1
|
McMoneagle E, Zhou J, Zhang S, Huang W, Josiah SS, Ding K, Wang Y, Zhang J. Neuronal K +-Cl - cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol Sin 2024; 45:1-22. [PMID: 37704745 PMCID: PMC10770335 DOI: 10.1038/s41401-023-01149-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023] Open
Abstract
Epilepsy is a prevalent neurological disorder characterized by unprovoked seizures. γ-Aminobutyric acid (GABA) serves as the primary fast inhibitory neurotransmitter in the brain, and GABA binding to the GABAA receptor (GABAAR) regulates Cl- and bicarbonate (HCO3-) influx or efflux through the channel pore, leading to GABAergic inhibition or excitation, respectively. The neuron-specific K+-Cl- cotransporter 2 (KCC2) is essential for maintaining a low intracellular Cl- concentration, ensuring GABAAR-mediated inhibition. Impaired KCC2 function results in GABAergic excitation associated with epileptic activity. Loss-of-function mutations and altered expression of KCC2 lead to elevated [Cl-]i and compromised synaptic inhibition, contributing to epilepsy pathogenesis in human patients. KCC2 antagonism studies demonstrate the necessity of limiting neuronal hyperexcitability within the brain, as reduced KCC2 functioning leads to seizure activity. Strategies focusing on direct (enhancing KCC2 activation) and indirect KCC2 modulation (altering KCC2 phosphorylation and transcription) have proven effective in attenuating seizure severity and exhibiting anti-convulsant properties. These findings highlight KCC2 as a promising therapeutic target for treating epilepsy. Recent advances in understanding KCC2 regulatory mechanisms, particularly via signaling pathways such as WNK, PKC, BDNF, and its receptor TrkB, have led to the discovery of novel small molecules that modulate KCC2. Inhibiting WNK kinase or utilizing newly discovered KCC2 agonists has demonstrated KCC2 activation and seizure attenuation in animal models. This review discusses the role of KCC2 in epilepsy and evaluates its potential as a drug target for epilepsy treatment by exploring various strategies to regulate KCC2 activity.
Collapse
Affiliation(s)
- Erin McMoneagle
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Jin Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyao Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China.
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
2
|
Basoglu H, Degirmencioglu İ, Ozturk H, Yorulmaz N, Aydin‐Abidin S, Abidin I. Title: A Boron‐Chelating Piperazine‐Tethered Schiff Base Can Modulate Excitability in Brain Slices in a Specific Frequency Range. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe ability of boron‐containing compounds to make various bonds with biological targets draws attention in their use as new therapeutic agents. In this study, the effect of a newly synthesized molecule with the short name fmpemboron, “Difluoro [2‐[([2‐[4‐(2,3,4‐trimethoxybenzyl)piperazin‐1‐yl]ethyl] imino‐κN)methyl]phenolato‐κO]boron (5)”on the excitability of neurons in the brain was investigated for the first time. First of all, fmpemboron was synthesized and characterized. Secondly, virtual scanning of the molecule was performed using ADME and molecular docking methods. Then, epileptiform activities were induced in mouse brain slices using Mg‐free or 4AP methods, and the effect of fmpemboron (5) at different concentrations was examined. The absorbance peak wavelength of fmpemboron (5) is between 330–340 nm and the fluorescence emission peak is 435 nm. According to ADME and molecular docking results, fmpemboron (5) can cross the blood‐brain barrier (BBB) and has affinity for the NMDA receptor. It also significantly reduces the power of oscillations between 8–12 Hz and 13–29 Hz in epileptiform activities generated by the Mg‐free method. Administration of 10 μM fmpemboron (5) had a modulatory effect on epileptiform activities, indicating that fmpemboron (5) can affect various neurological functions through NMDA channels. However, in‐vivo dose‐dependent studies are required to further investigate the effects of this novel molecule.
Collapse
Affiliation(s)
- Harun Basoglu
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - İsmail Degirmencioglu
- Department of Chemistry Faculty of Science Karadeniz Technical University Trabzon Turkey
| | - Hilal Ozturk
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Nuri Yorulmaz
- Department of Physics Faculty of Science Harran University, Sanliurfa, Turkey Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Selcen Aydin‐Abidin
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| | - Ismail Abidin
- Department of Biophysics Faculty of Medicine Karadeniz Technical University Trabzon Turkey
| |
Collapse
|
3
|
Han X, Matsuda N, Ishibashi Y, Odawara A, Takahashi S, Tooi N, Kinoshita K, Suzuki I. A functional neuron maturation device provides convenient application on microelectrode array for neural network measurement. Biomater Res 2022; 26:84. [PMID: 36539898 PMCID: PMC9768978 DOI: 10.1186/s40824-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microelectrode array (MEA) systems are valuable for in vitro assessment of neurotoxicity and drug efficiency. However, several difficulties such as protracted functional maturation and high experimental costs hinder the use of MEA analysis requiring human induced pluripotent stem cells (hiPSCs). Neural network functional parameters are also needed for in vitro to in vivo extrapolation. METHODS In the present study, we produced a cost effective nanofiber culture platform, the SCAD device, for long-term culture of hiPSC-derived neurons and primary peripheral neurons. The notable advantage of SCAD device is convenient application on multiple MEA systems for neuron functional analysis. RESULTS We showed that the SCAD device could promote functional maturation of cultured hiPSC-derived neurons, and neurons responded appropriately to convulsant agents. Furthermore, we successfully analyzed parameters for in vitro to in vivo extrapolation, i.e., low-frequency components and synaptic propagation velocity of the signal, potentially reflecting neural network functions from neurons cultured on SCAD device. Finally, we measured the axonal conduction velocity of peripheral neurons. CONCLUSIONS Neurons cultured on SCAD devices might constitute a reliable in vitro platform to investigate neuron functions, drug efficacy and toxicity, and neuropathological mechanisms by MEA.
Collapse
Affiliation(s)
- Xiaobo Han
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Naoki Matsuda
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Yuto Ishibashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Aoi Odawara
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Sayuri Takahashi
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| | - Norie Tooi
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Koshi Kinoshita
- Stem Cell & Device Laboratory, Inc. (SCAD), OFFICE-ONE Shijo Karasuma 11F, 480, Niwatoriboko-Cho, Shimogyo-Ku, Kyoto, 600-8491 Japan
| | - Ikuro Suzuki
- grid.444756.00000 0001 2165 0596Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-Ku, Sendai, Miyagi 982-8577 Japan
| |
Collapse
|
4
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|