1
|
Karkhaneh F, Sadr ZK, Rad AM, Divsalar A. Detection of tetanus toxoid with iron magnetic nanobioprobe. Biomed Phys Eng Express 2024; 10:045030. [PMID: 38479000 DOI: 10.1088/2057-1976/ad33a8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/13/2024] [Indexed: 05/26/2024]
Abstract
Diagnosis of diseases with low facilities, speed, accuracy and sensitivity is an important matter in treatment. Bioprobes based on iron oxide nanoparticles are a good candidate for early detection of deadly and infectious diseases such as tetanus due to their high reactivity, biocompatibility, low production cost and sample separation under a magnetic field. In this study, silane groups were coated on surface of iron oxide nanoparticles using tetraethoxysilane (TEOS) hydrolysis. Also, NH2groups were generated on the surface of silanized nanoparticles using 3-aminopropyl triethoxy silane (APTES). Antibody was immobilized on the surface of silanized nanoparticles using TCT trichlorothriazine as activator. Silanization and stabilized antibody were investigated by using of FT-IR, EDX, VSM, SRB technique. UV/vis spectroscopy, fluorescence, agglutination test and ELISA were used for biosensor performance and specificity. The results of FT-IR spectroscopy showed that Si-O-Si and Si-O-Fe bonds and TCT chlorine and amine groups of tetanus anti-toxoid antibodies were formed on the surface of iron oxide nanoparticles. The presence of Si, N and C elements in EDX analysis confirms the silanization of iron oxide nanoparticles. VSM results showed that the amount of magnetic nanoparticles after conjugation is sufficient for biological applications. Antibody stabilization on nanoparticles increased the adsorption intensity in the uv/vis spectrometer. The fluorescence intensity of nano bioprobe increased in the presence of 10 ng ml-1. Nanobio probes were observed as agglomerates in the presence of tetanus toxoid antigen. The presence of tetanus antigen caused the formation of antigen-nanobioprobe antigen complex. Identification of this complex by HRP-bound antibody confirmed the specificity of nanobioprobe. Tetanus magnetic nanobioprobe with a diagnostic limit of 10 ng ml-1of tetanus antigen in a short time can be a good tool in LOC devices and microfluidic chips.
Collapse
Affiliation(s)
- Farzaneh Karkhaneh
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ziba Karimi Sadr
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Ahmad Molai Rad
- Institute for Convergence Science & Technology, Islamic Azad University Science and Research Branch, Tehran, Iran
| | - Adele Divsalar
- Faculty of Biological Science, Kharazmi University, Tehran, Iran
| |
Collapse
|
2
|
Bumagin NA. Magnetically Reusable Polymetallic Pd-Catalyst for Sonogashira Reaction in Ionic Liquid. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Optimization of Alpha-Amylase Production by a Local Bacillus paramycoides Isolate and Immobilization on Chitosan-Loaded Barium Ferrite Nanoparticles. FERMENTATION 2022. [DOI: 10.3390/fermentation8050241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We set out to isolate alpha-amylase producers from soil samples, optimize the production, and immobilize the enzyme on chitosan-loaded barium ferrite nanoparticles (CLBFNPs). Alpha-amylase producers were isolated on starch agar plates and confirmed by dinitrosalicylic acid assay. The potent isolate was identified by phenotypic methods, 16S-rRNA sequencing, and phylogenetic mapping. Sequential optimization of α-amylase production involved the use of Plackett–Burman (P–BD) and central composite designs (CCD), in addition to exposing the culture to different doses of gamma irradiation. Alpha-amylase was immobilized on CLBFNPs, and the nanocomposite was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy, with energy-dispersive analysis of X-ray analysis. Forty-five α-amylase producers were isolated from 100 soil samples. The highest activity (177.12 ± 6.12 U/mg) was detected in the MS009 isolate, which was identified as Bacillus paramycoides. The activity increased to 222.3 ± 5.07 U/mg when using the optimal culture conditions identified by P–BD and CCD, and to 319.45 ± 4.91 U/mg after exposing the culture to 6 kGy. Immobilization of α-amylase on CLBFNPs resulted in higher activity (246.85 ± 6.76 U/mg) compared to free α-amylase (222.254 ± 4.89 U/mg), in addition to retaining activity for up to five cycles of usage. Gamma irradiation improved α-amylase production, while immobilization on CLBFNPs enhanced activity, facilitated enzyme recovery, and enabled its repetitive use.
Collapse
|
4
|
Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050937. [PMID: 35631523 PMCID: PMC9145864 DOI: 10.3390/pharmaceutics14050937] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is among the leading causes of mortality globally, with nearly 10 million deaths in 2020. The emergence of nanotechnology has revolutionised treatment strategies in medicine, with rigorous research focusing on designing multi-functional nanoparticles (NPs) that are biocompatible, non-toxic, and target-specific. Iron-oxide-based NPs have been successfully employed in theranostics as imaging agents and drug delivery vehicles for anti-cancer treatment. Substituted iron-oxides (MFe2O4) have emerged as potential nanocarriers due to their unique and attractive properties such as size and magnetic tunability, ease of synthesis, and manipulatable properties. Current research explores their potential use in hyperthermia and as drug delivery vehicles for cancer therapy. Significantly, there are considerations in applying iron-oxide-based NPs for enhanced biocompatibility, biodegradability, colloidal stability, lowered toxicity, and more efficient and targeted delivery. This review covers iron-oxide-based NPs in cancer therapy, focusing on recent research advances in the use of ferrites. Methods for the synthesis of cubic spinel ferrites and the requirements for their considerations as potential nanocarriers in cancer therapy are discussed. The review highlights surface modifications, where functionalisation with specific biomolecules can deliver better efficiency. Finally, the challenges and solutions for the use of ferrites in cancer therapy are summarised.
Collapse
|
5
|
Polatoğlu İ, Yardım A. Portable quantification of silver ion by using personal glucose meter (PGM) and magnetite cross-linked invertase aggregates (MCLIA). Anal Biochem 2021; 643:114527. [PMID: 34919899 DOI: 10.1016/j.ab.2021.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
Heavy metal detection is critical due to its harmful effects on human health and the ecosystem. Enzyme-based platforms attract attention for heavy metal detection such as silver, a toxic metal, due to being small, portable, and requiring only essential equipment compared with the basic analytical methods. In this study, magnetic cross-linked invertase aggregates (MCLIA) were developed for the first time as an enzyme-based signaling platform to detect Ag+ using a personal glucose meter (PGM). EDX, FTIR, and VSM results depicted that MCLIA was successfully developed and exhibits super-paramagnetism. In addition, MCLIA selectively detected the Ag+ at a sensitivity of 1.2 inhibition rate/μM in a linear range from 5 to 70 μM with a detection limit of 4.6 μM and IC50 value of 42.3 μM. These findings strongly indicate that MCLIA is applicable as a signal platform for portable quantification of other analytes that inhibits the invertase enzyme.
Collapse
Affiliation(s)
- İlker Polatoğlu
- Manisa Celal Bayar University, Bioengineering Department, Manisa, Turkey.
| | - Ayşenur Yardım
- Manisa Celal Bayar University, Electrical and Electronic Engineering Department, Manisa, Turkey
| |
Collapse
|
6
|
Ekinci S, İlter Z, Ercan S, Çınar E, Çakmak R. Magnetite nanoparticles grafted with murexide-terminated polyamidoamine dendrimers for removal of lead (II) from aqueous solution: synthesis, characterization, adsorption and antimicrobial activity studies. Heliyon 2021; 7:e06600. [PMID: 33869845 PMCID: PMC8035525 DOI: 10.1016/j.heliyon.2021.e06600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
In this study, new, efficient, eco-friendly and magnetically separable nanoadsorbents, MNPs-G1-Mu and MNPs-G2-Mu, were successfully prepared by covalently grafting murexide-terminated polyamidoamine dendrimers on 3-aminopropyl functionalized silica-coated magnetite nanoparticles, and used for rapid removal of lead (II) from aqueous medium. After each adsorption process, the supernatant was successfully acquired from reaction mixture by the magnetic separation, and then analyzed by employing ICP-OES. Chemical and physical characterizations of new nanomaterials were confirmed by XRD, FT-IR, SEM, TEM, and VSM. Maximum adsorption capacities (qm) of both prepared new nanostructured adsorbents were compared with each other and also with some other adsorbents. The kinetic data were appraised by using pseudo-first-order and pseudo-second-order kinetic models. Adsorption isotherms were found to be suitable with both Langmuir and Freundlich isotherm linear equations. The maximum adsorption capacities for MNPs-G1-Mu and MNPs-G2-Mu were calculated as 208.33 mg g-1 and 232.56 mg g-1, respectively. Antimicrobial activities of nanoparticles were also examined against various microorganisms by using microdilution method. It was determined that MNPs-G1-Mu, MNPs-G2-Mu and lead (II) adsorbed MNPs-G2-Mu showed good antimicrobial activity against S. aureus ATTC 29213 and C. Parapsilosis ATTC 22019. MNPs-G1-Mu also showed antimicrobial activity against C. albicans ATTC 10231.
Collapse
Affiliation(s)
- Selma Ekinci
- Department of Chemistry, Faculty of Science and Art, Batman University, Batman, 72100, Turkey
| | - Zülfiye İlter
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, 23000, Turkey
| | - Selami Ercan
- Department of Nursing, School of Health Sciences, Batman University, Batman, 72060, Turkey
| | - Ercan Çınar
- Department of Nursing, School of Health Sciences, Batman University, Batman, 72060, Turkey
| | - Reşit Çakmak
- Medical Laboratory Techniques Program, Vocational School of Health Services, Batman University, Batman, 72060, Turkey
| |
Collapse
|
7
|
Sarkar N, Sharma RS, Kaushik M. Innovative application of facile single pot green synthesized CuO and CuO@APTES nanoparticles in nanopriming of Vigna radiata seeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13221-13228. [PMID: 33175355 DOI: 10.1007/s11356-020-11493-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Nanopriming is an emerging field of science which uses nanoparticles in solution to improve parameters of seed vigor. This leads to an initial advantage to the crop plant at the germination phase of its life cycle, which is also the most vulnerable phase and may lead to an improved yield. In this study, we have synthesized copper oxide (CuO) and (3-Aminopropyl) triethoxysilane (APTES)-coated CuO (CuO@APTES) nanoparticles via environmentally friendly green synthesis using the extract of Coriandrum sativum (coriander) herb. The synthesized nanoparticles were used as nanoprimers on Vigna radiata (moong bean), a model legume, to promote seed vigor via increase in germination. This was followed by characterization and comparison of both types of nanoparticles using various physicochemical techniques; UV-Visible (UV-Vis), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and transmission electron microscopy (TEM). All characterization techniques pointed out to the successful synthesis and coating of CuO nanoparticles. Seed imbibition and germination assays were performed, which indicated increased imbibition potential and germination promotion at low nanoparticle concentration. Such studies can be used in the development of simple prepackaged nanoprimer products, which can be used by farmers before sowing to provide a boost to their crops and productivity.
Collapse
Affiliation(s)
- Niloy Sarkar
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, Delhi, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| | | | - Mahima Kaushik
- Nano-bioconjugate Chemistry Lab, Cluster Innovation Centre, Delhi, India.
| |
Collapse
|
8
|
Polatoğlu İ, Yardım A. Determination of effective assay parameters on the activity of magnetite cross-linked invertase aggregates by personal glucose meter. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1876680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- İlker Polatoğlu
- Bioengineering Department, Manisa Celal Bayar University, Manisa, Turkey
| | - Ayşenur Yardım
- Food Engineering Department, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Rajabi-Moghaddam H, Naimi-Jamal MR, Tajbakhsh M. Fabrication of copper(II)-coated magnetic core-shell nanoparticles Fe 3O 4@SiO 2-2-aminobenzohydrazide and investigation of its catalytic application in the synthesis of 1,2,3-triazole compounds. Sci Rep 2021; 11:2073. [PMID: 33483570 PMCID: PMC7822852 DOI: 10.1038/s41598-021-81632-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
In the present work, an attempt has been made to synthesize the 1,2,3-triazole derivatives resulting from the click reaction, in a mild and green environment using the new copper(II)-coated magnetic core-shell nanoparticles Fe3O4@SiO2 modified by isatoic anhydride. The structure of the catalyst has been determined by XRD, FE-SEM, TGA, VSM, EDS, and FT-IR analyzes. The high efficiency and the ability to be recovered and reused for at least up to 6 consecutive runs are some superior properties of the catalyst.
Collapse
Affiliation(s)
- H Rajabi-Moghaddam
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - M R Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| | - M Tajbakhsh
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
10
|
Kinetic Studies on the Catalytic Degradation of Rhodamine B by Hydrogen Peroxide: Effect of Surfactant Coated and Non-Coated Iron (III) Oxide Nanoparticles. Polymers (Basel) 2020; 12:polym12102246. [PMID: 33003603 PMCID: PMC7650585 DOI: 10.3390/polym12102246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Iron (III) oxide (Fe3O4) and sodium dodecyl sulfate (SDS) coated iron (III) oxide (SDS@Fe3O4) nanoparticles (NPs) were synthesized by the co-precipitation method for application in the catalytic degradation of Rhodamine B (RB) dye. The synthesized NPs were characterized using X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infra-red (FT-IR) spectroscopy techniques and tested in the removal of RB. A kinetic study on RB degradation by hydrogen peroxide (H2O2) was carried out and the influence of Fe3O4 and SDS@Fe3O4 magnetic NPs on the degradation rate was assessed. The activity of magnetic NPs, viz. Fe3O4 and SDS@Fe3O4, in the degradation of RB was spectrophotometrically studied and found effective in the removal of RB dye from water. The rate of RB degradation was found linearly dependent upon H2O2 concentration and within 5.0 × 10-2 to 4.0 × 10-1 M H2O2, the observed pseudo-first-order kinetic rates (kobs, s-1) for the degradation of RB (10 mg L-1) at pH 3 and temperature 25 ± 2 °C were between 0.4 and 1.7 × 104 s-1, while in presence of 0.1% w/v Fe3O4 or SDS@Fe3O4 NPs, kobs were between 1.3 and 2.8 × 104 s-1 and between 2.6 and 4.8 × 104 s-1, respectively. Furthermore, in presence of Fe3O4 or SDS@Fe3O4, kobs increased with NPs dosage and showed a peaked pH behavior with a maximum at pH 3. The magnitude of thermodynamic parameters Ea and ΔH for RB degradation in presence of SDS@Fe3O4 were 15.63 kJ mol-1 and 13.01 kJ mol-1, respectively, lowest among the used catalysts, confirming its effectiveness during degradation. Furthermore, SDS in the presence of Fe3O4 NPs and H2O2 remarkably enhanced the rate of RB degradation.
Collapse
|
11
|
Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, Khan NA. Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express 2020; 10:127. [PMID: 32681358 PMCID: PMC7368000 DOI: 10.1186/s13568-020-01061-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
Collapse
|
12
|
Kawish M, Elhissi A, Jabri T, Muhammad Iqbal K, Zahid H, Shah MR. Enhancement in Oral Absorption of Ceftriaxone by Highly Functionalized Magnetic Iron Oxide Nanoparticles. Pharmaceutics 2020; 12:pharmaceutics12060492. [PMID: 32481715 PMCID: PMC7355964 DOI: 10.3390/pharmaceutics12060492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022] Open
Abstract
The present study aims at the development, characterization, biocompatibility investigation and oral bioavailability evaluation of ceftriaxone (CFT)-loaded N′-methacryloylisonicotinohydrazide (MIH)-functionalized magnetic nanoparticles (CFT-MIH-MNPs). Atomic force microscopy (AFM) and dynamic light scattering (DLS) showed that the developed CFT loaded MIH-MNPs are spherical, with a measured hydrodynamic size of 184.0 ± 2.7 nm and negative zeta potential values (–20.2 ± 0.4 mV). Fourier transformed infrared spectroscopic (FTIR) analysis revealed interactions between the nanocarrier and the drug. Nanoparticles showed high drug entrapment efficiency (EE) of 79.4% ±1.5%, and the drug was released gradually in vitro and showed prolonged in vitro stability using simulated gastrointestinal tract (GIT) fluids. The formulations were found to be highly biocompatible (up to 100 µg/mL) and hemocompatible (up to 1.0 mg/mL). Using an albino rabbit model, the formulation showed a significant enhancement in drug plasma concentration up to 14.4 ± 1.8 µg/mL in comparison with its control (2.0 ± 0.6 µg/mL). Overall, the developed CFT-MIH-MNPs formulation was promising for provision of high drug entrapment, gradual drug release and suitability for enhancing the oral delivery of CFT.
Collapse
Affiliation(s)
- Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health, and Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Tooba Jabri
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Kanwal Muhammad Iqbal
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
| | - Hina Zahid
- Faculty of Pharmaceutical Sciences Dow University of Health Sciences Karachi, Karachi 74200, Pakistan; or
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan or (M.K.); or (T.J.); or (K.M.I.)
- Correspondence: ; Tel.: +92-111-222-292 (ext. 233)
| |
Collapse
|
13
|
Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics (Basel) 2020; 9:antibiotics9050276. [PMID: 32466210 PMCID: PMC7277095 DOI: 10.3390/antibiotics9050276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
Collapse
|
14
|
Eshaghi Malekshah R, Fahimirad B, Khaleghian A. Synthesis, Characterization, Biomedical Application, Molecular Dynamic Simulation and Molecular Docking of Schiff Base Complex of Cu(II) Supported on Fe 3O 4/SiO 2/APTS. Int J Nanomedicine 2020; 15:2583-2603. [PMID: 32368042 PMCID: PMC7182715 DOI: 10.2147/ijn.s231062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/29/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Over the past several years, nano-based therapeutics were an effective cancer drug candidate in order to overcome the persistence of deadliest diseases and prevalence of multiple drug resistance (MDR). METHODS The main objective of our program was to design organosilane-modified Fe3O4/SiO2/APTS(~NH2) core magnetic nanocomposites with functionalized copper-Schiff base complex through the use of (3-aminopropyl)triethoxysilane linker as chemotherapeutics to cancer cells. The nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), TEM, and vibrating sample magnetometer (VSM) techniques. All analyses corroborated the successful synthesis of the nanoparticles. In the second step, all compounds of magnetic nanoparticles were validated as antitumor drugs through the conventional MTT assay against K562 (myelogenous leukemia cancer) and apoptosis study by Annexin V/PI and AO/EB. The molecular dynamic simulations of nanoparticles were further carried out; afterwards, the optimization was performed using MM+, semi-empirical (AM1) and Ab Initio (STO-3G), ForciteGemo Opt, Forcite Dynamics, Forcite Energy and CASTEP in Materials studio 2017. RESULTS The results showed that the anti-cancer activity was barely reduced after modifying the surface of the Fe3O4/SiO2/APTS nanoparticles with 2-hydroxy-3-methoxybenzaldehyde as Schiff base and then Cu(II) complex. The apoptosis study by Annexin V/PI and AO/EB stained cell nuclei was performed that apoptosis percentage of the nanoparticles increased upon increasing the thickness of Fe3O4 shell on the magnetite core. The docking studies of the synthesized compounds were conducted towards the DNA and Topoisomerase II via AutoDock 1.5.6 (The Scripps Research Institute, La Jolla, CA, USA). CONCLUSION Results of biology activities and computational modeling demonstrate that nanoparticles were targeted drug delivery system in cancer treatment.
Collapse
Affiliation(s)
| | - Bahareh Fahimirad
- Department of Chemistry, College of Science, Semnan University, Semnan, Iran
| | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
Saberikhah E, Mamaghani M, Mahmoodi NO, Fallah Shojaei A. Magnetic Fe 3O 4@TiO 2@NH 2@PMo 12O 40 Nanoparticles: A Recyclable and Efficient Catalyst for Convergent One-Pot Synthesis of Pyrido[2,3- d]Pyrimidine Derivatives. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1729821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elham Saberikhah
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | | | | |
Collapse
|
16
|
Controlled release of poorly water soluble anticancerous drug camptothecin from magnetic nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.matpr.2020.02.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Wong WKL, Wahab RA, Onoja E. Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: kinetic and thermodynamic studies. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00976-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Shafiee S, Ahangar HA, Saffar A. Taguchi method optimization for synthesis of Fe3O4 @chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr Polym 2019; 222:114982. [DOI: 10.1016/j.carbpol.2019.114982] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
|
19
|
Aliannejadi S, Hassani AH, Panahi HA, Borghei SM. Fabrication and characterization of high-branched recyclable PAMAM dendrimer polymers on the modified magnetic nanoparticles for removing naphthalene from aqueous solutions. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Quantification of aflatoxin B1 in vegetable oils using low temperature clean-up followed by immuno-magnetic solid phase extraction. Food Chem 2019; 275:390-396. [DOI: 10.1016/j.foodchem.2018.09.132] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/17/2022]
|
21
|
Vieillard J, Bouazizi N, Bargougui R, Fotsing PN, Thoumire O, Ladam G, Brun N, Hochepied JF, Woumfo ED, Mofaddel N, Derf FL, Azzouz A. Metal-inorganic-organic core–shell material as efficient matrices for CO2 adsorption: Synthesis, properties and kinetic studies. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Gold Nanoparticles-Decorated Dithiocarbamate Nanocomposite: An Efficient Heterogeneous Catalyst for the Green A3-Coupling Synthesis of Propargylamines. Catal Letters 2018. [DOI: 10.1007/s10562-018-2540-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zhang X, Wu F, Men K, Huang R, Zhou B, Zhang R, Zou R, Yang L. Modified Fe 3O 4 Magnetic Nanoparticle Delivery of CpG Inhibits Tumor Growth and Spontaneous Pulmonary Metastases to Enhance Immunotherapy. NANOSCALE RESEARCH LETTERS 2018; 13:240. [PMID: 30120629 PMCID: PMC6097979 DOI: 10.1186/s11671-018-2661-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
As a novel toll-like receptor 9 (TLR9) agonist, synthetic unmethylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotides can stimulate a Th1 immune response and potentially be used as therapeutic agents or vaccine adjuvants for the treatment of cancer. However, some drawbacks of CpG limit their applications, such as rapid elimination by nuclease-mediated degradation and poor cellular uptake. Therefore, repeat high-dose drug administration is required for treatment. In this work, a CpG delivery system based on 3-aminopropyltriethoxysilane (APTES)-modified Fe3O4 nanoparticles (FeNPs) was designed and studied for the first time to achieve better bioactivity of CpG. In our results, we designed FeNP-delivered CpG particles (FeNP/CpG) with a small average size of approximately 50 nm by loading CpG into FeNPs. The FeNP/CpG particle delivery system, with enhanced cell uptake of CpG in bone marrow-derived dendritic cells (BMDCs) in vitro and through intratumoral injection, showed significant antitumor ability by stimulating better humoral and cellular immune responses in C26 colon cancer and 4T1 breast cancer xenograft models in vivo over those of free CpG. Moreover, mice treated by FeNP/CpG particles had delayed tumor growth with an inhibitory rate as high as 94.4%. In addition, approximately 50% of the tumors in the C26 model appeared to regress completely. Similarly, there were lower pulmonary metastases and a 69% tumor inhibitory rate in the 4T1 breast cancer tumor model than those in the untreated controls. In addition to their effectiveness, the easy preparation, safety, and high stability of FeNP/CpG particles also make them an attractive antitumor immunotherapy.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fengbo Wu
- Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailin Zhou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Zou
- China West Normal University, No.1 Shi Da Road, Nanchong, 637002, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Sosa-Acosta J, Silva J, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona J, Díaz-García A. Iron Oxide Nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.02.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Development of a novel functional core-shell-shell nanoparticles: From design to anti-bacterial applications. J Colloid Interface Sci 2018; 513:726-735. [DOI: 10.1016/j.jcis.2017.11.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 11/23/2022]
|
26
|
Ali Z, Tian L, Zhang B, Ali N, khan M, Zhang Q. Synthesis of paramagnetic dendritic silica nanomaterials with fibrous pore structure (Fe3O4@KCC-1) and their application in immobilization of lipase from Candida rugosa with enhanced catalytic activity and stability. NEW J CHEM 2017. [DOI: 10.1039/c7nj01912b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic mesoporous fibrous silica (Fe3O4@KCC-1) was prepared and its surface was functionalized with 3-aminopropyltriethoxysilane (APTES).
Collapse
Affiliation(s)
- Zafar Ali
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Lei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Baoliang Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Nisar Ali
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Muhammad khan
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Qiuyu Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
27
|
Moradi A, Najafi Moghadam P, Hasanzadeh R, Sillanpää M. Chelating magnetic nanocomposite for the rapid removal of Pb(ii) ions from aqueous solutions: characterization, kinetic, isotherm and thermodynamic studies. RSC Adv 2017. [DOI: 10.1039/c6ra26356a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4@GMA–AAm nanocomposite as a novel adsorbent with high adsorption capacity for rapid removal of Pb2+ from aqueous media was synthesized.
Collapse
Affiliation(s)
- Atefeh Moradi
- Department of Applied Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | | | - Reza Hasanzadeh
- Department of Organic Chemistry
- Faculty of Chemistry
- Urmia University
- Urmia
- Iran
| | - Mika Sillanpää
- Department of Chemistry
- Lappeenranta University of Technology
- Lappeenranta
- Finland
- Department of Civil and Environmental Engineering
| |
Collapse
|