1
|
Zhang W, Shi Y, He L, Chen X, Hu F, Chen Y, Pang Y, Li S, Chu Y. Decreased Salinity Offsets the Stimulation of Elevated pCO 2 on Photosynthesis and Synergistically Inhibits the Growth of Juvenile Sporophyte of Saccharina japonica (Laminariaceae, Phaeophyta). PLANTS (BASEL, SWITZERLAND) 2022; 11:2978. [PMID: 36365430 PMCID: PMC9656199 DOI: 10.3390/plants11212978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The combined effect of elevated pCO2 (Partial Pressure of Carbon Dioxide) and decreased salinity, which is mainly caused by freshwater input, on the growth and physiological traits of algae has been poorly assessed. In order to investigate their individual and interactive effects on the development of commercially farmed algae, the juvenile sporophytes of Saccharina japonica were cultivated under different levels of salinity (30, 25 and 20 psu) and pCO2 (400 and 1000 µatm). Individually, decreased salinity significantly reduced the growth rate and pigments of S. japonica, indicating that the alga was low-salinity stressed. The maximum quantum yield, Fv/Fm, declined at low salinities independent of pCO2, suggesting that the hyposalinity showed the main effect. Unexpectedly, the higher pCO2 enhanced the maximum relative electron transport rate (rETRmax) but decreased the growth rate, pigments and soluble carbohydrates contents. This implies a decoupling between the photosynthesis and growth of this alga, which may be linked to an energetic reallocation among the different metabolic processes. Interactively and previously untested, the decreased salinity offset the improvement of rETRmax and aggravated the declines of growth rate and pigment content caused by the elevated pCO2. These behaviors could be associated with the additionally decreased pH that was induced by the low salinity. Our data, therefore, unveils that the decreased salinity may increase the risks of future CO2-induced ocean acidification on the production of S. japonica.
Collapse
Affiliation(s)
- Wenze Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
| | - Yunyun Shi
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghua He
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yinrong Chen
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yun Pang
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sufang Li
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Yaoyao Chu
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Korea
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Ashkenazi DY, Segal Y, Ben-Valid S, Paz G, Tsubery MN, Salomon E, Abelson A, Israel Á. Enrichment of nutritional compounds in seaweeds via abiotic stressors in integrated aquaculture. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Bioelectricity generation from live marine photosynthetic macroalgae. Biosens Bioelectron 2022; 198:113824. [PMID: 34864244 DOI: 10.1016/j.bios.2021.113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/24/2022]
Abstract
The conversion of solar energy into electrical current by photosynthetic organisms has the potential to produce clean energy. Bio-photoelectrochemical cells (BPECs) utilizing unicellular photosynthetic microorganisms have been studied, however similar harvesting of electrons from more evolved intact photosynthetic organisms has not been previously reported. In this study, we describe for the first time BPECs containing intact live marine macroalgae (seaweeds) in natural seawater or saline buffer. The BPECs produce electrical currents of >50 mA/cm2, from both light-dependent (photosynthesis) and light-independent processes. These values are significantly greater than the current densities that have been reported for single-cell microorganisms. The photocurrent is inhibited by the Photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating that the source of light-driven electrons is from photosynthetic water oxidation. The current is mediated to the external anode via NADPH and possibly other reduced molecules. We show that intact macroalgae cultures can be used in large-scale BPECs containing seawater, to produce bias-free photocurrents, paving the way for the future development of low-cost energy solar energy conversion technologies using BPECs.
Collapse
|
4
|
Abstract
More than 50% of the UK coastline is situated in Scotland under legislative jurisdiction; therefore, there is a great opportunity for regionally focused economic development by the rational use of sustainable marine bio-sources. We review the importance of seaweeds in general, and more specifically, wrack brown seaweeds which are washed from the sea and accumulated in the wrack zone and their economic impact. Rules and regulations governing the harvesting of seaweed, potential sites for harvesting, along with the status of industrial application are discussed. We describe extraction and separation methods of natural products from these seaweeds along with their phytochemical profiles. Many potential applications for these derivatives exist in agriculture, energy, nutrition, biomaterials, waste treatment (composting), pharmaceuticals, cosmetics and other applications. The chemical diversity of the natural compounds present in these seaweeds is an opportunity to further investigate a range of chemical scaffolds, evaluate their biological activities, and develop them for better pharmaceutical or biotechnological applications. The key message is the significant opportunity for the development of high value products from a seaweed processing industry in Scotland, based on a sustainable resource, and locally regulated.
Collapse
|
5
|
El-Adl MF, El-Katony TM, Nada RM. High external Na +, but not K +, stimulates the growth of Ulva lactuca (L.) via induction of the plasma membrane ATPases and achievement of K +/Na + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:239-249. [PMID: 33866145 DOI: 10.1016/j.plaphy.2021.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study aims at investigating the specific ion effects of Na+ and K+ on Ulva lactuca (L.) growth. U. lactuca was grown in balanced nutrient solutions with 10, 100, 300 and 600 mM NaCl or KCl. The growth was significantly higher at 300 and 600 mM NaCl compared to KCl, with the highest growth rate at 300 mM NaCl. NaCl-treated alga showed increases in the photosynthetic pigments and Rubisco protein content. However, KCl treatments adversely affected these photosynthetic attributes. U. lactuca needs adjusted, but not high K+/Na+ ratio for a proper growth, since the high K+/Na+ ratio in KCl-treated alga was associated with growth retardation. The cell wall was more extensible at high concentrations of NaCl compared to KCl. Therefore, the deleterious effect of K+ could be mainly on the cell wall and hence inhibiting the growth and perhaps the vitality of the whole cell. The transcript of plasma membrane (PM) H+-ATPase was detected only at 300 and 600 mM NaCl, implying that this gene was specifically induced by high concentrations of Na+ but not K+. The transcript of PM-Na+/K+-ATPase-like exhibited no Na+ specificity and its induction alone could not improve the growth of KCl-treated U. lactuca. The simultaneous induction of the two PM-ATPases could positively affect the algal growth at high NaCl concentrations by maintaining the proper cellular K+/Na+ ratio. Also, both PM-ATPases might contribute to energizing the plasma membrane and thereby promoting the cellular growth of U. lactuca at high Na+, but not K+, concentrations.
Collapse
Affiliation(s)
- Magda F El-Adl
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt.
| | - Taha M El-Katony
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Reham M Nada
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| |
Collapse
|
6
|
Kumari J, Rathore MS. Na+/K+-ATPase a Primary Membrane Transporter: An Overview and Recent Advances with Special Reference to Algae. J Membr Biol 2020; 253:191-204. [DOI: 10.1007/s00232-020-00119-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
|
7
|
Wang W, Xu Y, Chen T, Xing L, Xu K, Xu Y, Ji D, Chen C, Xie C. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:168-179. [PMID: 30690352 DOI: 10.1016/j.scitotenv.2019.01.214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 05/10/2023]
Abstract
Intertidal macroalgae are highly resistant to hypersaline stress conditions. However, the underlying mechanism remains unknown. In the present study, the mechanism behind Pyropia haitanensis responses to two hypersaline stress conditions [100‰ (HSS_100) and 110‰ (HSS_110)] was investigated via analyses of physiological and transcriptomic changes. We observed that the differences between the responses of Py. haitanensis to HSS_100 and HSS_110 conditions involved the following three aspects: osmotic regulation, ionic homeostasis, and adjustment to secondary stresses. First, the water retention of Py. haitanensis was maintained through increased expansin production under HSS_100 conditions, while cell wall pectin needed to be protected from hydrolysis via the increased abundance of a pectin methylesterase inhibitor under HSS_110 conditions. Meanwhile, Py. haitanensis achieved stable and rapid osmotic adjustments because of the coordinated accumulation of inorganic ions (K+, Na+, and Cl-) and organic osmolytes (glycine betaine and trehalose) under HSS_100 conditions, but not under HSS_110 conditions. Second, Py. haitanensis maintained a higher K+/Na+ ratio under HSS_100 conditions than under HSS_110 conditions, mainly via the export of Na+ into the apoplast rather than compartmentalizing it into the vacuoles, and the enhanced uptake and retention of K+. However, K+/Na+ homeostasis was not completely disrupted during a short-term exposure to HSS_110 conditions. Finally, the Py. haitanensis antioxidant system scavenged more ROS and synthesized more heat shock proteins under HSS_100 conditions than under HSS_110 conditions, although thalli may have been able to maintain a certain redox balance during a short-term exposure to HSS_110 conditions. These differences may explain why Py. haitanensis can adapt to HSS_100 conditions rather than HSS_110 conditions, and also why the thalli exposed to HSS_110 conditions can recover after being transferred to normal seawater. Thus, the data presented herein may elucidate the mechanisms enabling Pyropia species to tolerate the sudden and periodic changes in salinity typical of intertidal systems.
Collapse
Affiliation(s)
- Wenlei Wang
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - TianXiang Chen
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Lei Xing
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Kai Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Yan Xu
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Dehua Ji
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Changsheng Chen
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China
| | - Chaotian Xie
- Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Xiamen 361021, China.
| |
Collapse
|