1
|
Sarwar SA, O'Malley GR, Botvinov J, Khan Y, Kumar RP, Ali M, Cassimatis ND, Hundal JS, Patel NV. Impact of environmental pollutants on pediatric brain tumor incidence in New Jersey. Clin Neurol Neurosurg 2024; 242:108318. [PMID: 38759503 DOI: 10.1016/j.clineuro.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE The relationship between environmental contaminants and brain tumor incidence in adults has been thoroughly explored but research into how these contaminants affect pediatric brain tumor (PBT) incidence has not been explored. Children, typically having more limited geographical movement and thus more consistent environmental contaminant exposure, might offer more reliable insights into which environmental contaminants affect the incidence of brain tumors. The present study is the first to focus on exploring whether a possible association exists between the incidence of PBTs and exposure to environmental pollutants in New Jersey (NJ). METHODS Linear regressions were run between PBT incidence and the concentration of air quality pollutants such as Ozone (O3), Particulate Matter 2.5 (PM2.5), Particulate Matter 10 (PM10), and Carbon Monoxide (CO). Similarly, linear regressions were run between PBT incidence and Elevated Blood Lead Levels (BLL). RESULTS The study observed a significant positive relationship between O3 and PBT incidence (β = 0.34, p = 0.028). However, the relationship between PBT incidence, and environmental pollutants such as CO (β = 0.0047, p = 0.098), PM2.5 (β = -0.2624, p = 0.74), and PM10 (β = -0.7353, p = 0.073) were found to be nonsignificant. For elevated BLL, nonsignificant relationships with PBT incidence were observed at 10-14 µg/dL (β = -39.38, p = 0.30), 15-19 µg/dL (β = -67.00, p = 0.21), and 20-44 µg/dL (β = -201.98, p = 0.12). CONCLUSIONS The results indicate a possible impact of O3 on the incidence of PBTs in NJ. In contrast to the significant links found in prior studies of adult brain tumors, the associations between PBT occurrence and particulate matter were not significant. These findings highlight the importance of further investigating how environmental factors, especially O3, relate to PBTs.
Collapse
Affiliation(s)
- Syed A Sarwar
- Department of Neurosurgery, Hackensack Meridian Health - Jersey Shore University Medical Center, USA.
| | | | - Julia Botvinov
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | - Yasmin Khan
- Department of Cell Biology & Neuroscience, Rutgers University-New Brunswick, New Brunswick, NJ, USA
| | - Rohit Prem Kumar
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | - Mir Ali
- Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| | | | - Jasdeep S Hundal
- Department of Neurology, Hackensack Meridian Health - Jersey Shore University Medical Center, Neptune, NJ, USA
| | - Nitesh V Patel
- Department of Neurosurgery, Hackensack Meridian Health - Jersey Shore University Medical Center, USA; Department of Neurosurgery, Hackensack Meridian School of Medicine, USA
| |
Collapse
|
2
|
Ahmed C, Greve HJ, Garza‐Lombo C, Malley JA, Johnson JA, Oblak AL, Block ML. Peripheral HMGB1 is linked to O 3 pathology of disease-associated astrocytes and amyloid. Alzheimers Dement 2024; 20:3551-3566. [PMID: 38624088 PMCID: PMC11095433 DOI: 10.1002/alz.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Ozone (O3) is an air pollutant associated with Alzheimer's disease (AD) risk. The lung-brain axis is implicated in O3-associated glial and amyloid pathobiology; however, the role of disease-associated astrocytes (DAAs) in this process remains unknown. METHODS The O3-induced astrocyte phenotype was characterized in 5xFAD mice by spatial transcriptomics and proteomics. Hmgb1fl/fl LysM-Cre+ mice were used to assess the role of peripheral myeloid cell high mobility group box 1 (HMGB1). RESULTS O3 increased astrocyte and plaque numbers, impeded the astrocyte proteomic response to plaque deposition, augmented the DAA transcriptional fingerprint, increased astrocyte-microglia contact, and reduced bronchoalveolar lavage immune cell HMGB1 expression in 5xFAD mice. O3-exposed Hmgb1fl/fl LysM-Cre+ mice exhibited dysregulated DAA mRNA markers. DISCUSSION Astrocytes and peripheral myeloid cells are critical lung-brain axis interactors. HMGB1 loss in peripheral myeloid cells regulates the O3-induced DAA phenotype. These findings demonstrate a mechanism and potential intervention target for air pollution-induced AD pathobiology. HIGHLIGHTS Astrocytes are part of the lung-brain axis, regulating how air pollution affects plaque pathology. Ozone (O3) astrocyte effects are associated with increased plaques and modified by plaque localization. O3 uniquely disrupts the astrocyte transcriptomic and proteomic disease-associated astrocyte (DAA) phenotype in plaque associated astrocytes (PAA). O3 changes the PAA cell contact with microglia and cell-cell communication gene expression. Peripheral myeloid cell high mobility group box 1 regulates O3-induced transcriptomic changes in the DAA phenotype.
Collapse
Affiliation(s)
- Chandrama Ahmed
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Hendrik J. Greve
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Carla Garza‐Lombo
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Jamie A. Malley
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - James A. Johnson
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| | - Adrian L. Oblak
- Department of Radiology and Imaging SciencesIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michelle L. Block
- Department of Pharmacology and ToxicologyIndiana University School of MedicineThe Stark Neurosciences Research InstituteIndianapolisIndianaUSA
| |
Collapse
|
3
|
Curcumin Modifies the Activity of Plasmatic Antioxidant Enzymes and the Hippocampal Oxidative Profile in Rats upon Acute and Chronic Exposure to Ozone. Molecules 2022; 27:molecules27144531. [PMID: 35889405 PMCID: PMC9316984 DOI: 10.3390/molecules27144531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Ozone (O3) is an oxidating tropospheric pollutant. When O3 interacts with biological substrates, reactive oxygen and nitrogen species (RONS) are formed. Severe oxidative damage exhausts the endogenous antioxidant system, which leads to the decreased activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD). Curcumin (CUR) is a natural polyphenol with well-documented antioxidant and anti-inflammatory properties. The aim of this work is to evaluate the effects of curcumin on CAT, GPx, and SOD activity and the inhibition of oxidative damage after the acute and chronic exposure to O3. Fifty male Wistar rats were divided into five experimental groups: the intact control, CUR-fed control, exposed-to-O3 control, CUR-fed (preventive), and CUR-fed (therapeutic) groups. These two last groups received a CUR-supplemented diet while exposed to O3. These experiments were performed during acute- and chronic-exposure phases. In the preventive and therapeutic groups, the activity of plasma CAT, GPx, and SOD was increased during both exposure phases, with slight differences; concomitantly, lipid peroxidation and protein carbonylation were inhibited. For this reason, we propose that CUR could be used to enhance the activity of the antioxidant system and to diminish the oxidative damage caused by exposure to O3.
Collapse
|
4
|
El Brouzi MY, Lamtai M, Zghari O, Ouakki S, Azizoun I, El Hessni A, Mesfioui A, Ouichou A. Intrahippocampal Effects of Nickel Injection on the Affective and Cognitive Response in Wistar Rat: Potential Role of Oxidative Stress. Biol Trace Elem Res 2021; 199:3382-3392. [PMID: 33230633 DOI: 10.1007/s12011-020-02457-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
The present study focused on affective and cognitive behaviors in male Wistar rats, following direct and unique exposure to nickel chloride (NiCl2), as well as the possible involvement of oxidative stress. The rats were exposed to NiCl2 (300 μM), by intracerebral administration of 2 μL of this metal at the right hippocampus, using the stereotaxic approach. Five days after the surgery, a battery of behavioral tests was performed, including the open-field test (OFT) and elevated plus maze test (EPM) to assess the state of anxiety-like behavior and forced swimming test (FST) for depressive-like behavior. Y-maze and Morris Water Maze (MWM) were used to evaluate working memory and spatial learning. Thereafter, oxidative stress markers of the hippocampus were evaluated. The results confirm that NiCl2 exerts anxiogenic effects in both anxiety tests and depressogenic effects in the FST. In addition, MWM and Y-maze data show that NiCl2 causes memory and spatial learning disorders. The biochemical assay results showed that intrahippocampal injection of NiCl2 increased the levels of nitric oxide and lipid peroxidation (p < 0.001), while the activities of catalase and superoxide dismutase were significantly decreased in the hippocampus (p < 0.01). Overall, these results suggest that NiCl2 causes affective and cognitive disorders and oxidative stress in rats.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco.
| | - Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Ibrahim Azizoun
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Sciences, Ibn Tofaïl University, Kénitra, Morocco
| |
Collapse
|
5
|
Alzobaidi N, Quasimi H, Emad NA, Alhalmi A, Naqvi M. Bioactive Compounds and Traditional Herbal Medicine: Promising Approaches for the Treatment of Dementia. Degener Neurol Neuromuscul Dis 2021; 11:1-14. [PMID: 33880073 PMCID: PMC8051957 DOI: 10.2147/dnnd.s299589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Dementia is a term that encompasses a group of clinical symptoms affecting memory, thinking and social abilities, characterized by progressive impairment of memory performance and cognitive functions. There are several factors involved in the pathogenesis and progression of dementia, such as old age, brain ischemia, toxin exposure, and oxidative stress. There are extensive similarities between dementia and Alzheimer's disease (AD) either in clinical manifestations or experimental animal models. AD is the most dominant form of dementia, characterized by the accumulation of beta-amyloid protein and cholinergic neurotransmission deficits in the brain. Currently available medications for the treatment of dementia, such as choline esterase inhibitors, N-methyl-D-aspartate (NMDA) antagonists (memantine), have short-term efficacy and only relieve symptoms rather than targeting the main underlying pathogenesis. Several animal studies and clinical trials are being conducted to provide a rational approach to these medicinal plants in the prevention or treatment of memory deficits. This review highlights the potential effects of medicinal plants and their derived lead molecules, and explains the related mechanisms and effects reviewed from published literature as major thrust aspects and hopeful strategies in the prevention or treatment of dementia.
Collapse
Affiliation(s)
- Nafaa Alzobaidi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Huma Quasimi
- Department of Physiology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| | - Nasr A Emad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden, Yemen
| | - Maaz Naqvi
- Department of Pharmacology, Hamdard Institute of Medical Sciences and Research (HIMSR), Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
7
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Tewari D, Stankiewicz AM, Mocan A, Sah AN, Tzvetkov NT, Huminiecki L, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Front Aging Neurosci 2018; 10:3. [PMID: 29483867 PMCID: PMC5816049 DOI: 10.3389/fnagi.2018.00003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Dementia is a clinical syndrome wherein gradual decline of mental and cognitive capabilities of an afflicted person takes place. Dementia is associated with various risk factors and conditions such as insufficient cerebral blood supply, toxin exposure, mitochondrial dysfunction, oxidative damage, and often coexisting with some neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Although there are well-established (semi-)synthetic drugs currently used for the management of AD and AD-associated dementia, most of them have several adverse effects. Thus, traditional medicine provides various plant-derived lead molecules that may be useful for further medical research. Herein we review the worldwide use of ethnomedicinal plants in dementia treatment. We have explored a number of recognized databases by using keywords and phrases such as “dementia”, “Alzheimer's,” “traditional medicine,” “ethnopharmacology,” “ethnobotany,” “herbs,” “medicinal plants” or other relevant terms, and summarized 90 medicinal plants that are traditionally used to treat dementia. Moreover, we highlight five medicinal plants or plant genera of prime importance and discuss the physiological effects, as well as the mechanism of action of their major bioactive compounds. Furthermore, the link between mitochondrial dysfunction and dementia is also discussed. We conclude that several drugs of plant origin may serve as promising therapeutics for the treatment of dementia, however, pivotal evidence for their therapeutic efficacy in advanced clinical studies is still lacking.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Adrian M Stankiewicz
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Nikolay T Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Power MC, Adar SD, Yanosky JD, Weuve J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. Neurotoxicology 2016; 56:235-253. [PMID: 27328897 PMCID: PMC5048530 DOI: 10.1016/j.neuro.2016.06.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dementia is a devastating condition typically preceded by a long prodromal phase characterized by accumulation of neuropathology and accelerated cognitive decline. A growing number of epidemiologic studies have explored the relation between air pollution exposure and dementia-related outcomes. METHODS We undertook a systematic review, including quality assessment, to interpret the collective findings and describe methodological challenges that may limit study validity. Articles, which were identified according to a registered protocol, had to quantify the association of an air pollution exposure with cognitive function, cognitive decline, a dementia-related neuroimaging feature, or dementia. RESULTS We identified 18 eligible published articles. The quality of most studies was adequate to exemplary. Almost all reported an adverse association between at least one pollutant and one dementia-related outcome. However, relatively few studies considered outcomes that provide the strongest evidence for a causal effect, such as within-person cognitive or pathologic changes. Reassuringly, differential selection would likely bias toward a protective association in most studies, making it unlikely to account for observed adverse associations. Likewise, using a formal sensitivity analysis, we found that unmeasured confounding is also unlikely to explain reported adverse associations. DISCUSSION We also identified several common challenges. First, most studies of incident dementia identified cases from health system records. As dementia in the community is underdiagnosed, this could generate either non-differential or differential misclassification bias. Second, almost all studies used recent air pollution exposures as surrogate measures of long-term exposure. Although this approach may be reasonable if the measured and etiologic exposure windows are separated by a few years, its validity is unknown over longer intervals. Third, comparing the magnitude of associations may not clearly pinpoint which, if any, pollutants are the probable causal agents, because the degree of exposure misclassification differs across pollutants. The epidemiologic evidence, alongside evidence from other lines of research, provides support for a relation of air pollution exposure to dementia. Future studies with improved design, analysis and reporting would fill key evidentiary gaps and provide a solid foundation for recommendations and possible interventions.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Epidemiology and Biostatistics, George Washington University Milken Institute School of Public Health, 950 New Hampshire Avenue NW, Washington, DC 20052, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | - Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, 1420 Washington Heights, Ann Arbor, MI 48109, USA.
| | - Jeff D Yanosky
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, 90 Hope Drive, Hershey, PA, 17033, USA.
| | - Jennifer Weuve
- Rush Institute for Healthy Aging, Rush University Medical Center, 1645 W. Jackson Boulevard, Suite 675, Chicago, IL 60612, USA; Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Syntaxin 5 Overexpression and β-Amyloid 1-42 Accumulation in Endoplasmic Reticulum of Hippocampal Cells in Rat Brain Induced by Ozone Exposure. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2125643. [PMID: 27366738 PMCID: PMC4912997 DOI: 10.1155/2016/2125643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022]
Abstract
Oxidative stress is a risk factor for Alzheimer's disease and it is currently accepted that oxidative damage precedes the overproduction of A42 peptide. We have reported that ozone causes oxidative stress inducing neurodegeneration in the brain of rats. It is associated with A42 overproduction and intracellular accumulation in hippocampus. Organelles like mitochondria, intracellular membranes, and endoplasmic reticulum have been identified as sites of A42 production and accumulation affecting cellular metabolism. However whether ozone exposure induces overproduction and/or accumulation of A42 in endoplasmic reticulum has not been studied. We evaluated this effect in the endoplasmic reticulum of hippocampal cells of rats exposed chronically to low doses of ozone (0.25 ppm) at 7, 15, 30, 60, and 90 days. The effect of the presence of A42 in endoplasmic reticulum was analyzed evaluating the expression of the chaperone Syntaxin 5. Our results show an accumulation of A42 peptide in this organelle. It was observed by immunofluorescence and by WB in endoplasmic fractions from hippocampal cells of rats at 60 and 90 days of treatment. Significant overexpression of the chaperone Syntaxin 5 at 60 and 90 days of treatment was observed (⁎P < 0.05). These results indicate that the exposure to environmental pollutants could be involved as a risk factor for neurodegenerative processes.
Collapse
|
11
|
Hernández-Zimbrón LF, Rivas-Arancibia S. Oxidative stress caused by ozone exposure induces β-amyloid 1-42 overproduction and mitochondrial accumulation by activating the amyloidogenic pathway. Neuroscience 2015. [PMID: 26197225 DOI: 10.1016/j.neuroscience.2015.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is a major risk factor for Alzheimer's disease (AD) that has been suggested to be the trigger of AD pathology. However, whether oxidative damage precedes and contributes directly to the intracellular accumulation of beta amyloid 1-42 (βA42) peptide remains a matter of debate. Chronic exposure to low doses of ozone similar to the levels during a day of high pollution in México City causes a state of oxidative stress that elicits progressive neurodegeneration in the hippocampi of rats. Several reports have demonstrated that the mitochondria are among the first organelles to be affected by oxidative stress and βA42 toxicity and act as sites of the accumulation of βA42, which affects energy metabolism. However, the mechanisms related to the neurodegeneration process and organelle damage that occur in conditions of chronic exposure to low doses of ozone have not been demonstrated. To analyze the effect of chronic ozone chronic exposure on changes in the production and accumulation of the βA42 and βA40 peptides in the mitochondria of hippocampal neurons of rats exposed to ozone, we examined the mitochondrial expression levels of Presenilins 1 and 2 and ADAM10 to detect changes related to the oxidative stress caused by low doses of ozone (0.25ppm). The results revealed significant accumulations of βA42 peptide in the mitochondrial fractions on days 60 and 90 of ozone exposure along with reductions in beta amyloid 1-40 accumulation, significant overexpressions of Pres2 and significant reductions in ADAM10 expression. Beta amyloid immunodetection revealed that there were some intracellular deposits of βA42 and that βA42 and the mitochondrial markers OPA1 and COX1 colocalized. These results indicate that the time of exposure to ozone and the accumulation of βA42 in the mitochondria of the hippocampal cells of rats were correlated. Our results suggest that the accumulation of the βA42 peptide may promote mitochondrial dysfunction due to its accumulation and overproduction.
Collapse
Affiliation(s)
- L F Hernández-Zimbrón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico
| | - S Rivas-Arancibia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., Mexico.
| |
Collapse
|