1
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Identification and functional analysis of genetic variants of ISL1 gene promoter in human atrial septal defects. J Gene Med 2022; 24:e3450. [PMID: 36170181 DOI: 10.1002/jgm.3450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Atrial septal defect (ASD) is a common type of congenital heart disease. A gene promoter plays pivotal role in the disease development. This study was designed to investigate the pathological role of variants of the ISL1 gene promoter region in ASD patients. METHODS Total DNA extracted from 625 subjects, including 332 ASD patients and 293 healthy controls, was sequenced to identify variants in the promoter region of ISL1 gene. Further functional analyses of the variants were performed with dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). All possible binding sites of transcription factor affected by the identified variants were predicted using the JASPAR database. RESULTS Four variants in the ISL1 gene promoter were found only in patients with ASD by sequencing. Three of the four variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] significantly decreased the transcriptional activities compared with the wild-type ISL1 gene promoter (p < 0.05). The EMSA revealed that these variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] in the ISL1 gene promoter affected the number and affinity of binding sites of transcription factors. Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants. CONCLUSIONS These sequence variants identified from the promoter region of ISL1 gene in ASD patients are probably involved in the development of ASD by affecting the transcriptional activity and altering ISL1 levels. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of ASD.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuo Chen
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
2
|
Sarwar S, Shabana, Tahir A, Liaqat Z, Naseer S, Seme RS, Mehmood S, Shahid SU, Hasnain S. Study of variants associated with ventricular septal defects (VSDs) highlights the unique genetic structure of the Pakistani population. Ital J Pediatr 2022; 48:124. [PMID: 35870951 PMCID: PMC9308904 DOI: 10.1186/s13052-022-01323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background Ventricular septal defects (VSDs) are one of the leading causes of death due to cardiac anomalies during the first months of life. The prevalence of VSD in neonates is reported up to 4%. Despite the remarkable progress in medication, treatment and surgical procedure for VSDs, the genetic etiology of VSDs is still in infancy because of the complex genetic and environmental interactions. Methods Three hundred fifty subjects (200 VSD children and 150 healthy controls) were recruited from different pediatric cardiac units. Pediatric clinical and demographic data were collected. A total of six variants, rs1017 (ISL1), rs7240256 (NFATc1), rs36208048 (VEGF), variant of HEY2, rs11067075 (TBX5) and rs1801133 (MTHFR) genes were genotyped by tetra-ARMS PCR and PCR–RFLP methods. Results The results showed that in cases, the rs1017 (g.16138A > T) variant in the ISL1 gene has an allele frequency of 0.42 and 0.58 respectively for the T and A alleles, and 0.75 and 0.25 respectively in the controls. The frequencies of the AA, TA and TT genotypes were, 52%, 11% and 37% in cases versus 21%, 8% and 71% respectively in the controls. For the NFATc1 variant rs7240256, minor allele frequency (MAF) was 0.43 in cases while 0.23 in controls. For the variant in the VEGF gene, genotype frequencies were 0% (A), 32% (CA) and 68% (CC) in cases and 0.0%, 33% and 67% respectively in controls. The allele frequency of C and A were 0.84 and 0.16 in cases and 0.83 and 0.17 respectively in controls. The TBX5 polymorphism rs11067075 (g.51682G > T) had an allelic frequency of 0.44 and 0.56 respectively for T and G alleles in cases, versus 0.26 and 0.74 in the controls. We did not detect the presence of the HEY2 gene variant (g.126117350A > C) in our pediatric cohort. For the rs1801133 (g.14783C > T) variant in the MTHFR gene, the genotype frequencies were 25% (CC), 62% (CT) and 13% (TT) in cases, versus 88%, 10% and 2% in controls. The ISL1, NFATc1, TBX5 and MTHFR variants were found to be in association with VSD in the Pakistani pediatric cohort whilst the VEGF and HEY2 variants were completely absent in our cohort. Conclusion We propose that a wider programme of genetic screening of the Pakistani population for genetic markers in heart development genes would be helpful in reducing the risk of VSDs.
Collapse
|
3
|
Hao L, Ma J, Wu F, Ma X, Qian M, Sheng W, Yan T, Tang N, Jiang X, Zhang B, Xiao D, Qian Y, Zhang J, Jiang N, Zhou W, Chen W, Ma D, Huang G. WDR62 variants contribute to congenital heart disease by inhibiting cardiomyocyte proliferation. Clin Transl Med 2022; 12:e941. [PMID: 35808830 PMCID: PMC9270576 DOI: 10.1002/ctm2.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. Methods A total of 1320 unrelated CHD patients were enrolled in our study. Exome‐wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat‐containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR‐targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA‐seq and co‐immunoprecipitation. Results Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non‐coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle‐regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. Conclusions WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.
Collapse
Affiliation(s)
- Lili Hao
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiaojing Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Maoxiang Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Wei Sheng
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Tizhen Yan
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Ning Tang
- Department of Medical Genetics, Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Xin Jiang
- Medical Laboratory of Nantong ZhongKe, Nantong, Jiangsu
| | - Bowen Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Deyong Xiao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanyan Qian
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Duan Ma
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoying Huang
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.,Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
4
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Sarwar S, Ehsan F, Shabana, Tahir A, Jamil M, Shahid SU, Khan A, Hasnain S. First report of polymorphisms in MTRR, GATA4, VEGF, and ISL1 genes in Pakistani children with isolated ventricular septal defects (VSD). Ital J Pediatr 2021; 47:70. [PMID: 33757570 PMCID: PMC7989246 DOI: 10.1186/s13052-021-01022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ventricular septal defects (VSDs) are malformations in the septum separating the heart's ventricles. VSDs may present as a single anomaly (isolated/nonsyndromic VSD) or as part of a group of phenotypes (syndromic VSD). The exact location of the defect is crucial in linking the defect to the underlying genetic cause. The number of children visiting cardiac surgery units is constantly increasing. However, there are no representative data available on the genetics of VSDs in Pakistani children. METHODS Two hundred forty-two subjects (121 VSD children and 121 healthy controls) were recruited from pediatric cardiac units of Lahore. The clinical and demographic data of the subjects were collected. A total of four SNPs, one each from MTRR, GATA4, VEGF, and ISL1 genes were genotyped by PCR-RFLP. RESULTS The results showed that the minor allele (T) frequency (MAFs) for the MTRR gene variant rs1532268 (c.524C > T) was 0.20 and 0.41 in the controls and the cases, respectively, with the genotype frequencies 3, 35, 62% in the controls and 12, 59 and 29% in the cases for TT, CT, CC genotypes, respectively (allelic OR: 5.73, CI: 3.82-8.61, p-value: 5.11 × 10- 7). For the GATA4 variant rs104894073 (c.886G > A), the MAF for the controls and the cases was 0.16 and 0.37, respectively, the frequencies of AA, GA and GG genotypes were 2, 28, and 70% in the controls and 5, 64 and 31% of the cases (allelic OR: 3.08, CI: 2.00-4.74, p-value: 8.36 × 10- 8). The rs699947 (c.-2578C > A) of VEGF gene showed MAF 0.36 and 0.53 for the controls and cases, respectively, with the genotype frequencies 13, 42, and 45% in the controls and 22, 15, and 63% in the cases for the AA, CA, CC (allelic OR: 2.03, CI: 1.41-2.92, p-value: 0.0001). The ISL1 gene variant rs6867206 (g.51356860 T > C), the MAFs were 0.26 and 0.31 in the controls and cases, respectively. The genotype frequencies were 48, 52, 0% in the controls and 39, 61, 0% in the cases for TT, TC, CC genotypes (allelic OR: 0.27, CI: 0.85-1.89, p-value: 0.227). The MTRR, GATA4 and VEGF variants showed association while ISL1 variant did not appear to be associated with the VSD in the recruited cohort. CONCLUSION This first report in Pakistani children demonstrates that single nucleotide polymorphisms in genes encoding transcription factors, signaling molecules and structural heart genes involved in fetal heart development are associated with developmental heart defects., however further work is needed to validate the results of the current investigation.
Collapse
Affiliation(s)
- Sumbal Sarwar
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| | - Farah Ehsan
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| | - Shabana
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan.
| | - Amna Tahir
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| | - Mahrukh Jamil
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| | - Saleem Ullah Shahid
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| | - Asim Khan
- Ittefaq Trust Hospital, Lahore, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics, University of thePunjab, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Ding Z, Yang W, Yi K, Ding Y, Zhou D, Xie X, You T. Correlations between ISL1 rs1017 polymorphism and congenital heart disease risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e18715. [PMID: 31914083 PMCID: PMC6959884 DOI: 10.1097/md.0000000000018715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND ISL1 promotes cardiomyocyte differentiation and plays important roles in heart development. However, whether ISL1 rs1017 polymorphism is associated with the congenital heart disease (CHD) risk remains controversial. METHODS Five database including PubMed, Cochrane Library, ISI Web of Science, CNKI, and Wan Fang were searched by using key words "Insulin Gene Enhancer Protein ISL1" and "Single Nucleotide Polymorphism," and "Congenital Heart Disease." Five relative articles including 6 independent studies containing 2132 cases and 3812 controls were finally recruited to our study. Meta-analyses were performed by pooling odds ratios (ORs) and 95% confidence interval (CI) from included studies using STATA 12.0 software. RESULTS The associations between ISL1 rs1017 polymorphism and the risk of CHD were statistically significant under the allele model (T vs A; OR: 1.421; 95% CI: 1.072-1.882), heterozygous model (AT vs AA; OR: 1.342; 95% CI: 1.019-1.767), and dominant model (AT+ TT vs AA; OR: 1.466; 95% CI: 1.059-2.028). Sensitivity analysis indicated that the results were not stable. Subgroup analysis demonstrated that associations were found in Caucasians under the allele model and the heterozygous model (P < .05), but not the dominant model (P > .05). CONCLUSION In summary, our meta-analysis results suggest that the T allele of ISL1 rs1017 is a risk factor for CHD. However, further studies based on large sample size and multi-ethnic population should be conducted to further prove this correlation.
Collapse
Affiliation(s)
- Zhaohong Ding
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| | - Wenke Yang
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Kang Yi
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| | - Yunhan Ding
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | | | - Xiaodong Xie
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Tao You
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| |
Collapse
|
7
|
Wang Z, Song HM, Wang F, Zhao CM, Huang RT, Xue S, Li RG, Qiu XB, Xu YJ, Liu XY, Yang YQ. A New ISL1 Loss-of-Function Mutation Predisposes to Congenital Double Outlet Right Ventricle. Int Heart J 2019; 60:1113-1122. [DOI: 10.1536/ihj.18-685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Zhi Wang
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Hao-Ming Song
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine
| | - Cui-Mei Zhao
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
- Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|
8
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
9
|
Ma L, Wang J, Li L, Qiao Q, Di RM, Li XM, Xu YJ, Zhang M, Li RG, Qiu XB, Li X, Yang YQ. ISL1 loss-of-function mutation contributes to congenital heart defects. Heart Vessels 2018; 34:658-668. [PMID: 30390123 DOI: 10.1007/s00380-018-1289-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023]
Abstract
Congenital heart defect (CHD) is the most common form of birth deformity and is responsible for substantial morbidity and mortality in humans. Increasing evidence has convincingly demonstrated that genetic defects play a pivotal role in the pathogenesis of CHD. However, CHD is a genetically heterogeneous disorder and the genetic basis underpinning CHD in the vast majority of cases remains elusive. This study was sought to identify the pathogenic mutation in the ISL1 gene contributing to CHD. A cohort of 210 unrelated patients with CHD and a total of 256 unrelated healthy individuals used as controls were registered. The coding exons and splicing boundaries of ISL1 were sequenced in all study subjects. The functional effect of an identified ISL1 mutation was evaluated using a dual-luciferase reporter assay system. A novel heterozygous ISL1 mutation, c.409G > T or p.E137X, was identified in an index patient with congenital patent ductus arteriosus and ventricular septal defect. Analysis of the proband's pedigree revealed that the mutation co-segregated with CHD, which was transmitted in the family in an autosomal dominant pattern with complete penetrance. The nonsense mutation was absent in 512 control chromosomes. Functional analysis unveiled that the mutant ISL1 protein failed to transactivate the promoter of MEF2C, alone or in synergy with TBX20. This study firstly implicates ISL1 loss-of-function mutation with CHD in humans, which provides novel insight into the molecular mechanism of CHD, implying potential implications for genetic counseling and individually tailored treatment of CHD patients.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.,Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qi Qiao
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ruo-Min Di
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Xiu-Mei Li
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xun Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Yi-Qing Yang
- Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Cardiovascular Research Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China. .,Department of Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Kamar A, Fahed AC, Shibbani K, El-Hachem N, Bou-Slaiman S, Arabi M, Kurban M, Seidman JG, Seidman CE, Haidar R, Baydoun E, Nemer G, Bitar F. A Novel Role for CSRP1 in a Lebanese Family with Congenital Cardiac Defects. Front Genet 2017; 8:217. [PMID: 29326753 PMCID: PMC5741687 DOI: 10.3389/fgene.2017.00217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Despite an obvious role for consanguinity in congenital heart disease (CHD), most studies fail to document a monogenic model of inheritance except for few cases. We hereby describe a first-degree cousins consanguineous Lebanese family with 7 conceived children: 2 died in utero of unknown causes, 3 have CHD, and 4 have polydactyly. The aim of the study is to unveil the genetic variant(s) causing these phenotypes using next generation sequencing (NGS) technology. Targeted exome sequencing identified a heterozygous duplication in CSRP1 which leads to a potential frameshift mutation at position 154 of the protein. This mutation is inherited from the father, and segregates only with the CHD phenotype. The in vitro characterization demonstrates that the mutation dramatically abrogates its transcriptional activity over cardiac promoters like NPPA. In addition, it differentially inhibits the physical association of CSRP1 with SRF, GATA4, and with the newly described partner herein TBX5. Whole exome sequencing failed to show any potential variant linked to polydactyly, but revealed a novel missense mutation in TRPS1. This mutation is inherited from the healthy mother, and segregating only with the cardiac phenotype. Both TRPS1 and CSRP1 physically interact, and the mutations in each abrogate their partnership. Our findings add fundamental knowledge into the molecular basis of CHD, and propose the di-genic model of inheritance as responsible for such malformations.
Collapse
Affiliation(s)
- Amina Kamar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Akl C Fahed
- Department of Genetics, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Massachusetts General Hospital, Boston, MA, United States.,Division of Cardiology, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, United States
| | - Kamel Shibbani
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nehme El-Hachem
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Salim Bou-Slaiman
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Mariam Arabi
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| | - Mazen Kurban
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.,Department of Dermatology, American University of Beirut, Beirut, Lebanon.,Department of Dermatology, Columbia University, New York, NY, United States
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States.,Division of Cardiology, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, United States
| | - Rachid Haidar
- Department of Surgery, American University of Beirut, Beirut, Lebanon
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Fadi Bitar
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH. Cardiac stem cells: translation to human studies. Biophys Rev 2014; 7:127-139. [PMID: 28509972 DOI: 10.1007/s12551-014-0148-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
The discovery of multiple classes of cardiac progenitor cells in the adult mammalian heart has generated hope for their use as a therapeutic in heart failure. However, successful results from animal models have not always yielded similar findings in human studies. Recent Phase I/II trials of c-Kit (SCIPIO) and cardiosphere-based (CADUCEUS) cardiac progenitor cells have demonstrated safety and some therapeutic efficacy. Gaps remain in our understanding of the origins, function and relationships between the different progenitor cell families, many of which are heterogeneous populations with overlapping definitions. Another challenge lies in the limitations of small animal models in replicating the human heart. Cryopreserved human cardiac tissue provides a readily available source of cardiac progenitor cells and may help address these questions. We review important findings and relative unknowns of the main classes of cardiac progenitor cells, highlighting differences between animal and human studies.
Collapse
Affiliation(s)
- Zijun Ge
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Thi Y L Le
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145
| | | | - James J H Chong
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145.
| |
Collapse
|
12
|
Zhang Q, Yang Z, Jia Z, Liu C, Guo C, Lu H, Chen P, Ma K, Wang W, Zhou C. ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer 2014; 13:181. [PMID: 25070240 PMCID: PMC4125377 DOI: 10.1186/1476-4598-13-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, is essential for the heart, motor neuron and pancreas development. Recently, ISL-1 has been found in some types of human cancers. However, how ISL-1 exerts the role in tumor development is not clear. Methods and results The expression of ISL-1 was assessed in 211 human lymphoma samples and 23 normal lymph node samples. Immunohistochemistry results demonstrated a markedly higher expression of ISL-1 in 75% of non-Hodgkin lymphoma (NHL) samples compared with that in normal lymph nodes or Hodgkin lymphoma (HL) samples. CCK-8 analysis, cell cycle assay and xenograft model were performed to characterize the association between ISL-1 expression level and biological functions in NHL. The results showed that ISL-1 overexpression obviously promoted NHL cells proliferation, changed the cell cycle distribution in vitro and significantly enhanced xenografted lymphoma development in vivo. Real-time PCR, Western blot, luciferase assay and ChIP assay were used to explore the potential regulatory targets of ISL-1 and the results demonstrated that ISL-1 activated the c-Myc expression in NHL by direct binding to a conserved binding site on the c-Myc enhancer. Further results revealed that ISL-1 could be positively regulated by the c-Jun N-terminal kinase (JNK) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Both the JNK and JAK/STAT signaling inhibitors could significantly suppressed the growth of NHL cells through the down-regulation of ISL-1 as demonstrated by CCK-8 and Western blot assays. Bioinformatic analysis and luciferase assay exhibited that ISL-1 was a novel target of p-STAT3 and p-c-jun. ChIP, Co-IP and ChIP-re-IP analysis revealed that ISL-1 could participate with p-STAT3 and p-c-Jun to form a p-STAT3/p-c-Jun/ISL-1 transcriptional complex that binds directly on the ISL-1 promoter, demonstrating a positive feedback regulatory mechanism for ISL-1 expression in NHL. Conclusions Our results provide the first evidence that ISL-1 is tightly linked to NHL proliferation and development by promoting c-Myc transcription, and its aberrant expression was regulated by p-STAT3/p-c-Jun/ISL-1 complex activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xueyuan Road, 100191 Beijing, China.
| | | |
Collapse
|