1
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
2
|
Loarca J, Liou M, Dawson JC, Simon PW. Advancing utilization of diverse global carrot ( Daucus carota L.) germplasm with flowering habit trait ontology. FRONTIERS IN PLANT SCIENCE 2024; 15:1342513. [PMID: 38779064 PMCID: PMC11110672 DOI: 10.3389/fpls.2024.1342513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/26/2024] [Indexed: 05/25/2024]
Abstract
Biennial vegetable crops are challenging to breed due to long breeding cycle times. At the same time, it is important to preserve a strong biennial growth habit, avoiding premature flowering that renders the crop unmarketable. Gene banks carry important genetic variation which may be essential to improve crop resilience, but these collections are underutilized due to lack of characterization for key traits like bolting tendency for biennial vegetable crops. Due to concerns about introducing undesirable traits such as premature flowering into elite germplasm, many accessions may not be considered for other key traits that benefit growers, leaving crops more vulnerable to pests, diseases, and abiotic stresses. In this study, we develop a method for characterizing flowering to identify accessions that are predominantly biennial, which could be incorporated into biennial breeding programs without substantially increasing the risk of annual growth habits. This should increase the use of these accessions if they are also sources of other important traits such as disease resistance. We developed the CarrotOmics flowering habit trait ontology and evaluated flowering habit in the largest (N=695), and most diverse collection of cultivated carrots studied to date. Over 80% of accessions were collected from the Eurasian supercontinent, which includes the primary and secondary centers of carrot diversity. We successfully identified untapped genetic diversity in biennial carrot germplasm (n=197 with 0% plants flowering) and predominantly-biennial germplasm (n=357 with <15% plants flowering). High broad-sense heritability for flowering habit (0.81 < H2< 0.93) indicates a strong genetic component of this trait, suggesting that these carrot accessions should be consistently biennial. Breeders can select biennial plants and eliminate annual plants from a predominantly biennial population. The establishment of the predominantly biennial subcategory nearly doubles the availability of germplasm with commercial potential and accounts for 54% of the germplasm collection we evaluated. This subcollection is a useful source of genetic diversity for breeders. This method could also be applied to other biennial vegetable genetic resources and to introduce higher levels of genetic diversity into commercial cultivars, to reduce crop genetic vulnerability. We encourage breeders and researchers of biennial crops to optimize this strategy for their particular crop.
Collapse
Affiliation(s)
- Jenyne Loarca
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, WI, United States
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Liou
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie C. Dawson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Philipp W. Simon
- Vegetable Crops Research Unit, United States Department of Agriculture, Madison, WI, United States
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Meng Q, Liu Z, Feng C, Zhang H, Xu Z, Wang X, Wu J, She H, Qian W. Quantitative Trait Locus Mapping and Identification of Candidate Genes Controlling Bolting in Spinach ( Spinacia oleracea L.). FRONTIERS IN PLANT SCIENCE 2022; 13:850810. [PMID: 35432424 PMCID: PMC9006512 DOI: 10.3389/fpls.2022.850810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Spinach is a typical light-sensitive plant. Long days can induce early bolting, thereby influencing the regional adaptation, quality, and vegetative yield of spinach. However, the genes and genetic mechanisms underlying this trait in spinach remain unclear. In this study, a major quantitative trait locus (QTL) qBT1.1, was mapped on chromosome 1 using a BC1 population (BC1a) derived from 12S3 (late-bolting recurrent lines) and 12S4 (early bolting lines) with specific-locus amplified fragment (SLAF) markers and Kompetitive Allele Specific PCR (KASP) markers. The qBT1.1 locus was further confirmed and narrowed down to 0.56 Mb by using a large BC1 (BC1b) population and an F2 population using the above KASP markers and the other 20 KASP markers. Within this region, two putative genes, namely, SpFLC and SpCOL14, were of interest due to their relationship with flower regulatory pathways. For SpCOL14, we found multiple variations in the promoter, and the expression pattern was consistent with bolting stages. SpCOL14 was therefore assumed to the best candidate gene for bolting. Overall, our results provide a basis for understanding the molecular mechanisms of bolting in spinach and contribute to the breeding of diverse spinach germplasms for adaptation to different regions.
Collapse
Affiliation(s)
- Qing Meng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunda Feng
- Ilera Healthcare LLC, Waterfall, PA, United States
| | - Helong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongbing She
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 2020; 21:508. [PMID: 32698759 PMCID: PMC7376858 DOI: 10.1186/s12864-020-06918-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 07/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Floral transition plays an important role in development, and proper time is necessary to improve the value of valuable ornamental trees. The molecular mechanisms of floral transition remain unknown in perennial woody plants. "Bairihua" is a type of C. bungei that can undergo floral transition in the first planting year. RESULTS Here, we combined short-read next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing to provide a more complete view of transcriptome regulation during floral transition in C. bungei. The circadian rhythm-plant pathway may be the critical pathway during floral transition in early flowering (EF) C. bungei, according to horizontal and vertical analysis in EF and normal flowering (NF) C. bungei. SBP and MIKC-MADS-box were seemingly involved in EF during floral transition. A total of 61 hub genes were associated with floral transition in the MEturquoise model with Weighted Gene Co-expression Network Analysis (WGCNA). The results reveal that ten hub genes had a close connection with the GASA homologue gene (Cbu.gene.18280), and the ten co-expressed genes belong to five flowering-related pathways. Furthermore, our study provides new insights into the complexity and regulation of alternative splicing (AS). The ratio or number of isoforms of some floral transition-related genes is different in different periods or in different sub-genomes. CONCLUSIONS Our results will be a useful reference for the study of floral transition in other perennial woody plants. Further molecular investigations are needed to verify our sequencing data.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Fangqun Ouyang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Nan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Lisheng Kong
- Department of Biology Centre for Forest Biology, University of Victoria, Victoria, BC 11 Canada
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 PR China
| | - Shougong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 PR China
| |
Collapse
|
5
|
Tyagi S, Mazumdar PA, Mayee P, Shivaraj SM, Anand S, Singh A, Madhurantakam C, Sharma P, Das S, Kumar A, Singh A. Natural variation in Brassica FT homeologs influences multiple agronomic traits including flowering time, silique shape, oil profile, stomatal morphology and plant height in B. juncea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:251-266. [PMID: 30466591 DOI: 10.1016/j.plantsci.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Natural structural variants of regulatory proteins causing quantitative phenotypic consequences have not been reported in plants. Herein, we show that 28 natural structural variants of FT homeologs, isolated from 6 species of Brassica, differ with respect to amino-acid substitutions in regions critical for interactions with FD and represent two evolutionarily distinct categories. Analysis of structural models of selected candidates from Brassica juncea (BjuFT_AAMF1) and Brassica napus (BnaFT_CCLF) predicted stronger binding between BjuFT and Arabidopsis thaliana FD. Over-expression of BjuFT and BnaFT in wild type and ft-10 mutant backgrounds of Arabidopsis validated higher potency of BjuFT in triggering floral transition. Analysis of gain-of-function and artificial miRNA mediated silenced lines of B. juncea implicated Brassica FT in multiple agronomic traits beyond flowering, consistent with a pleiotropic effect. Several dependent and independent traits such as lateral branching, silique shape, seed size, oil-profile, stomatal morphology and plant height were found altered in mutant lines. Enhanced FT levels caused early flowering, which in turn was positively correlated to a higher proportion of desirable fatty acids (PUFA). However, higher FT levels also resulted in altered silique shape and reduced seed size, suggesting trait trade-offs. Modulation of FT levels for achieving optimal balance of trait values and parsing pair-wise interactions among a reportoire of regulatory protein homeologs in polyploid genomes are indeed future areas of crop research.
Collapse
Affiliation(s)
- Shikha Tyagi
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | | | - Pratiksha Mayee
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Department of Research, Ankur Seeds Pvt. Ltd., 27, Nagpur, Maharashtra, 440018, India
| | - S M Shivaraj
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India; Departement de Phytologie, Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Saurabh Anand
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Anupama Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Chaithanya Madhurantakam
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Prateek Sharma
- Department of Energy and Environment, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India
| | - Sandip Das
- Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Arun Kumar
- National Phytotron Facility, IARI, New Delhi, 110012, India
| | - Anandita Singh
- Department of Biotechnology, TERI School of Advanced Studies, 10, Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|