1
|
Aktar S, Islam ARMT, Mia MY, Jannat JN, Islam MS, Siddique MAB, Masud MAA, Idris AM, Pal SC, Senapathi V. Assessing metal(loid)s-Induced long-term spatiotemporal health risks in Coastal Regions, Bay of Bengal: A chemometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33141-z. [PMID: 38625466 DOI: 10.1007/s11356-024-33141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.
Collapse
Affiliation(s)
- Shammi Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| |
Collapse
|
2
|
Ali MM, Kubra K, Alam E, Mondol AH, Akhtar S, Islam MS, Karim E, Ahmed ASS, Siddique MAB, Malafaia G, Rahman MZ, Rahman MM, Islam ARMT. Bioaccumulation and sources of metal(loid)s in fish species from a subtropical river in Bangladesh: a public health concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2343-2359. [PMID: 38057678 DOI: 10.1007/s11356-023-31324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-E-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Khadijatul Kubra
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Edris Alam
- Faculty of Resilience, Rabdan Academy, 114646, Abu Dhabi, United Arab Emirates
| | - Anwar Hossain Mondol
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Shahrina Akhtar
- Krishi Gobeshona Foundation (KGF), BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute (BFRI), Mymensingh, 2201, Bangladesh
| | - A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, 75790 000, Brazil
| | - Md Zillur Rahman
- Quality Control Laboratory, Department of Fisheries, Khulna, 9000, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| |
Collapse
|
3
|
Desalew A, Mehari B. Variations in elemental composition of rice (Oryza sativa L.) with different cultivation areas of Ethiopia. PLoS One 2023; 18:e0290073. [PMID: 37856457 PMCID: PMC10586638 DOI: 10.1371/journal.pone.0290073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 10/21/2023] Open
Abstract
Variations in the elemental composition of rice (Oryza sativa L.) grains, and the link with the growing soil, were investigated across the major production areas of Ethiopia (Fogera, Metema and Pawe). The elements (Ca, Mg, Fe, Zn, Mn, Cu, Ni, Cr, Cd and Pb) were determined by using flame atomic absorption spectroscopy (FAAS), after digesting samples through an optimized procedure with respect to volumes of reagents (HNO3, HClO4 and H2O2), temperature and time. The accuracy of the FAAS method was in the range of 87‒113%. The most abundant element in rice was Mg (414‒561 mg kg-1) followed by Fe (49.4‒168 mg kg-1), while in soil was Fe (11674‒12917 mg kg-1) followed by Mg (619‒709 mg kg-1). Chromium, Cd and Pb were all below the limit of quantitation of the method. The concentrations of the elements, except Zn in rice and Fe in soil, varied significantly (p < 0.05) with the growing region. Notably, rice from Fogera contained more than double Fe, while from Pawe less than half Cu than from the other region. Soils from the rice fields of Pawe, generally, had lower levels of the elements than from the other regions. The order of the abundances of the elements in soil was reflected in the rice grains, except for the reversal between Fe and Mg. However, elemental concentrations were higher in soil than in rice, indicating the absence of bioaccumulation by the rice grains. Furthermore, only copper exhibited a strong positive correlation (r = 0.991) between the rice grain and soil.
Collapse
Affiliation(s)
- Abebe Desalew
- Department of Chemistry, College of Natural and Computational Sciences, University Of Gondar, Gondar, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mizan Tepi University, Mizan Teferi, Ethiopia
| | - Bewketu Mehari
- Department of Chemistry, College of Natural and Computational Sciences, University Of Gondar, Gondar, Ethiopia
| |
Collapse
|
4
|
TatahMentan M, Nyachoti S, Okwori F, Godebo TR. Elemental composition of Rice and Lentils from various countries: A Probabilistic Risk Assessment of Multiple Life Stages. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Wahiduzzaman M, Islam MM, Sikder AHF, Parveen Z. Bioaccumulation and Heavy Metal Contamination in Fish Species of the Dhaleswari River of Bangladesh and Related Human Health Implications. Biol Trace Elem Res 2022; 200:3854-3866. [PMID: 34689300 DOI: 10.1007/s12011-021-02963-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The release of a large quantity of heavy metals into the Dhaleswari River from the tannery, dyeing, and other industrial setups and their subsequent transfer to food chains through fish consumption have been an alarming issue in Bangladesh. To study the pollution level, a total of seven fish species, namely Heteropneustes fossillis, Channa punctata, Nandus nandus, Chanda nama, Anabas testudineus, Mystus gulio, and Colisa fasciata, were collected in winter from the Dhaleswari River and the total concentrations of Cr, Pb, Ni, and Zn in head and body tissues were analyzed separately. The concentrations of Cr, Pb, and Zn were found 300, 20, and 10 times higher, respectively, than the guideline value of the Food and Agriculture Organization (FAO)/World Health Organization (WHO), indicating possible health risks to humans. In most cases, bioaccumulation factors (BAFs) exceeded the highest limit, expressing that most of the species, especially C. nama, A. testudineus, and C. fasciata, were in the highly bioaccumulative state. The health risks associated with fish consumption were determined in terms of estimated daily intake (EDI), non-carcinogenic risks (THQ), and carcinogenic risk (TR) factors. The THQs for Cr and Pb crossed the maximum value of 1 in all the fish species except Pb in Mystus gulio, which might cause different non-carcinogenic diseases upon consumption of these fishes. In all the fish species, the carcinogenic risk factor for Cr exceeded the standard value (10-4), indicating chronic cancer risk to humans. Although the estimated daily intake (EDI) values did not cross the permissible limit, continuous consumption of contaminated fish from the target area may cause serious health complications. This study revealed that consumption of these fishes exposed people to a higher risk of non-carcinogenic and carcinogenic consequences in terms of human health.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Mahfuz Islam
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Crop and Soil Sciences, North Carolina State University, 3407 Williams Hall, Raleigh, NC, 27695-7620, USA.
| | - Abdul Halim Farhad Sikder
- Agricultural and Fisheries Division, Center for Environmental and Geographic Information Services (CEGIS), Ministry of Water Resources, Gulshan 1, Dhaka, 1212, Bangladesh
| | - Zakia Parveen
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
6
|
Removal of Toxic and Essential Nutrient Elements from Commercial Rice Brands Using Different Washing and Cooking Practices: Human Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052582. [PMID: 35270275 PMCID: PMC8909527 DOI: 10.3390/ijerph19052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
This study determined the influence of different cooking procedures on the removal of toxic elements (TEs) including arsenic (As), cadmium (Cd), and lead (Pb) along with other nutrient elements from different commercially available rice brands sold in Bangladeshi markets. We observed 33%, 35%, and 27% average removal of As, Cd, and Pb accordingly from rice when cooked with a rice to water ratio of 1:6 after washing 5 times. We also found a significant reduction in essential elements: Zn (17%), Cu (10%), Mn (22%), Se (49%), and Mo (22%), when rice cooking was performed as in traditional practice. Daily dietary intakes were found to be between 0.36 and 1.67 µg/kgbw for As, 0.06 and 1.15 µg/kgbw for Cd, and 0.04 and 0.17 µg/kgbw for Pb when rice was cooked by the rice cooker method (rice:water 1:2), while in the traditional method (rice:water 1:6) daily intake rates ranged from 0.23 to 1.3 µg/kgbw for As, 0.04 to 0.88 µg/kgbw for Cd, and 0.03 to 0.15 µg/kgbw for Pb for adults. The HQ and ILCR for As, Cd, and Pb revealed that there is a possibility of noncarcinogenic and carcinogenic risk for As but no appreciable risk for Cd and Pb from consumption of rice.
Collapse
|
7
|
Saengwilai P, Meeinkuirt W. Cadmium (Cd) and zinc (Zn) accumulation by Thai rice varieties and health risk assessment in a Cd-Zn co-contaminated paddy field: Effect of soil amendments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3659-3674. [PMID: 33630197 DOI: 10.1007/s10653-021-00858-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Zinc mining and smelting activities result in cadmium (Cd) and zinc (Zn) contamination in rice grains, causing deleterious impacts on human health and local economies. Here, we investigated the effects of soil amendments, including mixtures of dicalcium phosphate with cattle manure (T1) and leonardite (T2), on soil physicochemical properties as well as growth performance and accumulation of Cd and Zn among three commercial Thai rice varieties: Khao Dok Mali 105 (KDML105), Phitsanulok2 (PSL2) and RD3, grown in a Cd-Zn co-contaminated paddy field. Human health risk was assessed using the health risk index (HRI) and Daily Intake of Metal (DIM). Application of the amendments, particularly T1, decreased Cd and Zn bioavailability by 60% and 39%, respectively, increased biomass production in PSL2 and RD3 varieties, and substantially reduced Cd uptake in the KDML105 variety by 47%. While levels of Zn in whole plant tissues of all treatments did not exceed maximum levels of undesirable substances in fodder, Cd contents in grain of PSL2 and RD3 exceeded the maximum allowable concentration of 0.2 mg kg-1. The HRI values for Cd of PSL2 and RD3 varieties were relatively high and are considered to pose a potential risk to human health. KDML105 in the T1 treatment had the lowest HRI value (0.05 ± 0.03), which was within acceptable limits. Our results suggest that Cd and Zn accumulation in rice and associated human health risks could be reduced by application of amendments to paddy soils, but the effectiveness depends on amendment types, rice varieties and soil physicochemical properties.
Collapse
Affiliation(s)
- Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Excellence On Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
| | - Weeradej Meeinkuirt
- Water and Soil Environmental Research Unit, Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
8
|
Li L, Feng H, Wei J. Toxic element (As and Hg) content and health risk assessment of commercially available rice for residents in Beijing based on their dietary consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:13205-13214. [PMID: 32016866 DOI: 10.1007/s11356-020-07790-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Arsenic (As) and mercury (Hg) are toxic elements that are often classified as heavy metals, much like cadmium (Cd) and lead (Pb) and others. In this study, we determined the As and Hg contents in rice samples obtained from commercially available rice in Beijing and the health risks associated with daily dietary exposure to As and Hg by the consumption of this rice. Furthermore, the pollution levels of the rice were evaluated based on the Nemerow index. For this purpose, we collected 353 rice samples from 16 municipal districts in Beijing and determined the As and Hg contents in these samples by microwave digestion and inductively coupled plasma mass spectrometry (ICP-MS). The results were as follows: (i) the average content of As in the collected rice samples was 154.91 μg/kg (95% confidence interval (CI) of 139.90-169.92 μg/kg), and the average content of Hg was 2.02 μg/kg (95% CI of 1.25-2.79 μg/kg), which did not exceed the limits established by China's National Standard; (ii) the Nemerow index indicated that the As and Hg contents in these rice samples were safe; (iii) the dietary exposure to As and Hg by rice consumption was, respectively, 15.35 μg/day and 0.20 μg/day, which accounted for 12.91% and 3.35% of the total dietary exposure, respectively; (iv) the hazard quotients (HQs) of As and Hg by the dietary consumption of rice were, respectively, 0.77 and 0.03, and both the HQ and hazard index (HI is 0.8) were less than one. These results indicate that dietary exposure to As and Hg would have no detrimental effect on the health of the residents in the study area; however, the possible carcinogenesis by As in these residents warrants serious attention.
Collapse
Affiliation(s)
- Libing Li
- Pony Testing International Group, Beijing, 100095, China
| | - Huashuai Feng
- Pony Testing International Group, Beijing, 100095, China
| | - Junxiao Wei
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Zhao X, Ma L, Qu P, Yue B, Zhao X, Shang X, Zhao Y, Wu Y. Total mercury and methylmercury in Chinese rice and dietary exposure assessment. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 13:148-153. [PMID: 32208916 DOI: 10.1080/19393210.2020.1741690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Total mercury levels and methylmercury levels were investigated for various grain parts (whole rice, rice husk, brown rice, polished rice, and bran) of 507 rice samples from 15 main rice-producing areas of China. The average total mercury contents in brown rice samples and polished rice samples were 4.2 and 3.3 μg/kg, respectively, the percentages exceeding the national standard limit were 0.59% and 0.39%, respectively. The average methylmercury levels were 2.9 and 2.4 μg/kg in brown rice and polished rice, respectively. The order of total mercury contents in different parts of rice was bran > brown rice > whole rice > rice husk > polished rice, and the order for methylmercury was bran > brown rice > whole rice > polished rice > rice husk. Total mercury intakes and methylmercury intakes were estimated for the Chinese population and the associated health risks were assessed.
Collapse
Affiliation(s)
- Xin Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Lan Ma
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Pengfeng Qu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Bing Yue
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Xiaoxue Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Xiaohong Shang
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Yunfeng Zhao
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| | - Yongning Wu
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health (CFSA) and China National Center for Food Safety Risk Assessment , Beijing, China
| |
Collapse
|
10
|
Ahmed ASS, Rahman M, Sultana S, Babu SMOF, Sarker MSI. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. MARINE POLLUTION BULLETIN 2019; 145:436-447. [PMID: 31590808 DOI: 10.1016/j.marpolbul.2019.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Despite the beneficial aspect of aquatic food's consumption, bioaccumulation of toxic metals in fish can enhance the health risk for the consumers. Heavy metals were measured from editable tissues of some commercial fish species like Latis calcarifer, Silonia silondia, Clupisoma garua, Planiliza subviridis, Otolithoides pama, Tenulosa ilisa, Rhinomugil corsula, and Aila coila in the Meghna river estuary in Noakhali district. Heavy metals such as As, Pb, Cd, Cu, and Cr were detected by ICP-MS, which were significantly different (p ≤ 0.01), and the hierarchy of all mean concentrations were: Cu (5.14 mg/kg) > Pb (3.79 mg/kg) > As (1.08 mg/kg) > Cr (0.78 mg/kg) > Cd (0.12 mg/kg). The mean concentration of Cu (6.62 mg/kg) imparted to the maximum level in L. calcarifer, which slightly exceeded the Bangladesh food safety guideline. The mean BAFs of the contaminants were found as: Pb (1042.29) > Cr (1036.47) > As (934.84) > Cd (832.77) > Cu (772). Further, L. calcarifer, S. silondia, C. garua, and P. subviridis showed the bioaccumulative status. To assess the health risk effects, estimated daily intake (EDI), target hazard quotient (THQ) and carcinogenic risk (CR) were conducted. THQs for both adult and children consumers were <1, indicating that, consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, CR for all the consumers was found in the acceptable range (10-6 to 10-4).
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh.
| | - Moshiur Rahman
- National Agricultural technology Program Phase-II Project (NATP-02), Department of Fisheries, Bangladesh
| | | | - S M Omar Faruque Babu
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh
| | | |
Collapse
|
11
|
Han J, Chen Z, Pang J, Liang L, Fan X, Li Q. Health Risk Assessment of Inorganic Mercury and Methylmercury via Rice Consumption in the Urban City of Guiyang, Southwest China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16020216. [PMID: 30646539 PMCID: PMC6352273 DOI: 10.3390/ijerph16020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
Rice consumption is the main methylmercury (MeHg) exposure route for residents in mercury (Hg) mining areas. However, there is limited studies on mercury in commercial rice, which has high liquidity and can be directly consumed by urban residents. This study measured the total Hg (THg) and MeHg concentrations in 146 rice samples purchased from the markets in Guiyang city, southwest China, and both the inorganic Hg (IHg) and MeHg estimated daily intakes (EDIs) and hazard quotients (HQs) were calculated according to rice consumption. The THg concentrations in all rice samples (range: 0.97 to 13.10 μg·kg−1; mean: 3.88 μg·kg−1) were lower than the Chinese national standard (20 μg·kg−1). The average MeHg concentration in rice was 1.16 μg·kg−1. The total HQs (THQs) ranged from 0.0106 to 0.1048, with a mean of 0.0462, which was far lower than 1. This result suggests that there were low Hg exposure levels through consumption of commercial rice in residents of Guiyang.
Collapse
Affiliation(s)
- Jialiang Han
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China.
| | - Zhuo Chen
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China.
| | - Jian Pang
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China.
| | - Longchao Liang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China.
| | - Xuelu Fan
- School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China.
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China.
| |
Collapse
|
12
|
Runge J, Heringer OA, Ribeiro JS, Biazati LB. Multi-element rice grains analysis by ICP OES and classification by processing types. Food Chem 2019; 271:419-424. [DOI: 10.1016/j.foodchem.2018.07.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
|
13
|
Bhatti SG, Tabinda AB, Yasin F, Yasar A, Butt HI, Wajahat R. Spatio-temporal variations in physico-chemical parameters and potentially harmful elements (PHEs) of Uchalli Wetlands Complex (Ramsar site), Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33490-33507. [PMID: 30267346 DOI: 10.1007/s11356-018-3240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Uchalli Wetlands Complex (UWC) is located in District Khushab, Pakistan, which comprised of three lakes named Khabeki, Uchalli, and Jahlar. The UWC Pakistan is one of the Ramsar sites of international importance. However, the information regarding water quality parameters and concentration of potentially harmful elements (PHEs) is relatively short. Present study focused on spatio-temporal variations in the physico-chemical parameters and PHE (Cd, Pb, Ni, Cu, Zn, Cr, As, Mn) concentrations in water and fish samples using inductively coupled plasma. Sampling was done in summer (August 2016) and winter (January 2017) seasons. The overall concentrations of PHEs in water were in the following order: Mn > Zn > Cu > Cr > Ni > Cd > Pb > As for Khabeki; As >Ni > Cr > Mn > Zn > Cu > Cd > Pb for Uchalli; and Mn > Zn > Ni > Cu > As > Cr > Cd > Pb for Jahlar Lake. PHE concentration in fish followed the order Ni > Cd > Mn > Pb > Cu > Zn > Cr > As. PHEs analysis showed that Mn; Ni and As; and Ni and Mn in summer were above the Pakistan Environmental Quality Standards (PEQS) and World Health Organization (WHO) standards in Khabeki, Uchalli, and Jahlar Lakes respectively while in winter, Mn; Cd, Ni, and As; and Ni and Mn were higher than standard values in Khabeki, Uchalli, and Jahlar Lakes respectively. In fish samples, only Cd (0.0942) was higher in summer as compared to winter (0.0512) while other seven PHEs observed were higher in winter. Conclusively, the metal pollution index showed that water quality of UWC is not very fit for human consumption directly. The bioconcentration factor results indicated potential to accumulate PHEs, i.e., Cd (29.4375 and 9.4814), Pb (16.66 and 4.375), and Ni (4.9875 and 6.206), in fish during both sampling campaigns. Target hazard quotient (THQ), target carcinogenic risk (TR), hazard index (HI), estimated daily intake (EDI), and international safe standard limits of PHEs for fish species indicated that fish from UWC is safe for human consumption. Variations in physic-chemical parameters and PHE concentration were observed spatially and temporally that could be caused by precipitation amount or natural geochemistry of the lakes' crust. The water quality was not suitable for direct human consumption. Fish was only found in Khabeki Lake that had potential to accumulate Cd, Pb, and Ni more as compared to other studied PHEs.
Collapse
Affiliation(s)
- Sumera Gull Bhatti
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan.
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Faisal Yasin
- Department of Mathematics, The University of Lahore, Lahore, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Hamza Islam Butt
- Department of Mathematics and Statistics, Government College University, Lahore, Pakistan
| | - Rabia Wajahat
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| |
Collapse
|
14
|
Al-Saleh I, Abduljabbar M. Heavy metals (lead, cadmium, methylmercury, arsenic) in commonly imported rice grains (Oryza sativa) sold in Saudi Arabia and their potential health risk. Int J Hyg Environ Health 2017; 220:1168-1178. [PMID: 28780210 DOI: 10.1016/j.ijheh.2017.07.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 11/17/2022]
Abstract
The levels of heavy metals (lead, cadmium, methylmercury and arsenic) were determined in 37 brands of imported rice commonly consumed in Saudi Arabia after soaking and rinsing with water, and their potential health risks to residents were estimated by three indices: hazard quotient (HQ), hazard index (HI) and cancer risk (CR). The mean levels of lead, cadmium, methylmercury and total arsenic in soaked (rinsed) rice grains were 0.034 (0.057), 0.015 (0.027), 0.004 (0.007) and 0.202 (0.183) μg/g dry weight, respectively. Soaking or rinsing rice grains with water decreased lead and cadmium levels in all brands to safe levels. All brands had total arsenic above the acceptable regulatory limits, irrespective of soaking or rinsing, and eight soaked and 12 rinsed brands contained methylmercury. The levels of all heavy metals except cadmium were above the acceptable regulatory limits when the rice was neither rinsed nor soaked. Weekly intakes of lead, cadmium, methylmercury and total arsenic from soaked (rinsed) grains were 0.638 (1.068), 0.279 (0.503), 0.271 (0.309) and 3.769 (3.407) μg/kg body weight (bw). The weekly intakes of lead and methylmercury from the consumption of one rinsed and two soaked rice brands respectively, exceeded the Provisional Tolerance Weekly Intake set by the Food and Agriculture Organization and the World Health Organization. The weekly intake of total arsenic for all brands was above the lowest benchmark dose lower confidence limit (BMDL01) level of 0.3μg/kg bw/d for an increased cancer risk set by European Food Safety Authority. Either soaking or rinsing grains before consumption can minimize the non-carcinogenic health risks to residents from cadmium and lead (HQ<1). Our local consumers, though, may experience health consequences from rice contaminated mainly with arsenic (HQ>1 all brands) and to a lesser extent with methylmercury (HQ>1 in 4 brands), even when soaked or rinsed with water before consumption. The combined non-carcinogenic effect of all metals expressed as HI was >1, including soaked or rinsed rice, with total arsenic the major contributor followed by methylmercury. CR for total arsenic, whether consuming soaked, rinsed, un-soaked or unrinsed grains, exceeded the acceptable level of 10-4. Long-term consumption of rice contaminated with heavy metals, particularly arsenic, can pose potential health risks to the local population, especially vulnerable groups (pregnant women, children, elderly and patients). More attention should thus be given to contaminated rice and preventive measures should be taken.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Mai Abduljabbar
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
15
|
Paranjape AR, Hall BD. Recent advances in the study of mercury methylation in aquatic systems. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0027] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With increasing input of neurotoxic mercury to environments as a result of anthropogenic activity, it has become imperative to examine how mercury may enter biotic systems through its methylation to bioavailable forms in aquatic environments. Recent development of stable isotope-based methods in methylation studies has enabled a better understanding of the factors controlling methylation in aquatic systems. In addition, the identification and tracking of the hgcAB gene cluster, which is necessary for methylation, has broadened the range of known methylators and methylation-conducive environments. Study of abiotic factors in methylation with new molecular methods (the use of stable isotopes and genomic methods) has helped elucidate the confounding influences of many environmental factors, as these methods enable the examination of their direct effects instead of merely correlative observations. Such developments will be helpful in the finer characterization of mercury biogeochemical cycles, which will enable better predictions of the potential effects of climate change on mercury methylation in aquatic systems and, by extension, the threat this may pose to biota.
Collapse
Affiliation(s)
- Avnee R. Paranjape
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Britt D. Hall
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
16
|
Roya AQ, Ali MS. Heavy metals in rice samples on the Torbat-Heidarieh market, Iran. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2016; 10:59-63. [DOI: 10.1080/19393210.2016.1247918] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Mataveli LRV, Buzzo ML, de Arauz LJ, Carvalho MDFH, Arakaki EEK, Matsuzaki R, Tiglea P. Total Arsenic, Cadmium, and Lead Determination in Brazilian Rice Samples Using ICP-MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:3968786. [PMID: 27766178 PMCID: PMC5059550 DOI: 10.1155/2016/3968786] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 09/01/2016] [Indexed: 05/12/2023]
Abstract
This study is aimed at investigating a suitable method for rice sample preparation as well as validating and applying the method for monitoring the concentration of total arsenic, cadmium, and lead in rice by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Various rice sample preparation procedures were evaluated. The analytical method was validated by measuring several parameters including limit of detection (LOD), limit of quantification (LOQ), linearity, relative bias, and repeatability. Regarding the sample preparation, recoveries of spiked samples were within the acceptable range from 89.3 to 98.2% for muffle furnace, 94.2 to 103.3% for heating block, 81.0 to 115.0% for hot plate, and 92.8 to 108.2% for microwave. Validation parameters showed that the method fits for its purpose, being the total arsenic, cadmium, and lead within the Brazilian Legislation limits. The method was applied for analyzing 37 rice samples (including polished, brown, and parboiled), consumed by the Brazilian population. The total arsenic, cadmium, and lead contents were lower than the established legislative values, except for total arsenic in one brown rice sample. This study indicated the need to establish monitoring programs for emphasizing the study on this type of cereal, aiming at promoting the Public Health.
Collapse
Affiliation(s)
- Lidiane Raquel Verola Mataveli
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
- *Lidiane Raquel Verola Mataveli:
| | - Márcia Liane Buzzo
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
| | - Luciana Juncioni de Arauz
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
| | | | - Edna Emy Kumagai Arakaki
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
| | - Richard Matsuzaki
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
| | - Paulo Tiglea
- Inorganic Contaminants Laboratory, Contaminants Center, Adolfo Lutz Institute, 355 Dr. Arnaldo Av., 01246-902 São Paulo, SP, Brazil
| |
Collapse
|
18
|
Pirsaheb M, Fattahi N, Sharafi K, Khamotian R, Atafar Z. Essential and toxic heavy metals in cereals and agricultural products marketed in Kermanshah, Iran, and human health risk assessment. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2015; 9:15-20. [DOI: 10.1080/19393210.2015.1099570] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Borges EM, Gelinski JMLN, de Oliveira Souza VC, Barbosa Jr. F, Batista BL. Monitoring the authenticity of organic rice via chemometric analysis of elemental data. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Adedire CO, Adeyemi JA, Paulelli AC, da Cunha Martins-Junior A, Ileke KD, Segura FR, de Oliveira-Souza VC, Batista BL, Barbosa F. Toxic and essential elements in Nigerian rice and estimation of dietary intake through rice consumption. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2015; 8:271-6. [PMID: 26368023 DOI: 10.1080/19393210.2015.1085101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, levels and estimated daily intake (EDI) of two toxic elements, Cd and Pb, and eight essential elements: Ca, P, Zn, Mn, Co, Cu, Se and Mo, were determined in Nigerian rice samples. The mean levels of Cd, Pb and Co were 5.43±0.88, 38.66±5.42, 25.8±3.18 ng/g. The mean levels of Ca, P, Zn, Mn, Cu, Se and Mo were 71.5±7.31, 951±52.0, 10.2±0.63, 8.5±0.47, 3.07±0.18, 40.1±9.2 and 0.39±0.05 µg/g, respectively. The percentage contribution to the reference values for each element was 0.54, 7.71, 0.38, 9.51, 8.97, 31.3, 30.7, 5.1 and 60.7% for Cd, Pb, Ca, P, Zn, Mn, Cu, Se and Mo, respectively. The elemental nutrient levels in Nigerian rice samples are comparable to those obtained from other regions and their consumption does not pose any serious health risk to consumers.
Collapse
Affiliation(s)
- Chris O Adedire
- a Department of Biology, School of Science , Federal University of Technology , Akure , Nigeria
| | - Joseph A Adeyemi
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil.,c Department of Biological Sciences, Faculty of Basic and Applied Sciences , Osun State University , Osogbo , Nigeria
| | - Ana Carolina Paulelli
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Airton da Cunha Martins-Junior
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Kayode D Ileke
- d Department of Environmental Biology and Fisheries, Faculty of Science , Adekunle Ajasin University , Akungba Akoko , Nigeria
| | - Fabiana Roberta Segura
- e Centre of Human and Natural Sciences , Federal University of ABC , Santo André , Brazil
| | - Vanessa C de Oliveira-Souza
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Bruno L Batista
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil.,e Centre of Human and Natural Sciences , Federal University of ABC , Santo André , Brazil
| | - Fernando Barbosa
- b Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
21
|
Jallad KN. Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15449-58. [PMID: 26004565 DOI: 10.1007/s11356-015-4753-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/18/2015] [Indexed: 05/15/2023]
Abstract
Different types of rice grains imported from 11 different countries and available on the Kuwaiti retail market were collected for heavy metal analysis. The surveyed rice samples were grouped according to their country of origin into four different regions namely Asia, Europe, Middle East, and North America. The samples were analyzed for total arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) using inductively coupled plasma mass spectrometry (ICP-MS). The data showed that the highest geometric means (GMs) of total As, Cd, Pb, and Hg contents were in rice samples imported from Europe, Asia, Europe, and the Middle East, respectively. The total As, Cd, Pb, and Hg concentrations in the analyzed rice samples were compared to the heavy metal content of 5800 rice samples from 25 different countries reported in the literature; furthermore, the heavy metal (total As, Cd, Pb, and Hg) concentrations determined in this study were implemented to calculate the daily dietary intake of toxic metals for the general population in the state of Kuwait, while the collected ones from the literature were implemented to calculate and then compare the daily dietary intake of toxic metals for the general population in 29 different countries around the world.
Collapse
Affiliation(s)
- Karim N Jallad
- College of Arts & Sciences, American University of Kuwait, P.O. Box 3323, 13034, Safat, Kuwait.
| |
Collapse
|
22
|
Sadiq N, Beauchemin D. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice. Anal Chim Acta 2014; 851:23-9. [DOI: 10.1016/j.aca.2014.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
|
23
|
Naseri M, Vazirzadeh A, Kazemi R, Zaheri F. Concentration of some heavy metals in rice types available in Shiraz market and human health risk assessment. Food Chem 2014; 175:243-8. [PMID: 25577076 DOI: 10.1016/j.foodchem.2014.11.109] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/25/2022]
Abstract
This investigation was conducted to survey the levels of some heavy metals such as cadmium, lead, chromium, nickel and cobalt in domestic cultivated and imported rice sold on the Shiraz - Iran markets. The potential human health risk assessment was conducted by considering estimated weekly intake (EWI) of toxic metals from eating rice and compared calculated values with provisional tolerable weekly intake (PTWI). The mean values for lead and cadmium in domestic cultivated and imported rice were considerably higher than allowable limits set by FAO/WHO. In combination of recent rice consumption data, the estimated weekly intakes of toxic element were calculated for Iranian population. EWI for cadmium, nickel, chromium through imported and domestic cultivated rice consumption was lower than the PTWI. The EWI for lead were considerably higher than other measured toxic metals. The highest mean level of EWI for lead was observed in some imported rice samples (25.76 μg/kg body weight).
Collapse
Affiliation(s)
- Mahmood Naseri
- Department of Natural Resource and Environment, Group of Fisheries, Shiraz University, Shiraz, Fars, Iran..
| | - Arya Vazirzadeh
- Department of Natural Resource and Environment, Group of Fisheries, Shiraz University, Shiraz, Fars, Iran..
| | - Robabeh Kazemi
- Department of Natural Resource and Environment, Group of Fisheries, Shiraz University, Shiraz, Fars, Iran
| | - Farnaz Zaheri
- Department of Natural Resource and Environment, Group of Fisheries, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
24
|
Rothenberg SE, Windham-Myers L, Creswell JE. Rice methylmercury exposure and mitigation: a comprehensive review. ENVIRONMENTAL RESEARCH 2014; 133:407-23. [PMID: 24972509 PMCID: PMC4119557 DOI: 10.1016/j.envres.2014.03.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 01/25/2014] [Accepted: 03/01/2014] [Indexed: 05/20/2023]
Abstract
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.
Collapse
Affiliation(s)
- Sarah E Rothenberg
- University of South Carolina, Arnold School of Public Health, Department of Environmental Health Sciences, 921 Assembly Street, Room 401, Columbia, SC 29208, USA.
| | | | - Joel E Creswell
- Brooks Rand Instruments, 4415 6th Ave NW, Seattle, WA 98107, USA.
| |
Collapse
|
25
|
Zhang H, Wang D, Zhang J, Shang X, Zhao Y, Wu Y. Total mercury in milled rice and brown rice from China and health risk evaluation. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2014; 7:141-6. [DOI: 10.1080/19393210.2013.860485] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Oliva N, Chadha-Mohanty P, Poletti S, Abrigo E, Atienza G, Torrizo L, Garcia R, Dueñas C, Poncio MA, Balindong J, Manzanilla M, Montecillo F, Zaidem M, Barry G, Hervé P, Shou H, Slamet-Loedin IH. Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 33:23-37. [PMID: 24482599 PMCID: PMC3890568 DOI: 10.1007/s11032-013-9931-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 07/22/2013] [Indexed: 05/07/2023]
Abstract
Biofortification of rice (Oryza sativa L.) using a transgenic approach to increase the amount of iron in the grain is proposed as a low-cost, reliable, and sustainable solution to help developing countries combat anemia. In this study, we generated and evaluated a large number of rice or soybean ferritin over-accumulators in rice mega-variety IR64, including marker-free events, by introducing soybean or rice ferritin genes into the endosperm for product development. Accumulation of the protein was confirmed by ELISA, in situ immunological detection, and Western blotting. As much as a 37- and 19-fold increase in the expression of ferritin gene in single and co-transformed plants, respectively, and a 3.4-fold increase in Fe content in the grain over the IR64 wild type was achieved using this approach. Agronomic characteristics of a total of 1,860 progenies from 58 IR64 single independent transgenic events and 768 progenies from 27 marker-free transgenic events were evaluated and most trait characteristics did not show a penalty. Grain quality evaluation of high-Fe IR64 transgenic events showed quality similar to that of the wild-type IR64. To understand the effect of transgenes on iron homeostasis, transcript analysis was conducted on a subset of genes involved in iron uptake and loading. Gene expression of the exogenous ferritin gene in grain correlates with protein accumulation and iron concentration. The expression of NAS2 and NAS3 metal transporters increased during the grain milky stage.
Collapse
Affiliation(s)
- Norman Oliva
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Prabhjit Chadha-Mohanty
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Susanna Poletti
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Editha Abrigo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Genelou Atienza
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Lina Torrizo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Ruby Garcia
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Conrado Dueñas
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Mar Aristeo Poncio
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jeanette Balindong
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Marina Manzanilla
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Florencia Montecillo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Maricris Zaidem
- Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - Gerard Barry
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Philippe Hervé
- Bayer Cropscience NV, Technologie Park 38, 9052 Ghent, Belgium
| | - Huxia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Inez H. Slamet-Loedin
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
27
|
Huang Z, Pan XD, Wu PG, Han JL, Chen Q. Health risk assessment of heavy metals in rice to the population in Zhejiang, China. PLoS One 2013; 8:e75007. [PMID: 24040375 PMCID: PMC3765370 DOI: 10.1371/journal.pone.0075007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/08/2013] [Indexed: 11/23/2022] Open
Abstract
Environmental pollution with toxic heavy metals can lead to the possible contamination of the rice. Selected metals (As, Cd, Hg and Pb) and their accumulation in rice collected from Zhejiang, China were analyzed to evaluate the potential health risk to the local adults and children. The mean levels found in rice were as follows: As, 0.080 mg/kg; Cd, 0.037 mg/kg; Hg, 0.005 mg/kg; Pb, 0.060 mg/kg. The estimated daily intakes (EDIs) were calculated in combination of the rice consumption data. The mean intakes of As, Cd, Hg and Pb through rice were estimated to be 0.49, 0.23, 0.03 and 0.37 µg/kg bw/day for adults, and 0.34, 0.29, 0.04 and 0.47 µg/kg bw/day for children. The 97.5th percentile (P97.5) daily intakes of As, Cd, Hg and Pb were 1.02, 0.64, 0.37 and 1.26 µg/kg bw/day for adults, and 0.63, 0.83, 0.47 and 1.63 µg/kg bw/day for children. The risk assessment in mean levels showed that health risk associated with these elements through consumption of rice was absent. However, estimates in P97.5 level of Cd and Pb for children, and Hg for adults have exceeded the respective safe limits.
Collapse
Affiliation(s)
- Zhu Huang
- Department of Ophthalmology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ping-Gu Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jian-Long Han
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qing Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|