1
|
Smitha AK, Murthy VS, Vinay Kumar B, Sennappan M, Shridhar AH, Naik L, Yogendra K, Madhusudhana N. Nano calcium zincate-assisted synthesis of benzo[ d]thiazol-2-yl phenylisoxazoles: quantum computational, in silico molecular docking simulations and DNA interaction. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-26. [PMID: 40047260 DOI: 10.1080/15257770.2025.2473442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/02/2025] [Accepted: 02/22/2025] [Indexed: 04/12/2025]
Abstract
This study introduces a new and simple method for the synthesis of a series of 3-(benzo[d]thiazol-2-yl)-5-phenylisoxazole derivatives 3(a-f), and examines its potential interactions with DNA. The synthesis includes the reaction of 2-aminobenzenethiol (1) with a variety of substituted 5-phenylisoxazole-3-carbaldehydes 2(a-f) in the presence of a cost-effective and reusable nanocatalyst, Calcium-Zincate (CaZnO2). The CaZnO2 catalyst showed a consistent and long-lasting catalytic activity over several reaction cycles and retained its unique heterogeneous properties. The resulting compounds were characterized in detail using various spectroscopic and analytical techniques in order to confirm their structures. In addition, the interaction of these synthesized compounds with calf thymus-DNA (CT-DNA) using absorption spectroscopy and viscosity measurements was assessed. In silico docking studies were performed to predict their binding affinity with human DNA (PDB ID: 1G3X). The compounds were further analyzed using the Density Functional Theory (DFT) with the B3LYP functional and the 6-31 G(d) basis set in chloroform, with the results aligning closely with the experimental findings. Furthermore, the compounds ability to cleave PUC19 DNA was assessed, along with their photoinduced nuclease activity under UV-visible light, confirmed by photo-induced cleavage assays.
Collapse
Affiliation(s)
- A K Smitha
- Department of Chemistry, School of Engineering, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - V Srinivasa Murthy
- Department of Chemistry, School of Engineering, Dayananda Sagar University, Bengaluru, Karnataka, India
| | - B Vinay Kumar
- Department of Chemistry, BGS College of Engineering & Technology, Bengaluru, India
| | | | - A H Shridhar
- Department of Chemistry, S.V.M Arts, Science and Commerce College, Ilkal, India
| | - Lohit Naik
- Department of Physics, RNS Institute of Technology, Bengaluru, India
| | - K Yogendra
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - N Madhusudhana
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| |
Collapse
|
2
|
Dąbrowska AM, Kaźmierkiewicz R, Barabaś-Lepak AM, Biedulska M, Chylewska A. Comprehensive Chemical Analysis of the Methyl 3-Nitrogen-2,3-Dideoxysaccharides Derivatives with d- ribo-Configuration: Synthesis, Reactivity of HIV-1 Reverse Transcriptase Inhibitors. J Phys Chem B 2025; 129:911-929. [PMID: 39807672 PMCID: PMC11770755 DOI: 10.1021/acs.jpcb.4c08136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions. pKa values, obtained from two independent methods, reveal significant sugar ionization effects on UV spectra with varying pH levels. Stability constants for divalent metal ion complexes (Cu2+ and Ni2+) with the saccharide isomers indicate that complex stoichiometries and stabilities are highly dependent on the configuration of sugar ring substituents. Spectrophotometric results show a descending order of CT-DNA-binding affinity: BRNH2OMe > BRN3OMe > ARN3OMe > ARNH2OMe, suggesting varied interaction strengths. Molecular docking of models of synthesized O-glycosides confirmed their potential as reverse transcriptase inhibitors. Among the derivatives tested, the compound BRN3OMe displays the highest interaction with the enzyme active site residues and DNA, suggesting it may possess the greatest efficacy. Our reported results highlight the promising inhibitory properties of novel O-glycosides against HIV reverse transcriptase, supporting their potential development as antiviral agents.
Collapse
Affiliation(s)
- Aleksandra M. Dąbrowska
- Intermolecular
Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Rajmund Kaźmierkiewicz
- Laboratory
of Biomolecular Systems Simulations, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University
of Gdańsk, Abrahama
58, 80-307 Gdańsk, Poland
| | - Anna M. Barabaś-Lepak
- I Secondary
School named after Maria Skłodowska-Curie in Tczew, Maritime School 1, 83-110 Tczew, Poland
| | - Małgorzata Biedulska
- Institute
of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Agnieszka Chylewska
- Intermolecular
Interaction Laboratory, Department of Bioinorganic Chemistry, Faculty
of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Hanumesh, Amshumali MK, Prachi P, Yogendra K, Madhusudhana N, Vinay Kumar B. Investigation of bisindole-linked pyrimidine moieties: synthesis using strantium-aluminum supported strontium aluminate nanophosphors catalyst, DNA reactivity, and in silico molecular docking studies. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:456-473. [PMID: 38817089 DOI: 10.1080/15257770.2024.2358901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
In this communication, an innovative and straightforward protocol for the one-pot catalytic synthesis of bis(indolyl)pyrimidine derivatives and their DNA binding abilities is presented. The synthesis involves the condensation of indole with diverse substituted pyrimidine-5-carbaldehydes, employing cost-effective and reusable Sr-Al supported nanophosphors, specifically strontium aluminate (SrAl2O4), as a catalyst. In particular, this method does not require the use of toxic solvents. The Sr-Al supported nanophosphorus catalyst exhibited sustained activity over multiple cycles and showed no significant decline while maintaining its strictly heterogeneous properties. The bis(indolyl)pyrimidine derivatives were extensively characterized using spectroscopic and analytical techniques. Furthermore, the interaction between these derivatives and CT-DNA was investigated by absorption spectroscopy, viscosity measurement, and in silico molecular docking studies. Photoinduced cleavage studies demonstrated the photonuclease activity of the compound against pUC19 DNA upon exposure to UV-visible radiation.
Collapse
Affiliation(s)
- Hanumesh
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - M K Amshumali
- Department of PG Studies and Research in Industrial Chemistry, Vijayanagara Sri Krishnadevaraya University, Bellary, 583105, India
| | - P Prachi
- Department of Biotechnology, Allied Health Science BLDE (Deemed to be University), Vijayapura, India
| | - K Yogendra
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - N Madhusudhana
- Department of PG Studies and Research in Environmental Science, Kuvempu University, Shimoga, India
| | - B Vinay Kumar
- Department of Chemistry, BGS College of Engineering & Technology, Bengaluru, India
| |
Collapse
|
4
|
Sankarganesh M, Jose PA, Raja JD, Revathi N, Sakthivel A, Rajesh J, Gurusamy S, Solomon RV. Spectroscopic and theoretical approach of DNA interaction and anticancer studies of bio-pharmaceutically active pyrimidine derived Cu(II) and Zn(II) complexes. Int J Biol Macromol 2023; 249:126095. [PMID: 37536408 DOI: 10.1016/j.ijbiomac.2023.126095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
New metal(II) complexes (CuL2 and ZnL2) with pyrimidine appended Schiff base ligand (HL) were synthesized and characterized by diverse spectroscopic methods, reveals the proposed structure of metal(II) complexes possess square planar geometry. DNA interaction ability of isolated compounds was studied by UV-Visible, fluorescence, viscometric and electrochemical methods and the results showed that isolated compounds intercalated with calf thymus DNA (CT-DNA). In addition, anticancer activities of HL, CuL2, and ZnL2 have been evaluated by MTT assay, signifying moderate cytotoxic activity on selected cancer cell lines and less toxicity on NHDF normal cell line due to the specific targeting of pyrimidine analogues. Moreover, antioxidant activities of isolated compounds towards diverse free radicals have been studied by spectrophotometric methods. These results showed that CuL2 has better antioxidant ability than HL and ZnL2. Finally, antimicrobial activities of isolated compounds against selected antimicrobial pathogens exposed that CuL2 has better antimicrobial activity on E. coli and C. albicans than other antimicrobial pathogens. The DFT calculations have been done to get the optimized geometry of the ligand and the metal complexes. In order to get a broad understanding of the interactions of these synthesized metal complexes, a detailed molecular docking analysis is taken up.
Collapse
Affiliation(s)
- Murugesan Sankarganesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | - Paulraj Adwin Jose
- Department of Chemistry, E.G.S. Pillay Engineering College, Nagapattinum, Tamil Nadu 611 002, India
| | - Jeyaraj Dhaveethu Raja
- PG & Research Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu 625 002, India.
| | - Nagaraj Revathi
- Department of Chemistry, Ramco Institute of Technology, Rajapalayam, Virudhunagar 626117, Tamil Nadu, India
| | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
| | - Jegathalaprathaban Rajesh
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 602 105, India
| | | | | |
Collapse
|
5
|
Sakthikumar K, Kabuyaya Isamura B, Krause RWM. Exploring the antioxidant, antimicrobial, cytotoxic and biothermodynamic properties of novel morpholine derivative bioactive Mn(ii), Co(ii) and Ni(ii) complexes - combined experimental and theoretical measurements towards DNA/BSA/SARS-CoV-2 3CL Pro. RSC Med Chem 2023; 14:1667-1697. [PMID: 37731703 PMCID: PMC10508264 DOI: 10.1039/d2md00394e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 09/22/2023] Open
Abstract
A novel class of bioactive complexes (1-3) [MII(L)2(bpy)], where, L = 2-(4-morpholinobenzylideneamino)phenol, bpy = 2,2'-bipyridine, MII = Mn (1), Co (2) or Ni (3), were assigned to octahedral geometry based on analytical and spectral measurements. Gel electrophoresis showed that complex (2) demonstrated significant DNA cleavage activity compared to the other complexes under the action of oxidation agent (H2O2). The DNA binding constant properties measured by various techniques were in the following sequence: (2) > (3) > (1) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is also supported by their biothermodynamic characteristics. The binding constant results for BSA from electronic absorption and fluorometric titrations demonstrate that complex (2) exhibits the highest binding effectiveness among them all, which means that all the compounds could interact with BSA through a static approach, additionally supported by FRET measurements. DFT and docking calculations were employed to realize the electronic structure, reactivity, and interaction capability of all substances with DNA, BSA, and the SARS-CoV-2 main protease. These binding energies fell within the ranges -7.7 to -8.5, -8.2 to -10.1 and -6.7 to -9.3 kcal mol-1, respectively. The higher reactivity of the complexes than the ligand is supported by FMO theory. The in vitro antibacterial, cytotoxicity, and radical scavenging characteristics revealed that complexes (2-3) have better biological efficacy than the others. The cytotoxicity and binding properties also show good correlation with the partition coefficient (log P), which is encouraging because all of the experimental findings are closely correlated with the theoretical measurements.
Collapse
Affiliation(s)
- Karunganathan Sakthikumar
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
| | - Bienfait Kabuyaya Isamura
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Department of Chemistry, The University of Manchester Manchester M13 9PL UK
| | - Rui Werner Maçedo Krause
- Organic & Medicinal Chemistry, Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa
- Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University Grahamstown 6140 Eastern Cape South Africa +27 741622674 +27 46 603 7030
| |
Collapse
|
6
|
An Integrated Analysis of Mechanistic Insights into Biomolecular Interactions and Molecular Dynamics of Bio-Inspired Cu(II) and Zn(II) Complexes towards DNA/BSA/SARS-CoV-2 3CL pro by Molecular Docking-Based Virtual Screening and FRET Detection. Biomolecules 2022; 12:biom12121883. [PMID: 36551312 PMCID: PMC9775322 DOI: 10.3390/biom12121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.
Collapse
|
7
|
Comprehensive Assessment of Biomolecular Interactions of Morpholine-Based Mixed Ligand Cu(II) and Zn(II) Complexes of 2,2'-Bipyridine as Potential Anticancer and SARS-CoV-2 Agents: A Synergistic Experimental and Structure-Based Virtual Screening. Bioinorg Chem Appl 2022; 2022:6987806. [PMID: 36545430 PMCID: PMC9763021 DOI: 10.1155/2022/6987806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
A new class of pharmacologically active mixed-ligand complexes (1a-2a) [MII(L)2 (bpy)], where L = 2-(4-morpholinobenzylideneamino)phenol), bpy = 2,2'-bipyridine, MII = Cu (1a), and Zn (2a), were assigned an octahedral geometry by analytical and spectral measurements. Gel electrophoresis showed that complex (1a) demonstrated the complete DNA cleavage mediated by H2O2. The overall DNA-binding constants observed from UV-vis, fluorometric, hydrodynamic, and electrochemical titrations were in the following sequence: (1a) > (2a) > (HL), which suggests that the complexes might intercalate DNA, a possibility that is further supported by the biothermodynamic characteristics. The binding constant results of BSA by electronic absorption and fluorometric titration demonstrate that complex (1a) exhibits the highest binding effectiveness among others, which means that all compounds could interact with BSA through a static approach, additionally supported by FRET measurements. Density FunctionalTheory (DFT) and molecular docking calculations were relied on to unveil the electronic structure, reactivity, and interacting capability of all substances with DNA, BSA, and SARS-CoV-2 main protease (Mpro). These observed binding energies fell within the following ranges: -7.7 to -8.6, -7.2 to -10.2, and -6.7 to -8.2 kcal/mol, respectively. The higher reactivity of the complexes compared to free ligand is supported by the Frontier MolecularOrbital (FMO) theory. The in vitro antibacterial, cytotoxic, and radical scavenging characteristics revealed that complex (1a) has the best biological efficacy compared to others. This is encouraged because all experimental findings are closely correlated with the theoretical measurements.
Collapse
|
8
|
Sakthikumar K, Krause RWM, Isamura BK, Raja JD, Athimoolam S. Spectro-electrochemical, fluorometric and biothermodynamic evaluation of pharmacologically active morpholine scaffold single crystal ligand and its metal(II) complexes: A comparative study on in-vitro and in-silico screening towards DNA/BSA/SARS-CoV-19. J Inorg Biochem 2022; 236:111953. [PMID: 35969975 DOI: 10.1016/j.jinorgbio.2022.111953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022]
Abstract
A novel series of metal(II) complexes (1-5) [MII(L)2]{Where M = Cu (1), Co (2), Mn (3), Ni (4) and Zn (5)} constructed from 2-(4-morpholinobenzylideneamino)phenol Schiff base ligand (HL) in a 1:2 M ratio and the spectral and analytical results put forward square planar geometry. Spectro-electrochemical, hydrodynamic, gel electrophoresis, and DNA binding/cleavage results for all the compounds demonstrate that complex (1) had excellent DNA binding/cleavage properties compared to other compounds. The observation also suggests that test compounds could intercalate with DNA, and the biothermodynamic property more strongly supports the stabilizing of the double helix DNA with the complexes. BSA binding constant results show that complex (1) exposes the best binding property via a static mode, which is further confirmed by FRET calculations. The DFT calculations and docking results for all compounds towards DNA, BSA and SARS-CoV-19 main protease (3CLPro), reveal the binding energies were in the range of -7.8 to -9.4, -6.6 to -10.2 and - 6.1 - -8.2 kcal/mol for all test compounds respectively. In this case, complexes showed favorable binding energies compared to free ligand, which stimulates further studies aimed at validating the predicted activity as well as contributing to tackling the current and future viral pandemics. The in-vitro antioxidant, antimicrobial, and anticancer results for all compounds revealed that copper complex (1) has better activity compared to others. This might result in an effective anticancer drug for future research, which is especially promising since the observed experimental results for all cases were in close agreement with the theoretical calculations.
Collapse
Affiliation(s)
- Karunganathan Sakthikumar
- Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa
| | - Rui Werner Maçedo Krause
- Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa; Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa.
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, Center for Chemico- and Biomedicinal Research (CCBR), Faculty of Science, Rhodes University, Grahamstown 6140, Eastern Cape, South Africa
| | - Jeyaraj Dhaveethu Raja
- Department of Chemistry, The American College (Autonomous), Madurai 625 002, Tamil Nadu, India
| | | |
Collapse
|
9
|
Simulation for the behavior of new Fe(III) and Cr(III)-thiophenyl complexes towards DNA polymerase: synthesis, characterization, eukaryotic DNA and Hartree–Fock computation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Nagaraj R, Murugesan S, Jeyaraj DR, Arumugam S, Shunmugasundaram G, Radhakrishnan NA. Spectroscopic studies on DNA interaction and anticancer activities of pharmacologically active pyrimidine derivative mixed ligand Co(II) and Ni(II) complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Gurusamy S, Krishnaveni K, Sankarganesh M, Nandini Asha R, Mathavan A. Synthesis, characterization, DNA interaction, BSA/HSA binding activities of VO(IV), Cu(II) and Zn(II) Schiff base complexes and its molecular docking with biomolecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Saleem SHS, Sankarganesh M, Raja JD, Jose PRA, Sakthivel A, Jeyakumar TC, Asha RN. Synthesis, characterization, DFT calculation, biological and molecular docking of Cu(II) complex of pyrimidine derived Schiff base ligand. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Sankarganesh M, Adwin Jose PR, Dhaveethu Raja J, Vijay Solomon R, Dorothy Sheela C, Gurusamy S. Bioactive platinum complex of ligand bearing pyrimidine skeleton: DNA/BSA binding, molecular docking, anticancer, antioxidant and antimicrobial activities. J Biomol Struct Dyn 2021; 40:6683-6696. [PMID: 33634734 DOI: 10.1080/07391102.2021.1889667] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new octahedral platinum complex [PtLCl4] of Schiff base ligand containing pyrimidine and morpholine skeleton (where, L is 4,6-dichloropyrimidin-5-yl)methylene)-2-morpholinoethanamine) was isolated and characterized by elemental analysis, 1H-NMR, FTIR, UV-visible and ESI-MS techniques. DNA interaction of isolated compounds with calf thymus (CT-DNA) was explored by UV-vis absorption, fluorescence, cyclic voltametric and viscometric methods. The result shows that prepared compounds can interact with CT-DNA through electrostatic interactions. Bovine serum album (BSA) binding behavior of isolated compounds was also studied by UV-vis absorption and fluorescence techniques. Both the spectroscopic results suggest that the isolated ligand and its complex bind with BSA through static quenching. The optimized structure of ligand and platinum complex were achieved by the DFT calculations. Moreover, molecular docking of ligand and its complex were studied. These analysis results reveal that ligand has low binding affinity on DNA and BSA molecules in contrast to its complex. In vitro anticancer activity of isolated compounds toward normal cell line (NHDF) as well as cancer cell lines (MCF-7, HepG2, HeLa and A549) was studied by MTT assay. The results supports that isolated platinum complex can control the growth of cancer cells (MCF-7, 20.12 ± 1.00 µg/mL; HepG2, 32.2 ± 1.69 µg/mL; HeLa, 24.68 ± 1.29 µg/mL; A549, 23.46 ± 1.17 µg/mL) without inhibiting the normal cell line (NHDF, 109.26 ± 5.46 µg/mL). Antioxidant and antimicrobial activities of isolated compounds indicate that ligand and Pt complex are found to have good radical scavenging against four different free radicals and antimicrobial abilities on E. coli and C. albicans antimicrobial species. HighlightsPlatinum complex of Schiff base with pyrimidine and morpholine linkage was synthesized.Pt complex has better biomolecular interaction with DNA and BSA.Molecular docking of Pt complex with DNA and BSA has been studiedPt complex has good anticancer activities.Pt complex has better antioxidant and antimicrobial activities.
Collapse
Affiliation(s)
- Murugesan Sankarganesh
- Department of Chemistry, The American College, Tallakkulam, Madurai, Tamil Nadu, India.,Laboratory of Inorganic Synthesis and Bioinspired Catalysis, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Paul Raj Adwin Jose
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram (D.T.), Tamil Nadu, India
| | | | | | | | | |
Collapse
|
14
|
Senthilkumar GS, Sankarganesh M, Dhaveethu Raja J, Adwin Jose PR, Sakthivel A, Christopher Jeyakumar T, Nandini Asha R. Water soluble Cu(II) and Zn(II) complexes of bidentate-morpholine based ligand: synthesis, spectral, DFT calculation, biological activities and molecular docking studies. J Biomol Struct Dyn 2020; 40:1074-1083. [DOI: 10.1080/07391102.2020.1821783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gurusamy Sankararaj Senthilkumar
- Department of Chemistry, Manonmanium Sundaranar University, Tirunelveli, Tamil Nadu, India
- Department of Chemistry, The American College, Madurai, Tamil Nadu, India
| | - Murugesan Sankarganesh
- Department of Chemistry, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | | | - Paul Raj Adwin Jose
- Department of Chemistry, Mohamed Sathak Engineering College, Ramamnanthapuram, Tamil Nadu, India
| | - Arumugam Sakthivel
- Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, India
| | | | | |
Collapse
|
15
|
Sankarganesh M, Vijay Solomon R, Dhaveethu Raja J. Platinum complex with pyrimidine- and morpholine-based ligand: synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. J Biomol Struct Dyn 2020; 39:1055-1067. [DOI: 10.1080/07391102.2020.1727364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Murugesan Sankarganesh
- Department of Chemistry, K. Ramakrishnan College of Technology, Trichy, Tamil Nadu, India
| | | | | |
Collapse
|
16
|
Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg Chem 2020; 96:103578. [PMID: 31978684 DOI: 10.1016/j.bioorg.2020.103578] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Morpholine is a versatile moiety, a privileged pharmacophore and an outstanding heterocyclic motif with wide ranges of pharmacological activities due to different mechanisms of action. The ability of morpholine to enhance the potency of the molecule through molecular interactions with the target protein (kinases) or to modulate the pharmacokinetic properties propelled medicinal chemists and researchers to synthesize morpholine ring by the efficient ways and to incorporate this moiety to develop various lead compounds with diverse therapeutic activities. The present review primarily focused on discussing the most promising synthetic leads containing morpholine ring along with structure-activity relationship (SAR) to reveal the active pharmacophores accountable for anticancer, anti-inflammatory, antiviral, anticonvulsant, antihyperlipidemic, antioxidant, antimicrobial and antileishmanial activity. This review outlines some of the recent effective chemical synthesis for morpholine ring. The review also highlighted the metabolic liability of some clinical drugs containing this nucleus and various researches on modified morpholine to enhance the metabolic stability of drugs as well. Drugs bearing morpholine ring and those under clinical trials are also mentioned with the role of morpholine and their mechanism of action. This review will provide the necessary knowledge base to the medicinal chemists in making strategic structural changes in designing morpholine derivatives.
Collapse
|
17
|
Sakthikumar K, Solomon RV, Raja JD. Spectro-electrochemical assessments of DNA/BSA interactions, cytotoxicity, radical scavenging and pharmacological implications of biosensitive and biologically active morpholine-based metal(ii) complexes: a combined experimental and computational investigation. RSC Adv 2019; 9:14220-14241. [PMID: 35519345 PMCID: PMC9064050 DOI: 10.1039/c8ra09218d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Biosensitive and biologically active morpholine-based transition metal(ii) complexes (1-5) were constructed as [MII(L) AcO]·nH2O {where M = Cu (1) n = 1; Co (2), Mn (3), Ni (4), n = 4 and Zn (5) n = 2}, which were synthesized from 2-(-(2-morpholinoethylimino) methyl)-4-bromophenol ligand (HL) and structurally characterized by various analytical and spectroscopic techniques, which proposed a square planar and tetrahedral geometry around the central metal ion with lattice water molecules. The gel electrophoresis results revealed that complexes 1 and 5 had more potent DNA cleavage efficacy in the presence of an oxidizing agent (H2O2) as compared to the others. The observed DNA binding results for all the compounds as determined by spectro-electrochemical and hydrodynamic techniques were in the order 3.36 (1) > 3.06 (2) > 2.73 (4) > 2.61 (5) > 1.84 (3) > 1.00 (HL) × 104 M-1. The obtained bovine serum albumin (BSA) protein binding constant (K b) results put forward the following order 2.38 (1) > 2.21 (2) > 2.18 (5) > 1.76 (4) > 1.40 (3) > 1.26 (HL) × 104 M-1. Also, the biothermodynamic parameters (, , ΔH° and ΔS°) and binding results divulged that all the complexes (1-5) could bind to DNA via intercalation in a spontaneous manner. Density functional theory calculations were employed to optimize the structure of ligand (HL) and its complexes (1-5) to gain insights into their electronic structures. Molecular docking analysis was carried out to identify the preferential binding modes of these complexes toward DNA and BSA protein. The theoretical observations of all cases were found to be very close to the experimental observations. Among the radical scavenging activity results for all the cases toward DPPH, hydroxyl radical, superoxide, nitric oxide and ferric reducing agents, complex (1) revealed a superior scavenging potency over the other compounds. In the screened antimicrobial reports against 10 different selected pathogenic species, although all the complexes (1-5) exhibited a greater significant inhibitory effect than the free ligand, complexes 4 and 5 achieved the best potency over standard drugs. The observed percentage of growth inhibition for all the compounds against the A549, HepG2, MCF-7 and NHDF cell lines suggested that complex 1 had enhanced growth-inhibitory potency over the other compounds and slightly affected normal cells as compared to the standard drug cisplatin, which may lead to its investigation as a promising anticancer agent in future research.
Collapse
Affiliation(s)
- Karunganathan Sakthikumar
- Chemistry Research Centre, Mohamed Sathak Engineering College Kilakarai, Ramanathapuram 623 806 Tamil Nadu India +91 9751054202
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous) Tambaram East Chennai 600 059 Tamil Nadu India +91 9944804597
| | - Jeyaraj Dhaveethu Raja
- Department of Chemistry, The American College (Autonomous) Madurai 625 002 Tamil Nadu India +91 94876 82202 +91 90925 61924
| |
Collapse
|