1
|
Jemal M, Getinet M, Amare GA, Tegegne BA, Baylie T, Mengistu EF, Osman EE, Chura Waritu N, Adugna A. Non-metabolic enzyme function of pyruvate kinase M2 in breast cancer. Front Oncol 2024; 14:1450325. [PMID: 39411137 PMCID: PMC11473492 DOI: 10.3389/fonc.2024.1450325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer (BC) is a prevalent malignant tumor in women, and its incidence has been steadily increasing in recent years. Compared with other types of cancer, it has the highest mortality and morbidity rates in women. So, it is crucial to investigate the underlying mechanisms of BC development and identify specific therapeutic targets. Pyruvate kinase M2 (PKM2), an important metabolic enzyme in glycolysis, has been found to be highly expressed in BC. It can also move to the nucleus and interact with various transcription factors and proteins, including hypoxia-inducible factor-1α (HIF-1α), signal transducer and activator of transcription 3 (STAT3), β-catenin, cellular-myelocytomatosis oncogene (c-Myc), nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and mammalian sterile 20-like kinase 1 (MST1). This interaction leads to non-metabolic functions that control the cell cycle, proliferation, apoptosis, migration, invasion, angiogenesis, and tumor microenvironment in BC. This review provides an overview of the latest advancements in understanding the interactions between PKM2 and different transcription factors and proteins that influence the initiation and progression of BC. It also examined how natural drugs and noncoding RNAs affect various biological processes in BC cells through the regulation of the non-metabolic enzyme functions of PKM2. The findings provide valuable insights for improving the prognosis and developing targeted therapies for BC in the coming years.
Collapse
Affiliation(s)
- Mohammed Jemal
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enyew Fenta Mengistu
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Enatnesh Essa Osman
- Department of Biomedical Science, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Nuredin Chura Waritu
- Department of Biomedical Sciences, School of Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Sciences, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, Lum PT, Subramaniyan V, Wu YS, Fuloria NK, Fuloria S. Mangifera indica (Mango): A Promising Medicinal Plant for Breast Cancer Therapy and Understanding Its Potential Mechanisms of Action. BREAST CANCER-TARGETS AND THERAPY 2021; 13:471-503. [PMID: 34548817 PMCID: PMC8448164 DOI: 10.2147/bctt.s316667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Lay Jing Seow
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, 30450, Perak, Malaysia
| | | | - Yuan Seng Wu
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Selangor, 42610, Malaysia
| | | | | |
Collapse
|
3
|
Mwaurah PW, Kumar S, Kumar N, Panghal A, Attkan AK, Singh VK, Garg MK. Physicochemical characteristics, bioactive compounds and industrial applications of mango kernel and its products: A review. Compr Rev Food Sci Food Saf 2020; 19:2421-2446. [DOI: 10.1111/1541-4337.12598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Peter Waboi Mwaurah
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Sunil Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Nitin Kumar
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Anil Panghal
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Arun Kumar Attkan
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Vijay Kumar Singh
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| | - Mukesh Kumar Garg
- Department of Processing and Food Engineering, College of Agricultural Engineering and TechnologyCCS Haryana Agricultural University Hisar Haryana 125 004 India
| |
Collapse
|
4
|
Antistaphylococcal Activity of Extracts, Fractions, and Compounds of Acacia polyacantha Wild (Fabaceae). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2654247. [PMID: 32256637 PMCID: PMC7102469 DOI: 10.1155/2020/2654247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/18/2020] [Accepted: 02/24/2020] [Indexed: 01/31/2023]
Abstract
Acacia polyacantha is a medicinal plant traditionally used to treat livestock diseases and gastrointestinal infections; our study was undertaken to evaluate the antistaphylococcal activities of the methanolic leaf, bark, and root extracts, fractions, and compounds from Acacia polyacantha against a panel of 14 multidrug-resistant Staphylococcus bacterial strains overexpressing efflux pumps. The study was also extended to investigate two possible modes of action, that is, influence on bacterial growth kinetics and influence on proton-ATPase pumps, of the most active compound against a reference strain. Materials and Methods. The crude extracts after extraction were subjected to column chromatography. Antibacterial assays of extracts, fractions, and compounds alone and in the presence of efflux pump inhibitors were carried out using the broth microdilution method and the study of two mechanisms of action achieved by standard methods with the most active compound. Results. The phytochemical study of Acacia polyacantha leaves leads to the isolation of stigmasterol (1), β-amyrin (2), 3-O-methyl-D-chiro-inositol (3), epicatechin (4), quercetin-3-O-galactoside (5), 3-O-[β-D-xylopyranosyl-(1 ⟶ 4)-β-D-galactopyranosyl]-oleanolic acid (6), 3-O-[β-galactopyranosyl-(1⟶ 4)-β-D-galactopyranosyl]-oleanolic acid (7) and that of leaves lead to the isolation of lupeol (8) 2,3-dihydroxypropyltetracosanoate (9), and methyl-gallate (10). Leaf, root, and bark extracts inhibited 92.85% (13/14), 92.85% (13/14), and 71.43 % (10/14) of the tested bacteria strains, respectively, with minimum inhibitory concentration (MIC) varying between 16 and 1024 μg/mL. Fractions exhibited better activities compared to those of their extracts of origin, as their MICs ranged from 16 to 512 μg/mL, with fractions from leaves being more active than those obtained from barks. Compounds had varying activities; MICs varied from 16 to 512 μg/mL with compound 4 presenting the best activity as MICs ≤100 μg/mL were obtained against 11 of the tested bacteria. The activities of extracts, fractions, and compounds were improved in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP) as an efflux pump inhibitor to as much as >128 folds. Meanwhile, in the presence of chlorpromazine as an efflux pump inhibitor, only the activity of compound 10 was improved on 10 of the tested bacteria strains. Compound 4 prolonged the lag phase of the growth kinetic in a concentration-dependent manner and equally inhibited the proton-ATPase pumps of the tested bacteria strains. Conclusion. The present study demonstrates the antistaphylococcal potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with efflux pump inhibitors.
Collapse
|
5
|
Clinical Relevance and Antimicrobial Profiling of Methicillin-Resistant Staphylococcus aureus (MRSA) on Routine Antibiotics and Ethanol Extract of Mango Kernel ( Mangifera indica L.). BIOMED RESEARCH INTERNATIONAL 2020; 2020:4150678. [PMID: 32149104 PMCID: PMC7049837 DOI: 10.1155/2020/4150678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 11/28/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is known for serious health problems. Testing new inexpensive natural products such as mango kernel (Mangifera indica L., Anacardiaceae) may provide alternative and economically viable anti-MRSA drugs. In the current study, we screened clinical isolates from Aseer Central Hospital, Saudi Arabia, during 2012–2017 for MRSA and tested an ethanolic extract of mango kernel for anti-MRSA activity. Brief confirmation of MRSA was performed by the Vitek 2 system, while antibiotic sensitivity of strains was tested for their clinical relevance. The In vitro disc diffusion method was used to test the anti-MRSA activity of the ethanolic mango kernel extract. The antimicrobial activity of mango kernel was compared to that of standard drugs (oxacillin and vancomycin). Of the identified 132 S. aureus strains, 42 (31.8%) were found to be MRSA and their prevalence showed a clear increase during the last two years (2016-2017; p < 0.001). MRSA strains showed 100% sensitivity to vancomycin, teicoplanin, linezolid, tetracycline, daptomycin, tigecycline, and tobramycin and 100% resistance to ampicillin and 98% to penicillin. The ethanolic extracts of mango kernel were found active against both S. aureus and the MRSA strains. Inhibitory activities (mean ± SE) were achieved at concentrations of 50 mg/mL (20.77 ± 0.61), 5 mg/mL (16.18 ± 0.34), and 0.5 mg/mL (8.39 ± 0.33) exceeding that of vancomycin (p=0.0162). MRSA strains were sensitive to mango kernel extracts when compared to vancomycin. Therefore, ethanolic extracts of mango kernel can be escalated to animal model studies as a promising leading anti-MRSA drug candidate and can be an economic alternative to high-priced synthetic antibiotics.
Collapse
|
6
|
Antibacterial and antibiotic-modifying activities of fractions and compounds from Albizia adianthifolia against MDR Gram-negative enteric bacteria. Altern Ther Health Med 2019; 19:120. [PMID: 31170979 PMCID: PMC6554897 DOI: 10.1186/s12906-019-2537-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/29/2019] [Indexed: 12/03/2022]
Abstract
Background Albizia adianthifolia (Schum.) is medicinally used in Cameroon to manage bronchitis and skin diseases. Our previous study documented the antibacterial potential of its roots’ methanol extract. In this study, methanol roots extract was subjected to chromatography techniques and fractions (AARa and AARb), sub-fractions (AARa1–4, AARb1–2 and AARb11–14) together with isolated phytochemicals were assessed for their antimicrobial as well as their antibiotic-potentiating effects towards Gram-negative multidrug resistant (MDR) bacteria. Methods The antibacterial activities of the samples (determination of Minimal Inhibitory « MIC » and Minimal Bactericidal Concentration « MBC ») were determined by the modified rapid p-iodonitrotetrazolium chloride (INT) colorimetric assay, as well as those of antibiotics in association with the compounds. Column chromatography was applied to isolate phytochemicals from roots extract and their chemical structures were determined using spectroscopic techniques. Results The phytochemicals isolated were stearic acid (1), a mixture (1:1) of stigmasterol and β-sitosterol (2 + 3), β-sitosterol 3-O-β-D-glucopyranoside (4), palmatin (5), homomangiferin (6) and mangiferin (7). Fraction AARa exhibited selective inhibitory effects whilst all tested bacteria were inhibited by AARb in MIC ranges of 8 to 1024 μg/mL. Sub-fractions AARb1–2 had MIC values between 8 μg/mL and 1024 μg/mL on all tested bacteria. Phytochemicals 4, 2 + 3 and 7 inhibited the growth of 54.54% (6/11), 45.45% (5/11) and 27.27% (3/11) tested bacterial strains, respectively. When tested with an efflux pumps inhibitor (Phenylalanine-Arginine-β-Naphthylamide or PAβN), the inhibitory effects of compounds 2 + 3 and 4 increased towards all the tested bacteria. In association with erythromycin (ERY), streptomycin (STR) and tetracycline (TET), compounds 2 + 3 and 4 had the most significant synergistic activity on the seven selected bacteria. Conclusion The present study provides information on the possible use of Albizia adianthifolia and its constituents in the control of Gram-negative infections including MDR phenotypes. Electronic supplementary material The online version of this article (10.1186/s12906-019-2537-1) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Antibacterial and Antibiotic Modifying Potential of Crude Extracts, Fractions, and Compounds from Acacia polyacantha Willd. against MDR Gram-Negative Bacteria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7507549. [PMID: 30956683 PMCID: PMC6431460 DOI: 10.1155/2019/7507549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 01/19/2023]
Abstract
The present study aimed to assess the in vitro antibacterial and antibiotic modifying activities of methanol extracts prepared from the leaf (APL) and bark (APB) of Acacia polyacantha, fractions (APLa-d) and compounds isolated from APL against a panel of multidrug resistant (MDR) Gram-negative bacteria. Leaf extract was subjected to column chromatography for compounds isolation; antibacterial assays were performed on samples alone and with an efflux pump inhibitor (EPI), respectively, and several antibiotics on the tested bacteria. The phytochemical investigation of APL led to the isolation of stigmasterol (1), β-amyrin (2), 3-O-β-D-glucopyranosylstigmasterol (3), 3-O-methyl-D-chiro-inositol (4), epicatechin (5), quercetin-3-O-glucoside (6), 3-O-[β-D-xylopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (7), and 3-O-[β-galactopyranosyl-(1→4)-β-D-galactopyranosyl]-oleanolic acid (8). APL and APB had minimal inhibitory concentration (MIC) values ≤ 1024 μg/mL on 73.3% and 46.7% of the tested bacteria, respectively. APLb and APLd were effective against 88.9% of tested bacterial species with compound 8 showing the highest activity inhibiting 88.9% of tested bacteria. The EPI, phenylalanine-arginine-β-naphthylamide (PAßN), strongly improved the activity of APL, APLb, APLd, and compound 8 on all tested bacteria. Synergistic effects were obtained when APL and compounds 7 and 8 were combined with erythromycin (ERY), gentamycin (GEN), ciprofloxacin (CIP), and norfloxacin (NOR). The present study demonstrates the antibacterial potential of Acacia polyacantha and its constituents to combat bacterial infections alone or in combination with EPI.
Collapse
|
8
|
Al Akeel R, Mateen A, Alharbi KK, Alyousef AA, Al-Mandeel HM, Syed R. Purification and MIC analysis of antimicrobial proteins from Cucumis sativus L. seeds. Altern Ther Health Med 2018; 18:121. [PMID: 29615020 PMCID: PMC5883520 DOI: 10.1186/s12906-018-2176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cucumis sativus L. (cucumber), from the family Cucurbitaceae, is a therapeutic plant with various pharmacological benefits, broadly utilized as a part of complementary medicine (e.g., Unani, Ayurveda, Siddha, and Traditional Chinese). In light of past research discoveries, this plant had been chosen to consider its potential antibacterial action. METHODS Extracts were purified by dialysis and ion exchange chromatography strategy and then assayed for antibacterial activity against four standard pathogenic bacterial strains known to cause foodborne infections and spoilage of food and herbal drugs. Antimicrobial peptides were extracted from seeds using a sodium phosphate citrate (pH 7.2) - CTAB cradle (pH 6.0). RESULTS The highest protein concentration was seen with elute fractions 1 and 3 (370 mg/mL) compared with elute fractions 2 and 4 (340 mg/mL). Among the bacteria utilized, E. coli was clearly the most sensitive out of selected four strains. CONCLUSION Our results suggest that Cucumis sativus L seeds extracts have significant potentials as new antimicrobial agents.
Collapse
|
9
|
Dzotam JK, Simo IK, Bitchagno G, Celik I, Sandjo LP, Tane P, Kuete V. In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3',4',7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. Altern Ther Health Med 2018; 18:15. [PMID: 29334931 PMCID: PMC5769358 DOI: 10.1186/s12906-018-2084-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 11/17/2022]
Abstract
Background Nutmeg is the seed kernel inside the fruit of Myristica fragrans Houtt. (Myristicaceae). It possesses various pharmacological activities but is used in Cameroon only for its flavor in making cakes. The present study thus aimed to investigate the in vitro antibacterial activity and antibiotic modifying activities of crude seed kernel methanol extract (MFS), fractions (MFSa-e) as well as 3′,4′,7-trihydroxyflavone from Myristica fragrans against a panel of multi-drug resistant (MDR) Gram-negative bacteria. Methods The modified rapid p-iodonitrotetrazolium chloride (INT) colorimetric assay was used to determine the Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) on the tested bacteria, as well as those of antibiotics in association with the extract and/or isolated compound. Column chromatography was used for the fractionation and purification of the seed kernel extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results Phytochemical investigations lead to the isolation of 3′,4′,7-trihydroxyflavone from the fraction MFSb. The crude extract showed antibacterial activity with MICs ranging from 32 to 1024 μg/mL on the majority of the 29 tested Gram-negative bacterial strains. Fraction MFSb inhibited the growth of 100% (29/29) of the tested bacterial strains, as well as the compound 3′,4′,7-trihydroxyflavone (12/12) with a MIC values ranging from 32 to 1024 μg/mL, and 4 to 128 μg/mL respectively. The lowest MIC value (4 μg/mL) was recorded with 3′,4′,7-trihydroxyflavone against Providencia stuartii ATCC299645 as well as the best MBC value (16 μg/mL) against the same strain. In the presence of Phenylalanine-Arginine-β-Naphthylamide (PAßN), an efflux pumps inhibitor, the activity of the extract increased on 73.33% (11/15) meanwhile that of 3′,4′,7-trihydroxyflavone increased on 100% tested bacteria. The compound 3′,4′,7-trihydroxyflavone potentiated the activity of antibiotics in the majority of the tested bacterial strains. Conclusion The results of the present work provide additional information on the use of nutmeg and it major antibacterial component, 3′,4′,7-trihydroxyflavone, as a potential drug in the treatment of bacterial infections including multidrug resistant phenotypes. Electronic supplementary material The online version of this article (10.1186/s12906-018-2084-1) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Ediriweera MK, Tennekoon KH, Samarakoon SR. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:6949835. [PMID: 29456572 PMCID: PMC5804368 DOI: 10.1155/2017/6949835] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/29/2017] [Accepted: 11/19/2017] [Indexed: 12/19/2022]
Abstract
Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described.
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90 Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90 Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Sameera Ranganath Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90 Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| |
Collapse
|
11
|
Mutua JK, Imathiu S, Owino W. Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci Nutr 2017; 5:349-357. [PMID: 28265370 PMCID: PMC5332260 DOI: 10.1002/fsn3.399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/05/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023] Open
Abstract
After pulp extraction in fruit processing industry, a significant quantity of mango seed kernels are discarded as solid wastes. These seed kernels can be ideal raw materials for obtaining extracts rich in bioactive compounds with good antioxidant properties. The conversion of these wastes into utilizable food ingredients would help in reducing environmental problems associated with processing waste disposal. In order to determine their potential use, this study evaluated some of the biochemical characteristics and antimicrobial potential of mango seed kernel extracts on medically important human bacterial and fungal pathogens. Four mango varieties (Apple, Ngowe, Kent and Sabine) from Makueni and Embu counties in Kenya were used for this study. The analyzed mango seed kernel powders were found to contain on average, 6.74-9.20% protein content. Apple and Ngowe mango seed kernels had significantly higher fat content of 13.04 and 13.08, respectively, while Sabine from Makueni had the least fat content of 9.84%. The ash, fiber, and carbohydrate contents ranged from 1.78 to 2.87%, 2.64 to 3.71% and 72.86 to 75.92%, respectively. The mean percentage scavenging ability of mango kernel extracts at the concentration of 20 mg/mL was 92.22%. Apple and Sabine mango kernel extracts had significantly high inhibition zones of 1.93 and 1.73 compared to Kent and Ngowe with 1.13 and 1.10, respectively, against E. coli. For C. albicans, the inhibition of Kent mango kernel extract, 1.63, was significantly lower than that of Ngowe, Apple, and Sabine with 2.23, 2.13, and 1.83, respectively. This study demonstrates that mango seed powder is an abundant and cost-effective potential natural antibiotic and antifungal that can be utilized in addressing the challenge of food poisoning and infections caused by pathogenic microorganisms in the food industry.
Collapse
Affiliation(s)
- Jane K. Mutua
- Department of Food Science and TechnologyJomo Kenyatta University of Agriculture and TechnologyP. O. Box 62000Nairobi00200Kenya
| | - Samuel Imathiu
- Department of Food Science and TechnologyJomo Kenyatta University of Agriculture and TechnologyP. O. Box 62000Nairobi00200Kenya
| | - Willis Owino
- Department of Food Science and TechnologyJomo Kenyatta University of Agriculture and TechnologyP. O. Box 62000Nairobi00200Kenya
| |
Collapse
|
12
|
Asif A, Farooq U, Akram K, Hayat Z, Shafi A, Sarfraz F, Sidhu MAI, Rehman HU, Aftab S. Therapeutic potentials of bioactive compounds from mango fruit wastes. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Dorta E, González M, Lobo MG, Laich F. Antifungal activity of mango peel and seed extracts against clinically pathogenic and food spoilage yeasts. Nat Prod Res 2015; 30:2598-2604. [PMID: 26609883 DOI: 10.1080/14786419.2015.1115995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The antioxidant and antifungal (antiyeast) properties of mango (Mangifera indica) peel and seed by-products were investigated. Nine extracts were obtained using three cultivars and two extraction methods. Significant differences between cultivars and extraction methods were detected in their bioactive compounds and antioxidant activity. The antifungal property was determined using agar diffusion and broth micro-dilution assays against 18 yeast species of the genera Candida, Dekkera, Hanseniaspora, Lodderomyces, Metschnikowia, Pichia, Schizosaccharomyces, Saccharomycodes and Zygosaccharomyces. All mango extracts showed antifungal activity. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) values were lower for seed than for peel extracts. MICs and MFCs ranged from values <0.1 to 5 and 5 to >30 mgGAE/mL, respectively. The multivariate analysis showed a relationship between antifungal activity, the capacity to inhibit lipid peroxidation and total phenol content. These properties were associated with high levels of proanthocyanidins, gallates and gallotannins in the extracts.
Collapse
Affiliation(s)
- E Dorta
- a Laboratorio de Postcosecha y Tecnología de los Alimentos, Departamento de Fruticultura Tropical , Instituto Canario de Investigaciones Agrarias , La Laguna , Spain
| | - M González
- b Departamento de Análisis Instrumental y Química Ambiental (AIQA) , Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (IQOG-CSIC) , Madrid , Spain
| | - M G Lobo
- a Laboratorio de Postcosecha y Tecnología de los Alimentos, Departamento de Fruticultura Tropical , Instituto Canario de Investigaciones Agrarias , La Laguna , Spain
| | - F Laich
- c Unidad de Microbiología Aplicada , Instituto Canario de Investigaciones Agrarias , La Laguna , Spain
| |
Collapse
|