA mice than in those of Lsp1−/− OVA mice. Finally, immunohistology showed localization of LSP1 protein in normal and asthmatic human lungs especially associated with the vascular endothelium and neutrophils. Conclusion These data show that LSP1 deficiency reduces airway hyper-responsiveness and lung inflammation, including leukocyte recruitment and cytokine expression, in a mouse model of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02078-7.
Collapse
Affiliation(s)
- Nguyen Phuong Khanh Le
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.,Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | | | - David Schneberger
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Chi Cuong Quach
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Xiaobei Zhang
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Gurpreet K Aulakh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada.,Small Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Wojciech Dawicki
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - John R Gordon
- Department of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada. .,Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, S7N5B4, Canada.
| |
Collapse
|
2
|
Cai Z, Liu J, Bian H, Cai J. Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice. Am J Transl Res 2019; 11:7300-7309. [PMID: 31934279 PMCID: PMC6943473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
In the present study, the effects of albiflorin (ALB) on the pulmonary inflammation induced by ovalbumin (OVA) in an asthmatic mouse model were investigated. Airway hyperreactivity (AHR) in asthmatic mice was detected using the acetylcholine stimulation test. Eosinophilia cells in the serum of asthmatic mice were counted. Hematoxylin and eosin (H&E) staining was used to observe pathological changes in lung tissue. Inflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were detected in bronchoalveolar lavage fluid (BALF) and lung tissue using enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway in the lungs of asthmatic mice. The results from the present study indicated that ALB dramatically suppressed the expression of inflammatory cytokines including IL-1β, IL-6, and TNF-α, and inflammatory cells. In addition, ALB significantly decreased malondialdehyde (MDA) content as well as increased superoxide dismutase (SOD) activity. ALB also alleviated AHR in asthmatic mice and improved pathological changes in the lungs. In addition, ALB inhibited the MAPK/NF-κB signaling pathway in the lungs of the asthmatic mice. Thus, ALB appears to inhibit lung inflammation in asthmatic mice via regulation of the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhiyong Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital Yancheng 224000, Jiangsu Province, China
| | - Jindi Liu
- Newborn Department, Yancheng Maternity and Child Health Care Hospital Yancheng 224000, Jiangsu Province, China
| | - Hongliang Bian
- Newborn Department, Yancheng Maternity and Child Health Care Hospital Yancheng 224000, Jiangsu Province, China
| | - Jinlan Cai
- Newborn Department, Yancheng Maternity and Child Health Care Hospital Yancheng 224000, Jiangsu Province, China
| |
Collapse
|
3
|
Piyadasa H, Hemshekhar M, Altieri A, Basu S, van der Does AM, Halayko AJ, Hiemstra PS, Mookherjee N. Immunomodulatory innate defence regulator (IDR) peptide alleviates airway inflammation and hyper-responsiveness. Thorax 2018; 73:908-917. [PMID: 29853649 DOI: 10.1136/thoraxjnl-2017-210739] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/19/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exacerbation in asthma is associated with decreased expression of specific host defence peptides (HDPs) in the lungs. We examined the effects of a synthetic derivative of HDP, innate defence regulator (IDR) peptide IDR-1002, in house dust mite (HDM)-challenged murine model of asthma, in interleukin (IL)-33-challenged mice and in human primary bronchial epithelial cells (PBECs). METHODS IDR-1002 (6 mg/kg per mouse) was administered (subcutaneously) in HDM-challenged and/or IL-33-challenged BALB/c mice. Lung function analysis was performed with increasing dose of methacholine by flexiVent small animal ventilator, cell differentials in bronchoalveolar lavage performed by modified Wright-Giemsa staining, and cytokines monitored by MesoScale Discovery assay and ELISA. PBECs stimulated with tumour necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ), with or without IDR-1002, were analysed by western blots. RESULTS IDR-1002 blunted HDM challenge-induced airway hyper-responsiveness (AHR), and lung leucocyte accumulation including that of eosinophils and neutrophils, in HDM-challenged mice. Concomitantly, IDR-1002 suppressed HDM-induced IL-33 in the lungs. IFN-γ/TNF-α-induced IL-33 production was abrogated by IDR-1002 in PBECs. Administration of IL-33 in HDM-challenged mice, or challenge with IL-33 alone, mitigated the ability of IDR-1002 to control leucocyte accumulation in the lungs, suggesting that the suppression of IL-33 is essential for the anti-inflammatory activity of IDR-1002. In contrast, the peptide significantly reduced either HDM, IL-33 or HDM+IL-33 co-challenge-induced AHR in vivo. CONCLUSION This study demonstrates that an immunomodulatory IDR peptide controls the pathophysiology of asthma in a murine model. As IL-33 is implicated in steroid-refractory severe asthma, our findings on the effects of IDR-1002 may contribute to the development of novel therapies for steroid-refractory severe asthma.
Collapse
Affiliation(s)
- Hadeesha Piyadasa
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anthony Altieri
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Anne M van der Does
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,The Canadian Respiratory Research Network, Ottawa, Ontario, Canada
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.,The Canadian Respiratory Research Network, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Ram A, Mabalirajan U, Jaiswal A, Rehman R, Singh VP, Ghosh B. Parabromophenacyl bromide inhibits subepithelial fibrosis by reducing TGF-β1 in a chronic mouse model of allergic asthma. Int Arch Allergy Immunol 2015; 167:110-8. [PMID: 26303861 DOI: 10.1159/000434679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our previous study showed that parabromophenacyl bromide (PBPB) inhibits the features of allergic airway inflammation and airway hyperresponsiveness (AHR). However, its effect on airway remodeling, e.g. subepithelial fibrosis in a chronic allergic asthma model, was not investigated. We examined this issue in this study. METHODS PBPB was administered to mice with an induced chronic asthmatic condition. AHR was estimated at the end of the experiment, followed by euthanasia. Lung sections were stained with hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome to determine airway inflammation, goblet cell metaplasia and subepithelial fibrosis, respectively. Transforming growth factor-β1 (TGF-β1) was estimated in lung homogenates. To determine the effect of PBPB on smooth-muscle hyperplasia, immunohistochemistry against α-smooth-muscle actin was performed on the lung sections. RESULTS Chronic ovalbumin challenges in a mouse model of allergic asthma caused significant subepithelial fibrosis and elevated TGF-β1, along with significant AHR. PBPB attenuated subepithelial fibrosis with a reduction of lung TGF-β1, airway inflammation and AHR without affecting goblet cell metaplasia. It also attenuated smooth-muscle hyperplasia with a reduction in the expression of α-smooth-muscle actin in the lungs. CONCLUSION Our findings indicate that PBPB attenuates some crucial features of airway remodeling such as subepithelial fibrosis and smooth-muscle hyperplasia. These data suggest that PBPB could therefore be a therapeutic drug for chronic asthma.
Collapse
Affiliation(s)
- Arjun Ram
- CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | | | | | |
Collapse
|
5
|
Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J, Huff R, Pilewski J, Holguin F, Kolls J, Wenzel S, Ray P, Ray A. High IFN-γ and low SLPI mark severe asthma in mice and humans. J Clin Invest 2015; 125:3037-50. [PMID: 26121748 DOI: 10.1172/jci80911] [Citation(s) in RCA: 287] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022] Open
Abstract
Severe asthma (SA) is a challenge to control, as patients are not responsive to high doses of systemic corticosteroids (CS). In contrast, mild-moderate asthma (MMA) is responsive to low doses of inhaled CS, indicating that Th2 cells, which are dominant in MMA, do not solely orchestrate SA development. Here, we analyzed broncholalveolar lavage cells isolated from MMA and SA patients and determined that IFN-γ (Th1) immune responses are exacerbated in the airways of individuals with SA, with reduced Th2 and IL-17 responses. We developed a protocol that recapitulates the complex immune response of human SA, including the poor response to CS, in a murine model. Compared with WT animals, Ifng-/- mice subjected to this SA model failed to mount airway hyperresponsiveness (AHR) without appreciable effect on airway inflammation. Conversely, AHR was not reduced in Il17ra-/- mice, although airway inflammation was lower. Computer-assisted pathway analysis tools linked IFN-γ to secretory leukocyte protease inhibitor (SLPI), which is expressed by airway epithelial cells, and IFN-γ inversely correlated with SLPI expression in SA patients and the mouse model. In mice subjected to our SA model, forced SLPI expression decreased AHR in the absence of CS, and it was further reduced when SLPI was combined with CS. Our study identifies a distinct immune response in SA characterized by a dysregulated IFN-γ/SLPI axis that affects lung function.
Collapse
|
6
|
Persistence of asthmatic response after ammonium persulfate-induced occupational asthma in mice. PLoS One 2014; 9:e109000. [PMID: 25303285 PMCID: PMC4193836 DOI: 10.1371/journal.pone.0109000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/31/2014] [Indexed: 12/16/2022] Open
Abstract
Introduction Since persulfate salts are an important cause of occupational asthma (OA), we aimed to study the persistence of respiratory symptoms after a single exposure to ammonium persulfate (AP) in AP-sensitized mice. Material and Methods BALB/c mice received dermal applications of AP or dimethylsulfoxide (DMSO) on days 1 and 8. On day 15, they received a single nasal instillation of AP or saline. Airway hyperresponsiveness (AHR) was assessed using methacholine provocation, while pulmonary inflammation was evaluated in bronchoalveolar lavage (BAL), and total serum immunoglobulin E (IgE), IgG1 and IgG2a were measured in blood at 1, 4, 8, 24 hours and 4, 8, 15 days after the single exposure to the causal agent. Histological studies of lungs were assessed. Results AP-treated mice showed a sustained increase in AHR, lasting up to 4 days after the challenge. There was a significant increase in the percentage of neutrophils 8 hours after the challenge, which persisted for 24 hours in AP-treated mice. The extent of airway inflammation was also seen in the histological analysis of the lungs from challenged mice. Slight increases in total serum IgE 4 days after the challenge were found, while IgG gradually increased further 4 to 15 days after the AP challenge in AP-sensitized mice. Conclusions In AP-sensitized mice, an Ig-independent response is induced after AP challenge. AHR appears immediately, but airway neutrophil inflammation appears later. This response decreases in time; at early stages only respiratory and inflammatory responses decrease, but later on immunological response decreases as well.
Collapse
|
7
|
Sagar S, Morgan ME, Chen S, Vos AP, Garssen J, van Bergenhenegouwen J, Boon L, Georgiou NA, Kraneveld AD, Folkerts G. Bifidobacterium breve and Lactobacillus rhamnosus treatment is as effective as budesonide at reducing inflammation in a murine model for chronic asthma. Respir Res 2014; 15:46. [PMID: 24735374 PMCID: PMC4029990 DOI: 10.1186/1465-9921-15-46] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Background Asthma is estimated to affect as many as 300 million people worldwide and its incidence and prevalence are rapidly increasing throughout the world, especially in children and within developing countries. Recently, there has been a growing interest in the use of potentially beneficial bacteria for allergic diseases. This study is aimed at exploring the therapeutic effects of long-term treatment with two different beneficial bacterial strains (Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1) and a glucocorticoid (budesonide), as a reference treatment, on inflammatory response in a murine model for chronic allergic asthma. Methods To mimic the chronic disease in asthmatic patients, we used the murine ovalbumin-induced asthma model combined with prolonged allergen exposure. Airway function; pulmonary airway inflammation; airway remodelling, mRNA expression of pattern recognition receptors, Th-specific cytokines and transcription factors in lung tissue; mast cell degranulation; in vitro T cell activation; and expression of Foxp3 in blood Th cells were examined. Results Lactobacillus rhamnosus reduced lung resistance to a similar extent as budesonide treatment in chronically asthmatic mice. Pulmonary airway inflammation, mast cell degranulation, T cell activation and airway remodelling were suppressed by all treatments. Beneficial bacteria and budesonide differentially modulated the expression of toll-like receptors (TLRs), nod-like receptors (NLRs), cytokines and T cell transcription factors. Bifidobacterium breve induced regulatory T cell responses in the airways by increasing Il10 and Foxp3 transcription in lung tissue as well as systemic by augmenting the mean fluorescence intensity of Foxp3 in blood CD4+ T cells. Conclusion These findings show that Bifidobacterium breve M-16 V and Lactobacillus rhamnosus NutRes1 have strong anti-inflammatory properties that are comparable to budesonide and therefore may be beneficial in the treatment of chronic asthma.
Collapse
Affiliation(s)
- Seil Sagar
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, PO box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|