1
|
Ijatuyi TT, Lawal AO, Akinjiyan MO, Ojo FM, Koledoye OF, Agboola OO, Dahunsi DT, Folorunso IM, Elekofehinti OO. Effects of Bryophyllum pinnatum on Dysfunctional Autophagy in Rats Lungs Exposed to Zinc Oxide Nanoparticles. Int Immunopharmacol 2024; 141:113005. [PMID: 39213874 DOI: 10.1016/j.intimp.2024.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Lung inflammation as a result of exposure to toxicants is a major pathological problem. Autophagy (AP) is a process of cell self-digestion and can be disrupted by environmental toxicants, leading to oxidative stress, inflammation and cellular damage. Bryophyllum pinnatum (Lam.) Oken has been used in folklore medicine to manage pathological abnormalities, including inflammation, but mechanisms remain unclear. This work investigated the effects of Bryophyllum pinnatum ethanol leaf extract (BP) on dysfunctional AP in the lungs of Wistar rats exposed to zinc oxide nanoparticles (ZONPs). The experimental rats were orally administered ZONPs for seven days (10 mg/kg). Some exposed rats were post-treated with BP (62.5 and 125 mg/kg) through oral gavage. Oxidative stress, inflammation, and apoptotic and autophagic parameters were assessed using biochemical assay and gene expression methods. Several indices of pulmonary damage were also evaluated. PCR analysis suggested that ZONP downregulated the expression of pro-autophagy-related genes (Beclin 2, ATG5, DAPK, and FOXP3) and upregulated the expression of the TNF-alpha, NF-Kb, LC3 and Bcl2 genes. In contrast, BP significantly (p < 0.0001) reversed ZONP-induced pulmonary toxicity and oxidative stress. It reduced MDA levels and increased SOD, CAT, GSH and GPxD activities. BP significantly (p < 0.0001) downregulated the expressions of proinflammatory genes (IL-6 and JNK) and upregulated the expressions of IL-10, CAT and SOD genes in ZONP-exposed rats. BP restored the lung's histoarchitectural structure after ZNOP-induced distortion. The results suggested that BP has antioxidant and anti-inflammatory properties, and could effectively restore ZNOP-induced dysfunctional AP in the lungs of Wistar rats.
Collapse
Affiliation(s)
- Taiwo Tolulope Ijatuyi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Akeem Olalekan Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Moses Orimoloye Akinjiyan
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria.
| | - Funmilayo Mercy Ojo
- Medical Biochemistry Department, School of Basic Medical Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Omowumi Funmilayo Koledoye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olaoluwa Oladimeji Agboola
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Damilola Timothy Dahunsi
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Ibukun Mary Folorunso
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria; Precision Molecular Laboratory, Akure, Ondo State, Nigeria
| | - Olusola Olalekan Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Life Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| |
Collapse
|
2
|
Rigamonti AE, Rubino FM, Caroli D, Bondesan A, Mai S, Cella SG, Centofanti L, Paroni R, Sartorio A. Effects of Melatonin on Exercise-Induced Oxidative Stress in Adults with Obesity Undergoing a Multidisciplinary Body Weight Reduction Program. J Clin Med 2024; 13:5216. [PMID: 39274429 PMCID: PMC11396206 DOI: 10.3390/jcm13175216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Obesity is characterized by increased oxidative stress, which, in a vicious circle, promotes chronic low-grade inflammation. Melatonin, a well-documented antioxidant, might be useful as a supplement to enhance the cardiometabolic benefits of any body weight reduction program (BWRP). Objectives/Methods: The present study aimed to evaluate the post-exercise oxidative stress and inflammation in a group of subjects with obesity treated with melatonin (2 mg/die) or placebo, undergoing a 2-week BWRP, with the administration of a single bout of acute exercise at the start and the end of the protocol (G1-G15). Results: Eighteen adults with obesity were enrolled and distributed to the two arms of the study: the melatonin group (F/M: 7/2; age: 27.8 ± 5.6 years; body mass index [BMI]: 43.0 ± 4.9 kg/m2) and the placebo group (F/M: 6/3; age: 28.8 ± 5.0 years; BMI: 42.8 ± 4.0 kg/m2). BWRP induced a decrease in BMI and waist circumference (WC) in both groups; plasma glucose, blood glycated hemoglobin (HbA1c), and neutrophil to lymphocyte ratio (NLR) were reduced only in the placebo group. Importantly, plasma biological antioxidant potential (BAP) increased throughout BWRP. Paradoxically, melatonin enhanced post-exercise production of plasma derivatives of reactive oxygen metabolites (d-ROMs) and erythrocytic glutathionyl-Hb (HbSSG) (at G1 and G15). Finally, differently from the placebo group, melatonin-treated subjects did not exhibit the BWRP-induced decrease in plasma levels of interleukin-6 (IL-6), before and after exercise, at the end of two weeks (G15). Conclusions: Melatonin is presumably an antioxidant with "conditional" prooxidant actions. The use of melatonin as a supplement in subjects with obesity might be deleterious due to the abolishment of BWRP-induced cardiometabolic benefits.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Federico M Rubino
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Diana Caroli
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Adele Bondesan
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| | - Stefania Mai
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Laboratory of Metabolic Research, 28824 Piancavallo-Verbania, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, 20129 Milan, Italy
| | - Lucia Centofanti
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Laboratory for Auxo-Endocrinological Research, 28824 Piancavallo-Verbania, Italy
| |
Collapse
|
3
|
Jeong JW, Lee SY, Lee DY, Kim JH, Yun SH, Lee J, Mariano E, Moon SS, Hur SJ. Analytical Methods and Effects of Bioactive Peptides Derived from Animal Products: A Mini-Review. Food Sci Anim Resour 2024; 44:533-550. [PMID: 38765288 PMCID: PMC11097009 DOI: 10.5851/kosfa.2024.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024] Open
Abstract
Peptides with bioactive effects are being researched for various purposes. However, there is a lack of overall research on pork-derived peptides. In this study, we reviewed the process of obtaining bioactive peptides, available analytical methods, and the study of bioactive peptides derived from pork. Pepsin and trypsin, two representative protein digestive enzymes in the body, are hydrolyzed by other cofactors to produce peptides. Bicinchoninic acid assay, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chromatography, and in vitro digestion simulation systems are utilized to analyze bioactive peptides for protein digestibility and molecular weight distribution. Pork-derived peptides mainly exhibit antioxidant and antihypertensive activities. The antioxidant activity of bioactive peptides increases the accessibility of amino acid residues by disrupting the three-dimensional structure of proteins, affecting free radical scavenging, reactive oxygen species inactivation, and metal ion chelating. In addition, the antihypertensive activity decreases angiotensin II production by inhibiting angiotensin converting enzyme and suppresses blood pressure by blocking the AT1 receptor. Pork-derived bioactive peptides, primarily obtained using papain and pepsin, exhibit significant antioxidant and antihypertensive activities, with most having low molecular weights below 1 kDa. This study may aid in the future development of bioactive peptides and serve as a valuable reference for pork-derived peptides.
Collapse
Affiliation(s)
- Jae Won Jeong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Yun Lee
- Division of Animal Science, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jae Hyeon Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Seung Hyeon Yun
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Juhyun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ermie Mariano
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Sil Moon
- Sunjin Technology & Research Institute, Icheon 17332, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
4
|
Ngandjui YAT, Kereeditse TT, Kamika I, Madikizela LM, Msagati TAM. Nutraceutical and Medicinal Importance of Marine Molluscs. Mar Drugs 2024; 22:201. [PMID: 38786591 PMCID: PMC11123371 DOI: 10.3390/md22050201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health.
Collapse
Affiliation(s)
- Yvan Anderson Tchangoue Ngandjui
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| | | | | | | | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, Johannesburg 1705, South Africa; (T.T.K.); (I.K.); (L.M.M.)
| |
Collapse
|
5
|
Essa HA, Ali AM, Saied MA. Cymbopogon proximus and Petroselinum crispum seed ethanolic extract/Gum Arabic nanogel emulsion: Preventing ethylene glycol and ammonium chloride-induced urolithiasis in rats. Urolithiasis 2024; 52:52. [PMID: 38564033 PMCID: PMC10987356 DOI: 10.1007/s00240-024-01559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.
Collapse
Affiliation(s)
- Hend A Essa
- Nutrition and Food Sciences Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Alaa M Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mona A Saied
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
6
|
Yang B, Li W, Saeki H, Shimizu Y, Joe GH. Maillard-type glycated collagen with alginate oligosaccharide suppresses inflammation and oxidative stress by attenuating the expression of LPS receptors Tlr4 and Cd14 in macrophages. Food Funct 2024; 15:3629-3639. [PMID: 38482590 DOI: 10.1039/d3fo02731g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inflammation and oxidative stress contribute to noncommunicable diseases (NCDs), with macrophages playing pivotal roles. Glycated collagen through Maillard-type glycation holds promise for enhancing anti-inflammatory properties, but its mechanism remains unclear. This study investigates the cellular mechanism and aims to contribute to expanding collagen utilization. Collagen was glycated with alginate oligosaccharide (AO) and glucose (Glc: as a comparative case) at 60 °C and 35% relative humidity for up to 24 h (C-AO and C-Glc, respectively). The anti-inflammatory activities of both C-AO and C-Glc were evaluated using an LPS-stimulated macrophage model. 18 h AO-glycated collagen (C-AO18 h) was found to significantly reduce the production of nitric oxide and proinflammatory cytokines (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). In contrast, C-Glc did not exhibit enhanced anti-inflammatory activity during any of the glycation periods. The enhanced anti-inflammatory activity of C-AO18 h was attributed to its downregulating effect on LPS receptors (toll-like receptor 4, Tlr4; cluster of differentiation 14, Cd14) and myeloid differentiation primary response 88 (Myd88) mRNA expression, with suppression in receptor expression resulting in decreased phagocytic ability of macrophages against E. coli. In addition, compared with intact collagen, C-AO18 h exhibited improved antioxidant activity in the LPS-stimulated macrophage model, as it significantly upregulated superoxide dismutase (SOD) and catalase (CAT) activities while reducing malondialdehyde (MDA) levels. Overall, this study contributes to the development of collagen-based functional foods for mitigating inflammation and oxidative stress in NCDs.
Collapse
Affiliation(s)
- Boxue Yang
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Wenzhao Li
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
7
|
Shatilov AA, Andreev SM, Shatilova AV, Turetskiy EA, Kurmasheva RA, Babikhina MO, Saprygina LV, Shershakova NN, Bolyakina DK, Smirnov VV, Shilovsky IP, Khaitov MR. Synthesis and Biological Properties of Polyphenol-Containing Linear and Dendrimeric Cationic Peptides. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:173-183. [PMID: 38467553 DOI: 10.1134/s0006297924010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 03/13/2024]
Abstract
Natural polyphenols are promising compounds for the pharmacological control of oxidative stress in various diseases. However, low bioavailability and rapid metabolism of polyphenols in a form of glycosides or aglycones have stimulated the search for the vehicles that would provide their efficient delivery to the systemic circulation. Conjugation of polyphenols with cationic amphiphilic peptides yields compounds with a strong antioxidant activity and ability to pass through biological barriers. Due to a broad range of biological activities characteristic of polyphenols and peptides, their conjugates can be used in the antioxidant therapy, including the treatment of viral, oncological, and neurodegenerative diseases. In this work, we synthesized linear and dendrimeric cationic amphiphilic peptides that were then conjugated with gallic acid (GA). GA is a non-toxic natural phenolic acid and an important functional element of many flavonoids with a high antioxidant activity. The obtained GA-peptide conjugates showed the antioxidant (antiradical) activity that exceeded 2-3 times the antioxidant activity of ascorbic acid. GA attachment had no effect on the toxicity and hemolytic activity of the peptides. GA-modified peptides stimulated the transmembrane transfer of the pGL3 plasmid encoding luciferase reporter gene, although GA attachment at the N-terminus of peptides reduced their transfection activity. Several synthesized conjugates demonstrated the antibacterial activity in the model of Escherichia coli Dh5α growth inhibition.
Collapse
Affiliation(s)
- Artem A Shatilov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
| | - Sergey M Andreev
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia.
| | | | - Evgeny A Turetskiy
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Renata A Kurmasheva
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Marina O Babikhina
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- MIREA - Russian Technological University, Moscow, 119454, Russia
| | - Larisa V Saprygina
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- MIREA - Russian Technological University, Moscow, 119454, Russia
| | | | | | - Valeriy V Smirnov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - Igor P Shilovsky
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
| | - Musa R Khaitov
- "NRC Institute of Immunology" FMBA of Russia, Moscow, 115522, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
8
|
Kong L, Cai Y, Pan X, Xiao C, Song Z. Glycerol monolaurate improves intestinal morphology and antioxidant status by suppressing inflammatory responses and nuclear factor kappa-B signaling in lipopolysaccharide-exposed chicken embryos. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:297-306. [PMID: 38033609 PMCID: PMC10684993 DOI: 10.1016/j.aninu.2023.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 12/02/2023]
Abstract
Medium-chain fatty acids and their derivatives are natural ingredients that support immunological functions in animals. The effects of glycerol monolaurate (GML) on intestinal innate immunity and associated molecular mechanisms were investigated using a chicken embryo model. Sixty-four Arbor Acres broiler embryos were randomly allocated into four groups. On embryonic day 17.5, the broiler embryos were administered with 9 mg of GML, which was followed by a 12-h incubation period and a 12-h challenge with 32 μg of lipopolysaccharide (LPS). On embryonic day 18.5, the jejunum and ileum were harvested. Results indicated that GML reversed the LPS-induced decline in villus height and upregulated the expression of mucin 2 (P < 0.05). GML decreased LPS-induced malondialdehyde production and boosted antioxidant enzyme activity (P < 0.05). GML alleviated LPS-stimulated intestinal secretion of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) (P < 0.05). GML also normalized LPS-induced changes in the gene expression of Toll-like receptor 4, nuclear factor kappa-B p65 (NF-κB p65), cyclooxygenase-2, NOD-like receptor protein 3, IL-18, zonula occludens 1, and occludin (P < 0.05). GML enhanced as well the expression of AMP-activated protein kinase α1 and claudin 1 (P < 0.05). In conclusion, GML improved intestinal morphology and antioxidant status by alleviating inflammatory responses and modulating NF-κB signaling in LPS-challenged broiler embryos.
Collapse
Affiliation(s)
- Linglian Kong
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong 250200, China
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chuanpi Xiao
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Nongrain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
9
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
10
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
11
|
Aboderin FI, Oduola T, Davison GM, Oguntibeju OO. A Review of the Relationship between the Immune Response, Inflammation, Oxidative Stress, and the Pathogenesis of Sickle Cell Anaemia. Biomedicines 2023; 11:2413. [PMID: 37760854 PMCID: PMC10525295 DOI: 10.3390/biomedicines11092413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Sickle cell anaemia (SCD) is a life-threatening haematological disorder which is predominant in sub-Saharan Africa and is triggered by a genetic mutation of the β-chain haemoglobin gene resulting in the substitution of glutamic acid with valine. This mutation leads to the production of an abnormal haemoglobin molecule called haemoglobin S (HbS). When deoxygenated, haemoglobin S (HbS) polymerises and results in a sickle-shaped red blood cell which is rigid and has a significantly shortened life span. Various reports have shown a strong link between oxidative stress, inflammation, the immune response, and the pathogenesis of sickle cell disease. The consequence of these processes leads to the development of vasculopathy (disease of the blood vessels) and several other complications. The role of the immune system, particularly the innate immune system, in the pathogenesis of SCD has become increasingly clear in recent years of research; however, little is known about the roles of the adaptive immune system in this disease. This review examines the interaction between the immune system, inflammation, oxidative stress, blood transfusion, and their effects on the pathogenesis of sickle cell anaemia.
Collapse
Affiliation(s)
- Florence Ifechukwude Aboderin
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Taofeeq Oduola
- Department of Chemical Pathology, Usmanu Danfodiyo University, Sokoto 840004, Nigeria;
| | - Glenda Mary Davison
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| |
Collapse
|
12
|
Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Jęcek M, Nowak P, Zajdel R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023; 15:3016. [PMID: 37447342 DOI: 10.3390/nu15133016] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Anthocyanins are flavonoid compounds that are abundantly present in fruits and vegetables. These compounds contribute to the color of these foods and offer various health benefits to consumers due to their biological properties. There are more than 1000 types of anthocyanins in nature, all derived from 27 anthocyanidin aglycones that have different glycosylations and acylations. Malvidin is one of the most well-known anthocyanidins. Several studies, including those conducted on cell lines, animals, and humans, have suggested that malvidin and its glycosides possess anti-carcinogenic, diabetes-control, cardiovascular-disease-prevention, and brain-function-improvement properties. These health benefits are primarily attributed to their antioxidant and anti-inflammatory effects, which are influenced by the molecular mechanisms related to the expression and modulation of critical genes. In this article, we review the available information on the biological activity of malvidin and its glycosides concerning their health-promoting effects.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Przemysław Sitarek
- Department of Medical Biology, Medical University of Lodz, 90-151 Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland
| | - Mariusz Jęcek
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Paweł Nowak
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| | - Radosław Zajdel
- Department of Economic and Medical Informatics, University of Lodz, 90-214 Lodz, Poland
| |
Collapse
|
13
|
Nogueira BCF, Orozco AMO, Argumedo AK, de Oliveira Faustino A, de Oliveira LL, da Fonseca LA, Campos AK. Circulating oxidative stress and acute phase protein levels in horses infested with ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00798-z. [PMID: 37285109 DOI: 10.1007/s10493-023-00798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023]
Abstract
Ticks have saliva rich in immunoregulatory molecules that interfere with the host's physiology in order to feed. This study aimed to evaluate the concentration of acute phase proteins and circulating oxidative stress in response to infestation by Amblyomma sculptum and Dermacentor nitens in two breed horses, Mangalarga Marchador and Breton Postier, to define resistance or susceptibility to ticks. Among the oxidative stress markers, we observed lower malondialdehyde and nitric oxide in horses with tick infestation, consequently not altering the antioxidant enzymes. Breton Postier with tick infestation showed a reduction in the ferric reducing ability of plasma (FRAP), which may be due to lower feeding of the host due to the stress caused by the infestation or even to sequestration of components induced by the tick during blood feeding. The alpha-1-antitrypsin, an acute phase protein, showed an increase in Mangalarga Marchador with tick infestation; curiously it is related to a protective action against tissue damage, pathogens and parasites. We could assume that Mangalarga Marchador showed a better response to ticks when compared to Breton Postier. However, it is still early to define the resistance or susceptibility to ticks, as we did not observe significant changes in most of the analyzed variables. Further studies are needed to understand the compounds and mechanisms of action of the tick saliva in the acute phase proteins and the possible relationships of oxidative stress in the host and the tick during blood feeding.
Collapse
Affiliation(s)
| | | | - Ana Karina Argumedo
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Zhang J, Chen H, Tong T, Liu R, Yan S, Liang X, Martyniuk CJ, Zha J. Comparative toxicogenomics of benzotriazole ultraviolet stabilizers at environmental concentrations in Asian clam (Corbicula fluminea): Insight into molecular networks and behavior. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130811. [PMID: 36669413 DOI: 10.1016/j.jhazmat.2023.130811] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widespread emerging pollutants, which can pose exposure risks to benthic organisms. However, the toxicity and mechanisms of BUVSs congeners in benthic clams are far from elucidated. In this study, Asian clams (Corbicula fluminea) were exposed to one of UV-234, UV-326, UV-329, or UV-P at environmentally relevant levels (0.1, 1, and 10 μg/L) for 21 days. Filtration rate (FR) was increased in clams exposed to all BUVSs and there were notable histopathologic changes, including irregular digestive lumen, lipid droplet vacuolation, and degraded epithelial cells. To determine the molecular underpinnings following BUVSs exposure, the transcriptome responses in digestive glands were compared. Differentially expressed genes shared among BUVSs treatments were associated with focal adhesion, TNF-α/NF-κB proinflammatory pathways, and apoptosis. Following this, biochemical analysis of biomarkers related to apoptosis were conducted to further validate response. Exposure to BUVSs inhibited anti-oxidant enzyme activity and induced oxidative stress. Heat shock proteins were also triggered with exposure, and there was an induction of caspase-3 and caspase-9 activity. Molecular responses were not identical in the digestive gland of C. fluminea when comparing responses to BUVSs; nevertheless conserved mechanism (impairment of the oxidative defense system, immune system disruption, and induction of apoptosis) among BUVSs congeners was noted. This study provides novel insight into the toxicity and hazards of BUVSs in benthic organisms.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Tong
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Saihong Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
15
|
Ibrahim RM, Abdelhafez HM, El-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci Rep 2023; 13:5005. [PMID: 36973339 PMCID: PMC10042862 DOI: 10.1038/s41598-023-31897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Medicinal plants are considered an alternative therapy for diabetes mellitus as they regulate glucose levels. Moreover, a variety of plants offer a rich source of bioactive compounds that have potent pharmacological effects without any negative side effects. The present study aimed to clarify the effects of Arabic gum/Gum Acacia (GA) on the biochemical, histopathological, and immunohistochemical changes observed in diabetic rats. Further, the anti-inflammatory activity of GA in response to diabetes, through inflammatory mediators analysis. Male rats were divided into four groups: untreated control, diabetic, Arabic gum-treated, and Arabic gum-treated diabetic rats. Diabetes was induced using alloxan. Animals were sacrificed after 7 and 21 days of treatment with Arabic gum. Body weight, blood and pancreas tissue samples were collected for analysis. Alloxan injection significantly decreased body weight, increased glucose levels, decreased insulin levels, and caused depletion of islets of Langerhans and β-cell damage in the pancreas. Arabic gum treatment of diabetic rats significantly increased body weight, decreased serum glucose levels, increased insulin levels, exerts anti-inflammatory effect, and improved the pancreas tissue structure. Arabic gum has beneficial pharmacological effects in diabetic rats; therefore, it might be employed as diabetic therapy to reduce the hyperglycemic damage and may be applicable for many autoimmune and inflammatory diseases treatment. Further, the new bioactive substances, such as medications made from plants, have larger safety margins, and can be used for a longer period of time.
Collapse
Affiliation(s)
- Rasha Mohammed Ibrahim
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Hemmat Mansour Abdelhafez
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | | | - Fatma Ahmed Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, 11865, Egypt.
| |
Collapse
|
16
|
Verdone L, Caserta M, Ben-Soussan TD, Venditti S. On the road to resilience: Epigenetic effects of meditation. VITAMINS AND HORMONES 2023; 122:339-376. [PMID: 36863800 DOI: 10.1016/bs.vh.2022.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many environmental and lifestyle related factors may influence the physiology of the brain and body by acting on fundamental molecular pathways, such as the hypothalamus-pituitary-adrenal axis (HPA) and the immune system. For example, stressful conditions created by adverse early-life events, unhealthy habits and low socio-economic status may favor the onset of diseases linked to neuroendocrine dysregulation, inflammation and neuroinflammation. Beside pharmacological treatments used in clinical settings, much attention has been given to complementary treatments such as mind-body techniques involving meditation that rely on the activation of inner resources to regain health. At the molecular level, the effects of both stress and meditation are elicited epigenetically through a set of mechanisms that regulate gene expression as well as the circulating neuroendocrine and immune effectors. Epigenetic mechanisms constantly reshape genome activities in response to external stimuli, representing a molecular interface between organism and environment. In the present work, we aimed to review the current knowledge on the correlation between epigenetics, gene expression, stress and its possible antidote, meditation. After introducing the relationship between brain, physiology, and epigenetics, we will proceed to describe three basic epigenetic mechanisms: chromatin covalent modifications, DNA methylation and non-coding RNAs. Subsequently, we will give an overview of the physiological and molecular aspects related to stress. Finally, we will address the epigenetic effects of meditation on gene expression. The results of the studies reported in this review demonstrate that mindful practices modulate the epigenetic landscape, leading to increased resilience. Therefore, these practices can be considered valuable tools that complement pharmacological treatments when coping with pathologies related to stress.
Collapse
Affiliation(s)
- Loredana Verdone
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy.
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | - Tal Dotan Ben-Soussan
- Cognitive Neurophysiology Laboratory, Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation for Development and Communication, Assisi, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Sunghan J, Manmoo S, Suriyasathaporn W, Suriyasathaporn W, Warrit K, Kusolphat P. Comparison of the efficacy and perioperative pain between vessel sealing and suture ligation for median celiotomy in canine ovariohysterectomy. Vet World 2023; 16:386-394. [PMID: 37042013 PMCID: PMC10082707 DOI: 10.14202/vetworld.2023.386-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 03/06/2023] Open
Abstract
Background and Aim: Vessel sealing (VS) is used widely in human medicine and veterinary practice during laparoscopic surgery; however, few studies have investigated VS in canine ovariohysterectomy (OHE) using the median celiotomy approach. This study aimed to compare the effect of VS and suture ligation (SL) on surgical time, blood loss, and perioperative pain in canine OHE through median celiotomy.
Materials and Methods: Twenty-eight dogs were randomly and equally assigned into two groups that underwent surgery either by SL at both the ovarian pedicle and uterus or using a disposable VS device. The short form of the Glasgow composite pain scale (SF-GCPS) and the Colorado state university canine acute pain scale (CSU-CAP) were used to determine pain pre-operatively (baseline); at 30 min; and at 1, 2, 3, 4, 24, and 72 h post-operatively. Perioperative physiological parameters, surgical duration, and percentage of blood loss were recorded. Repeated measures analysis was performed to determine the differences in all parameters among time-related tasks and between both groups. A significant difference was defined at p < 0.05.
Results: The duration from identification of the first ovary to uterus removal was shorter in VS than in SL (p < 0.05). No clinically relevant differences were found among physiological variables. Both groups showed higher SF-GCPS and CSU-CAP values after surgery compared with baseline. The SF-GCPS in SL at 1 h was higher than in VS (p < 0.05). Two dogs in the SL group required additional post-operative rescue analgesia. No differences were found between the groups in terms of blood loss.
Conclusion: The use of a VS device in dogs undergoing OHE celiotomy decreased post-operative pain and shortened the perioperative time, making it an effective alternative technique for this common surgery. However, the VS device must be applied 2–3 times in the same location during the OHE procedure to prevent technical failure. This disposable device was reused up to 5 times for economic reasons without device failure. Soft tissue damage during OHE using the VS device should be investigated in a future prospective study.
Collapse
Affiliation(s)
- Jutapoln Sunghan
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Sareepah Manmoo
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Wanna Suriyasathaporn
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Witaya Suriyasathaporn
- Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Chiang Mai University, Chiang Mai 50100, Thailand; Cambodia Campus, Asian Satellite Campuses Institute, Nagoya University, Nagoya, Japan
| | - Kanawee Warrit
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pradipa Kusolphat
- Faculty of Veterinary Science, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
18
|
Baptista BG, Ribeiro M, Cardozo LF, Leal VDO, Regis B, Mafra D. Nutritional benefits of ginger for patients with non-communicable diseases. Clin Nutr ESPEN 2022; 49:1-16. [PMID: 35623800 DOI: 10.1016/j.clnesp.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 01/10/2023]
Abstract
Ginger (Zingiber officinale) is a famous dietary spice rich in bioactive components like gingerols, and it has been used for a long time as food and medicine. Indeed, clinical studies have confirmed the anti-inflammatory and antioxidant properties of ginger. Thus, ginger seems to be an excellent complementary nutritional strategy for non-communicable diseases (NCD) such as obesity, diabetes, cardiovascular disease and chronic kidney disease. This narrative review aims to discuss the possible effects of ginger on the mitigation of common complications such as inflammation, oxidative stress, and gut dysbiosis in NCD.
Collapse
Affiliation(s)
- Beatriz G Baptista
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ludmila Fmf Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Viviane de O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, State of Rio de Janeiro University (UERJ), Rio de Janeiro, RJ, Brazil
| | - Bruna Regis
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Federal Fluminense University, Niteroi-Rio de Janeiro, (RJ), Brazil; Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
19
|
Suppressive Effect of Tetrahydrocurcumin on Pseudomonas aeruginosa Lipopolysaccharide-Induced Inflammation by Suppressing JAK/STAT and Nrf2/HO-1 Pathways in Microglial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4978556. [PMID: 35308172 PMCID: PMC8933080 DOI: 10.1155/2022/4978556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
Brain inflammation, a pathological feature of neurodegenerative disorders, exhibits elevated microglial activity and increased levels of inflammatory factors. The present study was aimed at assessing the anti-inflammatory response of tetrahydrocurcumin (THC), the primary hydrogenated metabolite of curcumin, which was applied to treat Pseudomonas aeruginosa (P.a.) lipopolysaccharide- (LPS-) stimulated BV2 microglial cells. THC reduced P.a. LPS–induced mortality and the production of inflammatory mediators IL-6, TNF-α, MIP-2, IP-10, and nitrite. A further investigation revealed that THC decreased these inflammatory cytokines synergistically with JAK/STAT signaling inhibitors. THC also increased Nrf2/HO-1 signaling transduction which inhibits iNOS/COX-2/pNFκB cascades. Additionally, the presence of the HO-1 inhibitor Snpp increased the levels of IP-10, IL-6, and nitrite while THC treatment reduced those inflammatory factors in P.a. LPS–stimulated BV2 cells. In summary, we demonstrated that THC exhibits anti-inflammatory activities in P.a. LPS-induced inflammation in brain microglial cells by inhibiting STAT1/3-dependent NF-κB activation and inducing Nrf2-mediated HO-1 expression.
Collapse
|
20
|
Gao J, Wang R, Lu X, Jia C, Sun Q, Huang J, Wei S, Ma L. Enzymatic Preparation and Structure-activity Relationship of Sesaminol. J Oleo Sci 2021; 70:1261-1274. [PMID: 34373408 DOI: 10.5650/jos.ess21112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a valuable natural antioxidant, sesaminol can be used in food and medicine industries, but it is trace in sesame seeds and oil, and it is feasible to prepare sesaminol from sesaminol triglucoside (STG) which is abundant in defatted sesame cake. Therefore, in order to establish an effective enzymatic preparation method and elucidate the antioxidant structure-activity relationship of sesaminol, a suitable glycosidase for preparing sesaminol from STG were screened, enzymatic hydrolysis was optimized by single-factor test and response surface methodology, and finally, the structure-activity relationship of sesaminol was illustrated by comparative molecular field analysis (CoMFA). These results suggested that β-galactosidase was the optimal glycosidase for enzymatic hydrolysis of STG to prepare sesaminol. Under the optimal conditions of a reaction temperature of 50°C, reaction time of 4.0 h, pH of 5.5, substrate concentration of 1.0 mg/mL, and enzyme dosage of 20 mg/mL, the conversion rate of sesaminol was 98.88±0.67%. Sesaminol displayed excellent antioxidant ability in 2,2-diphenyl-1-picrylhydrazyl (DPPH, IC50 = 0.0011 mg/mL), 2,2'-azinobis-(3-ethyl-benzothiazoline-6-sulfonate) (ABTS, IC50 = 0.0021 mg/mL) radical scavenging activities and Ferric reducing antioxidant power (FRAP, 103.2998 mol/g) compared to other sesaminol derivatives. According to -log (IC50 of DPPH) and -log (IC50 of ABTS), CoMFA models were successfully established based on Q2 >0.5 (QDPPH 2 = 0.558, QABTS 2 = 0.534). The active site of sesaminol tended to be located on the hydroxyl group of the benzene ring (R1 position). A positive correlation between the bulky and positively charged groups at the 1H, 3H-furo [3, 4-c] furan group, the small, negatively charged groups at the R1 position and the antioxidant activity of sesaminol. This study provides an effective method to prepare sesaminol, reveals the structure-activity relationship of sesaminol and provides theoretical basis to design the novel compound.
Collapse
Affiliation(s)
- Jinhong Gao
- Research Centre for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Ruidan Wang
- Research Centre for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Xin Lu
- Research Centre for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Cong Jia
- Institute of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Qiang Sun
- Institute of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Jinian Huang
- Research Centre for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences.,Institute of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Songli Wei
- Institute of Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| | - Lin Ma
- Research Centre for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences
| |
Collapse
|
21
|
Abd El Hady Mousa M, Mansour H, Eid F, Mashaal A. Anti-inflammatory activity of ginger modulates macrophage activation against the inflammatory pathway of monosodium glutamate. J Food Biochem 2021; 45:e13819. [PMID: 34159624 DOI: 10.1111/jfbc.13819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
Monosodium glutamate (MSG) has been traditionally used as a flavor enhancer and is added to many foods. The chronic consumption of MSG has been suggested as causing toxicity, inflammation, obesity, type 2 diabetes, and pre-malignant changes. The use of medicinal plants and their products, such as ginger, against the effects of MSG has been suggested to have a protective effect. To evaluate the anti-inflammatory activity of ginger against the effects of MSG, we conducted a serial inflammatory analysis of MSG- and ginger-treated rats, focusing particularly on liver pathology. The consumption of ginger as an unconventional therapy against the effects of MSG resulted in significant anti-inflammatory activity. We found that it was possible to diagnose MSG-associated inflammatory pathogenesis using inflammatory mediators. Ginger consumption produced protective effects on health, minimized adverse effects, and may be applicable for food development and the treatment of many inflammatory diseases. PRACTICAL APPLICATIONS: The chronic administration of monosodium glutamate (MSG) as a flavor enhancer has been suggested to produce toxicity, inflammation, and pre-malignant changes in organs. Ginger has protective effects, with potent anti-inflammatory and anti-fibrotic activity against MSG administration. This study is the first to report that ginger modulated the inflammatory and fibrotic effects of MSG and improved immunological indices reflecting the involvement of inflammatory and fibrotic markers and polysaccharide content in the activation of macrophages. These findings support the further use of ginger as a supplement for food enhancement and as an anti-fibrotic, anti-inflammatory, and therapeutic agent in pharmaceutical therapies against autoimmune and inflammatory diseases, such as rheumatoid arthritis, lupus, and ulcerative colitis, as well as MSG-associated inflammatory diseases.
Collapse
Affiliation(s)
- Mai Abd El Hady Mousa
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Hemmat Mansour
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Fatma Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Wahyuningsih SPA, Mwendolwa AA, Winarni D, Anggreini RW, Mamuaya BKK. Protective Effect of Red Okra ( Abelmoschus esculentus (L.) Moench) Pods against Sodium Nitrite-Induced Liver Injury in Mice. Vet Med Int 2021; 2021:6647800. [PMID: 34221340 PMCID: PMC8221870 DOI: 10.1155/2021/6647800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Vegetables, drinking water, and preserved meats may contain sodium nitrite (NaNO2), which causes liver disease by inducing oxidative stress. Phytochemicals are highly recommended as an alternative to synthetic drugs and affordable medicines to treat liver disease because they have fewer or no side effects. Therefore, this study aims to determine the antioxidant and hepatoprotective potential of red okra fruit ethanol extract against NaNO2-induced liver damage. Thirty-six male mice were separated into six groups. The normal control group (WA) was given distilled water only, and the NaNO2 (SN) group was given only 50 mg/kg BW NaNO2. The other four groups (P1, P2, P3, and P4) were given NaNO2 and red okra ethanol extract at doses of 25, 50, 75, and 100 mg/kg BW, respectively. Gavage was administered orally for 21 consecutive days. Commercial kits define all biochemical parameters according to the manufacturer's instructions. Liver tissue staining followed standard protocols using hematoxylin and eosin. The study revealed that NaNO2 induction causes oxidative stress and damages the liver. The activity of antioxidant enzymes (superoxide dismutase and catalase) significantly increased in the groups treated (P2-P4) with ethanol extract of red okra (p < 0.05). Besides, the oxidants (malondialdehyde, F2-isoprostanes, and nitric oxide) in the liver homogenate significantly decreased in the P4 group, which were given red okra ethanol extract (p < 0.05). Likewise, red okra pods decreased significantly for the serum biochemical parameters of liver damage (aspartate aminotransferase, alkaline phosphatase, and alanine aminotransferase) in the P3 and P4 groups (p < 0.05). Then, it led to a restoration of the histological structure compared to exposed mice (SN), as the pathological scores decreased significantly in the P3 and P4 groups (p < 0.05), as well as the number of the necrotic and swollen liver cells was reduced. Hepatocytes returned to normal. The results showed that the ethanol extract of red okra fruit could be helpful as an affordable medicine. It is an antioxidant and hepatoprotective agent to protect the liver from damage caused by NaNO2.
Collapse
Affiliation(s)
| | - Adamu Ayubu Mwendolwa
- Department of Biological Sciences, Faculty of Sciences, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Rizki Wahyu Anggreini
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | | |
Collapse
|
23
|
Nogueira BCF, Campos AK, Alves RS, de Cássia Vieira Faria R, Sarandy MM, Fonseca E Silva F, Gonçalves RV. Oxidative and local histopathological response on skin wound of horses due to Amblyomma sculptum tick parasitism. Res Vet Sci 2021; 136:550-560. [PMID: 33892365 DOI: 10.1016/j.rvsc.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Amblyomma sculptum is frequently observed parasitizing horses, responsible for economic losses, damage to the host''s skin and transmission of pathogens. The oxidative stress profile and inflammatory mechanisms involved in this parasitism remain poorly studied. Thus, this study aimed to assess the histopathological changes and oxidative profile responses of horses in the attachment site of A. sculptum to find variations that indicate resistance and susceptibility between the breeds to this tick, based on the hypothesis that resistant animals have a greater inflammatory response and lesser number of attached ticks. We analyzed female horses of two breeds, Mangalarga Marchador and Breton Postier, naturally infested by Amblyomma sculptum. The ticks were counted and full-thickness excisional skin wounds of 10 mm were made on the perineal region on the attachment site of partially engorged females for histological and biochemical analyzes. The occurrence of the tick on the skin caused an increase in cellularity, inflammatory infiltrate, mast cells, pyknotic nuclei, and changes in the fibrous components of the matrix. The negative correlation observed between tick infestation and inflammatory response indicated that animals with greater inflammatory response tend to have less tick infestation. The oxidative stress markers, MDA, PCN and NO not present great variation; however, between the antioxidant enzymes levels, SOD was higher in tick attachment of Breton Postier skin, this may mean that these animals had higher oxidative enzymatic activity and consequently less tissue damage, while the GST dropped in the attachment sites compared to the control, which may indicate that animals were in a state of significant oxidative stress or raises the question of the possibility of enzymatic sequestration by ticks. No significant differences were found in the resistance of the two breeds since most of the analyzes varied due to the presence or absence of the tick attached to the skin. We draw attention to the importance of studying characteristics of the animal's antioxidant responses to the tick and the action of tick saliva on antioxidant enzymes and ROS because these characteristics are interdependent with the inflammatory response.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| | - Raul Santos Alves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | - Reggiani Vilela Gonçalves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Yan W, Lin G, Zhang R, Liang Z, Wu W. Studies on the bioactivities and molecular mechanism of antioxidant peptides by 3D-QSAR, in vitro evaluation and molecular dynamic simulations. Food Funct 2021; 11:3043-3052. [PMID: 32190865 DOI: 10.1039/c9fo03018b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two novel effective antioxidative tripeptides GWY and QWY were designed based on 3D-QSAR models. Their activities were confirmed by an improved TEAC assay. The experimental results showed that GWY and QWY possessed good antioxidant activity, equaling 3.32 mM TE and 2.97 mM TE respectively. This indicated that 3D-QSAR models possessed significant predictive capacity for drug design. In addition, molecular docking and molecular dynamics simulation were applied to reveal the potential molecular mechanism of antioxidant peptides. The result showed that GWY and QWY could enhance the stability of Keap1 by interacting with the key residues Arg415, Arg483, Arg380 and Ser555 in the active sites. Interestingly, the key residues were exactly the binding site of Nrf2 in the active pocket of Keap1. Thus, GWY and QWY could compete with Nrf2 for binding to Keap1. This demonstrated that the new tripeptides might have the ability to activate the signaling pathway Keap1-Nrf2-ARE and improve the antioxidant defense system of the body as well.
Collapse
Affiliation(s)
- Wenli Yan
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Guimei Lin
- School of Pharmacy, Shandong University, Jinan, 250012, People's Republic of China
| | - Rong Zhang
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Zhen Liang
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Wenjuan Wu
- Lab of Physical Chemistry, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|