1
|
Sperandio GB, Melo RM, Gomes TG, Miller RNG, do Vale LHF, de Sousa MV, Ricart CAO, Filho EXF. Exploring the Synergistic Secretome: Insights from Co-Cultivation of Aspergillus brasiliensis and Trichoderma reesei RUT-C30. J Fungi (Basel) 2024; 10:677. [PMID: 39452629 PMCID: PMC11509050 DOI: 10.3390/jof10100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The spectrum of enzymes required for complete lignocellulosic waste hydrolysis is too diverse to be secreted by a single organism. An alternative is to employ fungal co-cultures to obtain more diverse and complete enzymatic cocktails without the need to mix enzymes during downstream processing. This study evaluated the co-cultivation of Aspergillus brasiliensis and Trichoderma reesei RUT-C30 in different conditions using sugarcane bagasse as the carbon source. The resulting enzymatic cocktails were characterized according to the impact of strain inoculation time on enzymatic activities and proteome composition. Data revealed that the profile of each enzymatic extract was highly dependent on the order in which the participating fungi were inoculated. Some of the co-cultures exhibited higher enzyme activities compared to their respective monocultures for enzymes such as CMCase, pectinase, β-glucosidase, and β-xylosidase. Analysis of the T. reesei RUT-C30 and A. brasiliensis co-culture secretome resulted in the identification of 167 proteins, with 78 from T. reesei and 89 from A. brasiliensis. In agreement with the enzymatic results, proteome analysis also revealed that the timing of inoculation greatly influences the overall secretome, with a predominance of T. reesei RUT-C30 proteins when first inoculated or in simultaneous inoculation.
Collapse
Affiliation(s)
- Guilherme Bento Sperandio
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasília 70910-900, DF, Brazil; (G.B.S.); (E.X.F.F.)
| | - Reynaldo Magalhães Melo
- Laboratory of Protein Chemistry and Biochemistry, Department of Cellular Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.M.M.); (L.H.F.d.V.); (M.V.d.S.)
| | - Taísa Godoy Gomes
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (T.G.G.); (R.N.G.M.)
| | - Robert Neil Gerard Miller
- Laboratory of Microbiology, Department of Cell Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (T.G.G.); (R.N.G.M.)
| | - Luis Henrique Ferreira do Vale
- Laboratory of Protein Chemistry and Biochemistry, Department of Cellular Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.M.M.); (L.H.F.d.V.); (M.V.d.S.)
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cellular Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.M.M.); (L.H.F.d.V.); (M.V.d.S.)
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cellular Biology, University of Brasília, Brasilia 70910-900, DF, Brazil; (R.M.M.); (L.H.F.d.V.); (M.V.d.S.)
| | - Edivaldo Ximenes Ferreira Filho
- Laboratory of Enzymology, Department of Cell Biology, University of Brasília, Brasília 70910-900, DF, Brazil; (G.B.S.); (E.X.F.F.)
| |
Collapse
|
2
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
3
|
Saberi Riseh R, Gholizadeh Vazvani M, Vatankhah M, Kennedy JF. Chitin-induced disease resistance in plants: A review. Int J Biol Macromol 2024; 266:131105. [PMID: 38531527 DOI: 10.1016/j.ijbiomac.2024.131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
Chitin is composed of N-acetylglucosamine units. Chitin a polysaccharide found in the cell walls of fungi and exoskeletons of insects and crustaceans, can elicit a potent defense response in plants. Through the activation of defense genes, stimulation of defensive compound production, and reinforcement of physical barriers, chitin enhances the plant's ability to defend against pathogens. Chitin-based treatments have shown efficacy against various plant diseases caused by fungal, bacterial, viral, and nematode pathogens, and have been integrated into sustainable agricultural practices. Furthermore, chitin treatments have demonstrated additional benefits, such as promoting plant growth and improving tolerance to abiotic stresses. Further research is necessary to optimize treatment parameters, explore chitin derivatives, and conduct long-term field studies. Continued efforts in these areas will contribute to the development of innovative and sustainable strategies for disease management in agriculture, ultimately leading to improved crop productivity and reduced reliance on chemical pesticides.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
4
|
Yu NN, Veerana M, Ketya W, Sun HN, Park G. RNA-Seq-Based Transcriptome Analysis of Nitric Oxide Scavenging Response in Neurospora crassa. J Fungi (Basel) 2023; 9:985. [PMID: 37888241 PMCID: PMC10607626 DOI: 10.3390/jof9100985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/28/2023] Open
Abstract
While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.
Collapse
Affiliation(s)
- Nan-Nan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Mayura Veerana
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea; (N.-N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
5
|
A REVIEW ON THE TRENDS OF ENDOPHYTIC FUNGI BIOACTIVITIES. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2023] Open
|
6
|
de Carvalho AC, Lima CS, Torquato HFV, Domiciano AT, Silva SDC, de Abreu LM, Uemi M, Paredes-Gamero EJ, Vieira PC, Veiga TAM, de Medeiros LS. Chemodiversity and Anti-Leukemia Effect of Metabolites from Penicillium setosum CMLD 18. Metabolites 2022; 13:23. [PMID: 36676948 PMCID: PMC9864219 DOI: 10.3390/metabo13010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Penicillium setosum represents a Penicillium species recently described, with little up-to-date information about its metabolic and biological potential. Due to this scenario, we performed chemical and biological studies of P. setosum CMLD18, a strain isolated from Swinglea glutinosa (Rutaceae). HRMS-MS guided dereplication strategies and anti-leukemia assays conducted the isolation and characterization of six compounds after several chromatographic procedures: 2-chloroemodic acid (2), 2-chloro-1,3,8-trihydroxy-6- (hydroxymethyl)-anthraquinone (7), 7-chloroemodin (8), bisdethiobis(methylthio)acetylaranotine (9), fellutanine C (10), and 4-methyl-5,6-diihydro-2H-pyran-2-one (15). From the assayed metabolites, (10) induced cellular death against Kasumi-1, a human leukemia cell line, as well as good selectivity for it, displaying promising cytotoxic activity. Here, the correct NMR signal assignments for (9) are also described. Therefore, this work highlights more detailed knowledge about the P. setosum chemical profile as well as its biological potential, offering prospects for obtaining natural products with anti-leukemia capabilities.
Collapse
Affiliation(s)
- Ana Calheiros de Carvalho
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Cauê Santos Lima
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | | | - André Tarsis Domiciano
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil
| | - Sebastião da Cruz Silva
- Instituto de Ciências Exatas, Universidade Federal do Sul e Sudeste do Pará, Marabá 68505-080, Brazil
| | | | - Miriam Uemi
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Edgar Julian Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Paulo Cezar Vieira
- NPPNS, Department of BioMolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040-903, Brazil
| | - Thiago André Moura Veiga
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Lívia Soman de Medeiros
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| |
Collapse
|
7
|
Foligné B, Menetrey Q, Titécat M. Letter to the Editor: Focus on Zymomonas spp for the sake of clarity. Compr Rev Food Sci Food Saf 2022; 21:4507-4508. [PMID: 36349466 DOI: 10.1111/1541-4337.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benoit Foligné
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Quentin Menetrey
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Marie Titécat
- Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| |
Collapse
|
8
|
Wu G, Zhao H, Wan Q, Xu X, Cao R, Li K, Wang J, Huang T, Lu J, Wen G. Inactivation and subsequent reactivation of Aspergillus species by the combination of UV and monochloramine: Comparisons with UV/chlorine. J Environ Sci (China) 2022; 117:105-118. [PMID: 35725063 DOI: 10.1016/j.jes.2022.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2021] [Revised: 02/20/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
Ultraviolet (UV)/monochloramine (NH2Cl) as an advanced oxidation process was firstly applied for Aspergillus spores inactivation. This study aims to: i) clarify the inactivation and photoreactivation characteristics of UV/NH2Cl process, ii) compared with UV/Cl2 in inactivation efficiency, photoreactivation and energy consumption. The results illustrated that UV/NH2Cl showed better inactivation efficiency than that of UV alone and UV/Cl2, and could effectively control the photoreactivation. For instance, the inactivation rates for Aspergillus flavus, Aspergillus niger and Aspergillus fumigatus in the processes of UV/NH2Cl (2.0 mg/L) was 0.034, 0.030 and 0.061 cm2/mJ, respectively, which were higher than that of UV alone (0.027, 0.026 and 0.024 cm2/mJ) and UV/Cl2 (0.023, 0.026 and 0.031 cm2/mJ). However, there was no synergistic effect for Aspergillus flavus and Aspergillus fumigatus. As for Aspergillus niger, the best synergistic effect can reach 1.86-log10. This may be due to their different resistance to disinfectants, which were related to the size, an outer layer of rodlets (hydrophobins) and pigments. After UV/NH2Cl inactivation, the degree of cell membrane damage and intracellular reactive oxygen species were higher than that of UV alone. UV/NH2Cl had the advantages of high inactivation efficiency and inhibition of photoreactivation, which provides a new entry point for the disinfection of waterborne fungi.
Collapse
Affiliation(s)
- Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kai Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jinsuo Lu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
9
|
Nji QN, Babalola OO, Ekwomadu TI, Nleya N, Mwanza M. Six Main Contributing Factors to High Levels of Mycotoxin Contamination in African Foods. Toxins (Basel) 2022; 14:318. [PMID: 35622564 PMCID: PMC9146326 DOI: 10.3390/toxins14050318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/12/2023] Open
Abstract
Africa is one of the regions with high mycotoxin contamination of foods and continues to record high incidences of liver cancers globally. The agricultural sector of most African countries depends largely on climate variables for crop production. Production of mycotoxins is climate-sensitive. Most stakeholders in the food production chain in Africa are not aware of the health and economic effects of consuming contaminated foods. The aim of this review is to evaluate the main factors and their degree of contribution to the high levels of mycotoxins in African foods. Thus, knowledge of the contributions of different factors responsible for high levels of these toxins will be a good starting point for the effective mitigation of mycotoxins in Africa. Google Scholar was used to conduct a systemic search. Six factors were found to be linked to high levels of mycotoxins in African foods, in varying degrees. Climate change remains the main driving factor in the production of mycotoxins. The other factors are partly man-made and can be manipulated to become a more profitable or less climate-sensitive response. Awareness of the existence of these mycotoxins and their economic as well as health consequences remains paramount. The degree of management of these factors regarding mycotoxins varies from one region of the world to another.
Collapse
Affiliation(s)
- Queenta Ngum Nji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
| | - Theodora Ijeoma Ekwomadu
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Nancy Nleya
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa; (Q.N.N.); (T.I.E.); (N.N.); (M.M.)
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
10
|
Wikandari R, Hasniah N, Taherzadeh MJ. The role of filamentous fungi in advancing the development of a sustainable circular bioeconomy. BIORESOURCE TECHNOLOGY 2022; 345:126531. [PMID: 34896535 DOI: 10.1016/j.biortech.2021.126531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Human activities generate enormous amounts of organic wastes and residues. Filamentous fungi (FF) are able to grow on a broad range of substrates and survive over a wide spectrum of growth conditions. These characteristics enable FF to be exploited in biorefineries for various waste streams. Valorization of food industry byproducts into biomass and various arrays of value-added products using FF creates promising pathways toward a sustainable circular economy. This approach might also contribute to reaching the sustainable development goals set by the United Nations, particularly for zero hunger as well as affordable and clean energy. This paper presents the application of filamentous fungi in food, feeds, fuels, biochemicals, and biopolymers. The nutritional values, health benefits, and safety of foods derived from byproducts of food industries are also addressed. The technoeconomical feasibilities, sustainability aspects and challenges and future perspectives for biorefineries using filamentous fungi are discussed.
Collapse
Affiliation(s)
- Rachma Wikandari
- Department of Food and Agricultural Product Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Nurul Hasniah
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | |
Collapse
|
11
|
Zhang H, Xu X, Tan L, Liang Z, Cao R, Wan Q, Xu H, Wang J, Huang T, Wen G. The aggregation of Aspergillus spores and the impact on their inactivation by chlorine-based disinfectants. WATER RESEARCH 2021; 204:117629. [PMID: 34509870 DOI: 10.1016/j.watres.2021.117629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/24/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
The formation of fungal biofilm goes through some different states, including monodisperse state, aggregated state, germinated state, hyphal and biofilm. The aggregation of spores is a primary step of fungal biofilm development in aquatic systems. Previous studies on the inactivation of fungi were mostly performed in the monodisperse state of fungal spores and biofilm state, however, the inactivation of aggregated fungal spores is still unclear. In this study, the aggregated characteristics of fungal spores (Aspergillus fumigatus and Aspergillus flavus) at different pH values were firstly studied, and the inactivation efficiency of fungal spores at different aggregation degree by chlorine-based disinfectants was also clarified. The results showed that the aggregation degree of Aspergillus fumigatus was the highest at pH 9.0 while it was the lowest at pH 5.0. Aggregation between fungal spores was mainly mediated by occasional adhesin-adhesin interactions and electrostatic interactions. Compared with monodisperse spores, fungal spores were more resistant to chlorine-based disinfectants with the increase of spore aggregation degree. The inactivation rate constants of Aspergillus fumigatus at 30% and 63% aggregation degree were 1.5- and 4-folds lower than that of monodisperse spores, respectively. The lower proportion of membrane damage and higher intracellular reactive oxygen species level for aggregated spores than monodisperse spores was observed according to the flow cytometric results after chlorine-based disinfectants treatment. The reasons for the lower inactivation efficiency of aggregated spores are as following: the protection of outer layer spores and signals between aggregates lead to the increase of resistance for aggregated spores. This study is meaningful for the control of the fungal spores at different states in water.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Zhiting Liang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China.
| |
Collapse
|
12
|
Rocha R, Vaz Velho M, Santos J, Fernandes P. Serra da Estrela PDO Cheese Microbiome as Revealed by Next Generation Sequencing. Microorganisms 2021; 9:microorganisms9102007. [PMID: 34683326 PMCID: PMC8537266 DOI: 10.3390/microorganisms9102007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Serra da Estrela PDO cheese is the oldest traditional cheese manufactured in Portugal. In this work, its microbiome as well as the main raw materials used in cheese production, raw ewes’ milk and thistle flowers (Cynara cardunculus L.), were characterized using next generation sequencing. Samples were accordingly retrieved from a local producer over two consecutive production campaigns and at different time periods within each campaign. The bacterial and fungi communities associated with each matrix were accessed through sequencing of V3–V4 and Internal Transcribed Spacer 2 regions of rRNA gene amplicons, respectively. A high microbial diversity was found associated to each matrix, differing significantly (p < 0.05) from each other. Over 500 taxa were identified in each analyzed matrix, ranging from dominant (relative abundance > 1%), sub-dominant (0.01–1%) and rare taxa (<0.01%). Specifically, in cheese, 30 taxa were present in all analyzed samples (core taxa), including species of Leuconostoc spp. and Lactococcus spp. for bacteria and Candida spp., Debaryomyces spp. and Yarrowia spp. for fungi, that were cumulatively the most prevalent genera in Serra da Estrela PDO cheese (average relative abundance ≥10%). Ultimately, this characterization study may contribute to a better understanding of the microbial dynamics of this traditional PDO product, namely the influence of raw materials on cheese microbiome, and could assist producers interested in preserving the identity, quality and safety of Serra da Estrela PDO cheese.
Collapse
|
13
|
Abstract
The purpose of this study was to develop a reproducible preclinical Fusarium solani keratitis model, which would allow comparative testing of currently available antifungals (NATACYN [Alcon, Fort Worth, TX], voriconazole 1%, and amphotericin B 0.1%) as well as efficacy testing of new antifungals for translation into clinical practice in the future.
Collapse
|
14
|
Adeleke BS, Babalola OO. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. J Fungi (Basel) 2021; 7:147. [PMID: 33671354 PMCID: PMC7922420 DOI: 10.3390/jof7020147] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Endophytic microbes are microorganisms that colonize the intracellular spaces within the plant tissues without exerting any adverse or pathological effects. Currently, the world population is facing devastating chronic diseases that affect humans. The resistance of pathogens to commercial antibiotics is increasing, thus limiting the therapeutic potential and effectiveness of antibiotics. Consequently, the need to search for novel, affordable and nontoxic natural bioactive compounds from endophytic fungi in developing new drugs with multifunction mechanisms to meet human needs is essential. Fungal endophytes produce invaluable bioactive metabolic compounds beneficial to humans with antimicrobial, anticancer, antidiabetic, anti-inflammatory, antitumor properties, etc. Some of these bioactive compounds include pestacin, taxol, camptothecin, ergoflavin, podophyllotoxin, benzopyran, isopestacin, phloroglucinol, tetrahydroxy-1-methylxanthone, salidroside, borneol, dibenzofurane, methyl peniphenone, lipopeptide, peniphenone etc. Despite the aforementioned importance of endophytic fungal metabolites, less information is available on their exploration and pharmacological importance. Therefore, in this review, we shall elucidate the fungal bioactive metabolites from medicinal plants and their pharmacological potential.
Collapse
Affiliation(s)
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa;
| |
Collapse
|
15
|
Muggia L, Ametrano CG, Sterflinger K, Tesei D. An Overview of Genomics, Phylogenomics and Proteomics Approaches in Ascomycota. Life (Basel) 2020; 10:E356. [PMID: 33348904 PMCID: PMC7765829 DOI: 10.3390/life10120356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/26/2022] Open
Abstract
Fungi are among the most successful eukaryotes on Earth: they have evolved strategies to survive in the most diverse environments and stressful conditions and have been selected and exploited for multiple aims by humans. The characteristic features intrinsic of Fungi have required evolutionary changes and adaptations at deep molecular levels. Omics approaches, nowadays including genomics, metagenomics, phylogenomics, transcriptomics, metabolomics, and proteomics have enormously advanced the way to understand fungal diversity at diverse taxonomic levels, under changeable conditions and in still under-investigated environments. These approaches can be applied both on environmental communities and on individual organisms, either in nature or in axenic culture and have led the traditional morphology-based fungal systematic to increasingly implement molecular-based approaches. The advent of next-generation sequencing technologies was key to boost advances in fungal genomics and proteomics research. Much effort has also been directed towards the development of methodologies for optimal genomic DNA and protein extraction and separation. To date, the amount of proteomics investigations in Ascomycetes exceeds those carried out in any other fungal group. This is primarily due to the preponderance of their involvement in plant and animal diseases and multiple industrial applications, and therefore the need to understand the biological basis of the infectious process to develop mechanisms for biologic control, as well as to detect key proteins with roles in stress survival. Here we chose to present an overview as much comprehensive as possible of the major advances, mainly of the past decade, in the fields of genomics (including phylogenomics) and proteomics of Ascomycota, focusing particularly on those reporting on opportunistic pathogenic, extremophilic, polyextremotolerant and lichenized fungi. We also present a review of the mostly used genome sequencing technologies and methods for DNA sequence and protein analyses applied so far for fungi.
Collapse
Affiliation(s)
- Lucia Muggia
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Claudio G. Ametrano
- Grainger Bioinformatics Center, Department of Science and Education, The Field Museum, Chicago, IL 60605, USA;
| | - Katja Sterflinger
- Academy of Fine Arts Vienna, Institute of Natual Sciences and Technology in the Arts, 1090 Vienna, Austria;
| | - Donatella Tesei
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| |
Collapse
|
16
|
Abdo H, Catacchio CR, Ventura M, D'Addabbo P, Alexandre H, Guilloux-Bénatier M, Rousseaux S. The establishment of a fungal consortium in a new winery. Sci Rep 2020; 10:7962. [PMID: 32409784 PMCID: PMC7224177 DOI: 10.1038/s41598-020-64819-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2019] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
The biodiversity and evolution of fungal communities were monitored over a period of 3 vintages in a new winery. Samples were collected before grape receipt and 3 months after fermentation from 3 different wine related environments (WRE): floor, walls and equipment and analyzed using Illumina Mi-Seq. Genera of mold and filamentous fungi (294), non-enological (10) and wine-associated yeasts (25) were detected on all WREs before the arrival of the first harvest. Among them, genera like Alternaria and Aureobasidium persisted during two vintages. Therefore, these genera are not specific to winery environment and appear to be adapted to natural or anthropic environments due to their ubiquitous character. Some genera like Candida were also detected before the first harvest but only on one WREs, whereas, on the other WREs they were found after the harvest. The ubiquitous character and phenotypic traits of these fungal genera can explain their dynamics. After the first harvest and during 3 vintages the initial consortium was enriched by oenological genera like Starmerella introduced either by harvest or by potential transfers between the different WREs. However, these establishing genera, including Saccharomyces, do not appear to persist due to their low adaptation to the stressful conditions of winery environment.
Collapse
Affiliation(s)
- Hany Abdo
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France- IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon, Cedex, France
| | | | - Mario Ventura
- Department of Biology, University of Bari, Bari, 70125, Italy
| | | | - Hervé Alexandre
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France- IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon, Cedex, France
| | - Michèle Guilloux-Bénatier
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France- IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon, Cedex, France
| | - Sandrine Rousseaux
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France- IUVV Equipe VAlMiS, rue Claude Ladrey, BP 27877, 21078, Dijon, Cedex, France.
| |
Collapse
|
17
|
Alburae NA, Mohammed AE, Alorfi HS, Turki AJ, Asfour HZ, Alarif WM, Abdel-Lateff A. Nidulantes of Aspergillus (Formerly Emericella): A Treasure Trove of Chemical Diversity and Biological Activities. Metabolites 2020; 10:E73. [PMID: 32079311 PMCID: PMC7073611 DOI: 10.3390/metabo10020073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
The genus Emericella (Ascomycota) includes more than thirty species with worldwide distribution across many ecosystems. It is considered a rich source of diverse metabolites. The published classes of natural compounds that are discussed here are organized according to the following biosynthetic pathways: polyketides (azaphilones, cyclopentenone pigments, dicyanides, furan derivatives, phenolic ethers, and xanthones and anthraquinones); shikimate derivatives (bicoumarins); mevalonate derivatives (meroterpenes, sesquiterpenes, sesterterpenes and steroids) and amino acids derivatives (alkaloids (indole-derivatives, isoindolones, and piperazine) and peptides (depsipeptides)). These metabolites produce the wide array of biological effects associated with Emericella, including antioxidant, antiproliferative, antimalarial, antiviral, antibacterial, antioxidant, antihypertensive, anti-inflammatory, antifungal and kinase inhibitors. Careful and extensive study of the diversity and distribution of metabolites produced by the genus Emericella (either marine or terrestrial) revealed that, no matter the source of the fungus, the composition of the culture medium effectively controls the metabolites produced. The topic of this review is the diversity of metabolites that have been identified from Emericella, along with the contextual information on either their biological or geographic sources. This review presents 236 natural compounds, which were reported from marine and terrestrial Emericella. Amongst the reported compounds, only 70.2% were biologically assayed for their effects, including antimicrobial or cytotoxicity. This implies the need for substantial investigation of alternative activities. This review includes a full discussion of compound structures and disease management, based on materials published from 1982 through December 2019.
Collapse
Affiliation(s)
- Najla Ali Alburae
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hajer Saeed Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| | - Adnan Jaman Turki
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Hani Zakaria Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Walied Mohamed Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia;
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
18
|
Hao X, Zhu YG, Nybroe O, Nicolaisen MH. The Composition and Phosphorus Cycling Potential of Bacterial Communities Associated With Hyphae of Penicillium in Soil Are Strongly Affected by Soil Origin. Front Microbiol 2020; 10:2951. [PMID: 31969866 PMCID: PMC6960115 DOI: 10.3389/fmicb.2019.02951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023] Open
Abstract
Intimate fungal-bacterial interactions are widespread in nature. However the main drivers for the selection of hyphae-associated bacterial communities and their functional traits in soil systems remain elusive. In the present study, baiting microcosms were used to recover hyphae-associated bacteria from two Penicillium species with different phosphorus-solubilizing capacities in five types of soils. Based on amplicon sequencing of 16S rRNA genes, the composition of bacterial communities associated with Penicillium hyphae differed significantly from the soil communities, showing a lower diversity and less variation in taxonomic structure. Furthermore, soil origin had a significant effect on hyphae-associated community composition, whereas the two fungal species used in this study had no significant overall impact on bacterial community structure, despite their different capacities to solubilize phosphorus. However, discriminative taxa and specific OTUs were enriched in hyphae-associated communities of individual Penicillium species indicating that each hyphosphere represented a unique niche for bacterial colonization. Additionally, an increased potential of phosphorus cycling was found in hyphae-associated communities, especially for the gene phnK involved in phosphonate degradation. Altogether, it was established that the two Penicillium hyphae represent unique niches in which microbiome assemblage and phosphorus cycling potential are mainly driven by soil origin, with less impact made by fungal identity with a divergent capacity to utilize phosphorus.
Collapse
Affiliation(s)
- Xiuli Hao
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|