1
|
Gordon BS, Rossetti ML, Eroshkin AM. Arrdc2 and Arrdc3 elicit divergent changes in gene expression in skeletal muscle following anabolic and catabolic stimuli. Physiol Genomics 2019; 51:208-217. [DOI: 10.1152/physiolgenomics.00007.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a highly plastic organ regulating various processes in the body. As such, loss of skeletal muscle underlies the increased morbidity and mortality risk that is associated with numerous conditions. However, no therapies are available to combat the loss of muscle mass during atrophic conditions, which is due in part to the incomplete understanding of the molecular networks altered by anabolic and catabolic stimuli. Thus, the current objective was to identify novel gene networks modulated by such stimuli. For this, total RNA from the tibialis anterior muscle of mice that were fasted overnight or fasted overnight and refed the next morning was subjected to microarray analysis. The refeeding stimulus altered the expression of genes associated with signal transduction. Specifically, expression of alpha arrestin domain containing 2 (Arrdc2) and alpha arrestin domain containing 3 (Arrdc3) was significantly lowered 70–85% by refeeding. Subsequent analysis showed that expression of these genes was also lowered 50–75% by mechanical overload, with the combination of nutrients and mechanical overload acting synergistically to lower Arrdc2 and Arrdc3 expression. On the converse, stimuli that suppress growth such as testosterone depletion or acute aerobic exercise increased Arrdc2 and Arrdc3 expression in skeletal muscle. While Arrdc2 and Arrdc3 exhibited divergent changes in expression following anabolic or catabolic stimuli, no other member of the Arrdc family of genes exhibited the consistent change in expression across the analyzed conditions. Thus, Arrdc2 and Arrdc3 are a novel set of genes that may be implicated in the regulation of skeletal muscle mass.
Collapse
Affiliation(s)
- Bradley S. Gordon
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, Florida
| | - Michael L. Rossetti
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, Florida
| | - Alexey M. Eroshkin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Rancho BioSciences, San Diego, California
| |
Collapse
|
2
|
Dwarkasing JT, Marks DL, Witkamp RF, van Norren K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 2016; 77:60-6. [PMID: 26158772 DOI: 10.1016/j.peptides.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023]
Abstract
Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating systems in the hypothalamus. In this review, we summarize findings on the role of hypothalamic inflammation on food intake regulation involving hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Furthermore, we outline the role of serotonin in the inability of these peptide based food-intake regulating systems to respond and adapt to changes in energy metabolism during chronic disease.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - D L Marks
- Department of Pediatric Endocrinology, Oregon Health & Sciences University, Portland, OR 97201, USA
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
3
|
Zhang Y, Liu C, Zhao Y, Zhang X, Li B, Cui R. The Effects of Calorie Restriction in Depression and Potential Mechanisms. Curr Neuropharmacol 2015; 13:536-42. [PMID: 26412073 PMCID: PMC4790398 DOI: 10.2174/1570159x13666150326003852] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/13/2015] [Accepted: 01/25/2015] [Indexed: 12/31/2022] Open
Abstract
Depression, also called major depressive disorder, is a neuropsychiatric disorder jeopardizing an increasing number of the population worldwide. To date, a large number of studies have devoted great attention to this problematic condition and raised several hypotheses of depression. Based on these theories, many antidepressant drugs were developed for the treatment of depression. Yet, the depressed patients are often refractory to the antidepressant therapies. Recently, increasing experimental evidences demonstrated the effects of calorie restriction in neuroendocrine system and in depression. Both basic and clinical investigations indicated that short-term calorie restriction might induce an antidepressant efficacy in depression, providing a novel avenue for treatment. Molecular basis underlying the antidepressant actions of calorie restriction might involve multiple physiological processes, primarily including orexin signaling activation, increased CREB phosphorylation and neurotrophic effects, release of endorphin and ketone production. However, the effects of chronic calorie restriction were quite controversial, in the cases that it often resulted in the long-term detrimental effects via inhibiting the function of 5-HT system and decreasing leptin levels. Here we review such dual effects of calorie restriction in depression and potential molecular basis behind these effects, especially focusing on antidepressant effects.
Collapse
Affiliation(s)
| | | | | | | | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin
University, 218 Ziqiang Street, Changchun 130041, PR China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, the Second Hospital of Jilin
University, 218 Ziqiang Street, Changchun 130041, PR China
| |
Collapse
|
4
|
Pitchaimani V, Arumugam S, Thandavarayan RA, Karuppagounder V, Sreedhar R, Afrin R, Harima M, Suzuki H, Miyashita S, Nomoto M, Sone H, Suzuki K, Watanabe K. Fasting mediated increase in p-BADser155 and p-AKTser473 in the prefrontal cortex of mice. Neurosci Lett 2014; 579:134-9. [DOI: 10.1016/j.neulet.2014.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 11/17/2022]
|
5
|
Fond G, Macgregor A, Leboyer M, Michalsen A. Fasting in mood disorders: neurobiology and effectiveness. A review of the literature. Psychiatry Res 2013; 209:253-8. [PMID: 23332541 DOI: 10.1016/j.psychres.2012.12.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/11/2012] [Accepted: 12/18/2012] [Indexed: 11/16/2022]
Abstract
Clinicians have found that fasting was frequently accompanied by an increased level of vigilance and a mood improvement, a subjective feeling of well-being, and sometimes of euphoria. Therapeutic fasting, following an established protocol, is safe and well tolerated. We aim in this article to explore the biological mechanisms activated during fasting that could have an effect on brain function with particular focus on mood (we do not discuss here the mechanisms regulating eating behavior) and to provide a comprehensive review on the potential positive impact of therapeutic fasting on mood. We explored Medline, Web of Science and PsycInfo according to the PRISMA criteria (Preferred Reporting Items for Systematic reviews and Meta-Analysis). The initial research paradigm was: [(fasting OR caloric restriction) AND (mental health OR depressive disorders OR mood OR anxiety)]. Many neurobiological mechanisms have been proposed to explain fasting effects on mood, such as changes in neurotransmitters, quality of sleep, and synthesis of neurotrophic factors. Many clinical observations relate an early (between day 2 and day 7) effect of fasting on depressive symptoms with an improvement in mood, alertness and a sense of tranquility reported by patients. The persistence of mood improvement over time remains to be determined.
Collapse
Affiliation(s)
- Guillaume Fond
- INSERM U1061, Université Montpellier 1, Hôpital la Colombière, CHU Montpellier F-34000, France; INSERM U955, University Paris-Est, FondaMental Fondation, Fondation de Coopération Scientifique, AP-HP, Groupe Hospitalier Mondor, 40, Rue de Mesly, Creteil F-94000, France.
| | | | | | | |
Collapse
|
6
|
Shin SY, Han TH, Lee SY, Han SK, Park JB, Erdelyi F, Szabo G, Ryu PD. Direct Corticosteroid Modulation of GABAergic Neurons in the Anterior Hypothalamic Area of GAD65-eGFP Mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:163-9. [PMID: 21860595 DOI: 10.4196/kjpp.2011.15.3.163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Corticosterone is known to modulate GABAergic synaptic transmission in the hypothalamic paraventricular nucleus. However, the underlying receptor mechanisms are largely unknown. In the anterior hypothalamic area (AHA), the sympathoinhibitory center that project GABAergic neurons onto the PVN, we examined the expression of glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) of GABAergic neurons using intact GAD65-eGFP transgenic mice, and the effects of corticosterone on the burst firing using adrenalectomized transgenic mice. GR or MR immunoreactivity was detected from the subpopulations of GABAergic neurons in the AHA. The AHA GABAergic neurons expressed mRNA of GR (42%), MR (38%) or both (8%). In addition, in brain slices incubated with corticosterone together with RU486 (MR-dominant group), the proportion of neurons showing a burst firing pattern was significantly higher than those in the slices incubated with vehicle, corticosterone, or corticosterone with spironolactone (GR-dominant group; 64 vs. 11~14%, p< 0.01 by χ(2)-test). Taken together, the results show that the corticosteroid receptors are expressed on the GABAergic neurons in the AHA, and can mediate the corticosteroid-induced plasticity in the firing pattern of these neurons. This study newly provides the experimental evidence for the direct glucocorticoid modulation of GABAergic neurons in the AHA in the vicinity of the PVN.
Collapse
Affiliation(s)
- Seung Yub Shin
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Luque RM, Gahete MD, Cordoba-Chacon J, Childs GV, Kineman RD. Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes? Ann N Y Acad Sci 2011; 1220:82-92. [PMID: 21388406 DOI: 10.1111/j.1749-6632.2010.05913.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating growth hormone (GH) levels rise in response to nutrient deprivation and fall in states of nutrient excess. Because GH regulates carbohydrate, lipid, and protein metabolism, defining the mechanisms by which changes in metabolism alter GH secretion will aid in our understanding of the cause, progression, and treatment of metabolic diseases. This review will summarize what is currently known regarding the impact of systemic metabolic signals on GH-axis function. In addition, ongoing studies using the Cre/loxP system to generate mouse models with selective somatotrope resistance to metabolic signals will be discussed, where these models will serve to enhance our understanding of the specific role the somatotrope plays in sensing the metabolic environment and adjusting GH output in metabolic extremes.
Collapse
Affiliation(s)
- Raul M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | | | | | | | | |
Collapse
|
8
|
Xu DL, Wang DH. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Meriones unguiculatus). Comp Biochem Physiol A Mol Integr Physiol 2010; 155:25-33. [DOI: 10.1016/j.cbpa.2009.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 09/02/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|