1
|
Sohi HS, Gill MIS, Chhuneja P, Arora NK, Maan SS, Singh J. Construction of Genetic Linkage Map and Mapping QTL Specific to Leaf Anthocyanin Colouration in Mapping Population 'Allahabad Safeda' × 'Purple Guava (Local)' of Guava ( Psidium guajava L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2014. [PMID: 35956491 PMCID: PMC9370526 DOI: 10.3390/plants11152014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
In the present investigation, F1 hybrids were developed in guava (Psidium guajava L.) by crossing high leaf-anthocyanin reflective-index (ARI1) content cultivars purple guava (local) 'PG', 'CISH G-1' and low leaf-ARI1 content cultivar Seedless 'SL' with Allahabad Safeda 'AS'. On the basis of phenotypic observations, high ARI1 content was observed in the cross 'AS' × 'PG' (0.214). Further, an SSR-markers-based genetic linkage map was developed from a mapping population of 238 F1 individuals derived from cross 'AS' × 'PG'. The linkage map comprised 11 linkage groups (LGs), spanning 1601.7 cM with an average marker interval distance of 29.61 cM between adjacent markers. Five anthocyanin-content related gene-specific markers from apple were tested for parental polymorphism in the genotypes 'AS' and 'PG'. Subsequently, a marker, viz., 'MdMYB10F1', revealed a strong association with leaf anthocyanin content in the guava mapping population. QTL (qARI-6-1) on LG6 explains much of the variation (PVE = 11.51% with LOD = 4.67) in levels of leaf anthocyanin colouration. This is the first report of amplification/utilization of apple anthocyanin-related genes in guava. The genotypic data generated from the genetic map can be further exploited in future for the enrichment of linkage maps and for identification of complex quantitative trait loci (QTLs) governing economically important fruit quality traits in guava.
Collapse
Affiliation(s)
- Harjot Singh Sohi
- Department of Fruit Science, College of Horticulture and Forestry Punjab Agricultural University, Ludhiana 141004, India; (M.I.S.G.); (N.K.A.); (S.S.M.)
| | - Manav Indra Singh Gill
- Department of Fruit Science, College of Horticulture and Forestry Punjab Agricultural University, Ludhiana 141004, India; (M.I.S.G.); (N.K.A.); (S.S.M.)
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India;
| | - Naresh Kumar Arora
- Department of Fruit Science, College of Horticulture and Forestry Punjab Agricultural University, Ludhiana 141004, India; (M.I.S.G.); (N.K.A.); (S.S.M.)
| | - Sukhjinder Singh Maan
- Department of Fruit Science, College of Horticulture and Forestry Punjab Agricultural University, Ludhiana 141004, India; (M.I.S.G.); (N.K.A.); (S.S.M.)
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| |
Collapse
|
2
|
Huang H, Abid M, Lin M, Wang R, Gu H, Li Y, Qi X. Comparative Transcriptome Analysis of Different Actinidia arguta Fruit Parts Reveals Difference of Light Response during Fruit Coloration. BIOLOGY 2021; 10:biology10070648. [PMID: 34356503 PMCID: PMC8301191 DOI: 10.3390/biology10070648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Kiwifruit coloration is an important agronomic trait used to determine fruit quality, and light plays a vital role in the coloration process. The effect of light on fruit coloration has been studied in many species, but differences in the photoresponse of different fruit parts during fruit coloration is unclear in kiwifruit (Actinidia arguta). In this study, peel and core with bagging and non-bagging treatment at two stages were selected to perform high throughput RNA sequencing. A total of 100,417 unigenes (25,186 unigenes with length beyond 1000 bp) were obtained, of which 37,519 unigenes were annotated in functional databases. GO and KEGG enrichment results showed that 'plant hormone signal transduction' and 'carbon metabolism' were the key pathways in peel and core coloration, respectively. A total of 27 MYB-related TFs (transcription factors) were differentially expressed in peel and core. An R2R3-MYB typed TF, AaMYB308like, possibly served as a candidate objective, which played a vital role in light-inducible fruit coloration based on bioinformatics analysis. Transient overexpression of AaMYB308like suggested overexpression of AaMYB308like elevated transcription level of NtCHI in Nicotiana tabacum leaves. Integration of all these results imply that AaMYB308like might be served as a light-responsive transcription factor to regulate anthocyanin biosynthesis in A. arguta. Moreover, our study provided important insights into photoreponse mechanisms in A. arguta coloration.
Collapse
|
3
|
Zarei A, Erfani-Moghadam J, Mozaffari M. Phylogenetic analysis among some pome fruit trees of Rosaceae family using RAPD markers. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1276414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Abdolkarim Zarei
- Department of Biotechnology, Faculty of Agriculture, Jahrom University, Jahrom, Iran
| | - Javad Erfani-Moghadam
- Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Mohsen Mozaffari
- Department of Horticultural Sciences, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
4
|
Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, Moffett P, Chao CT, Schwaninger H, Fazio G, Zhong GY, Myles S. Genome to Phenome Mapping in Apple Using Historical Data. THE PLANT GENOME 2016; 9. [PMID: 27898813 DOI: 10.3835/plantgenome2015.11.0113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Apple ( X Borkh.) is one of the world's most valuable fruit crops. Its large size and long juvenile phase make it a particularly promising candidate for marker-assisted selection (MAS). However, advances in MAS in apple have been limited by a lack of phenotype and genotype data from sufficiently large samples. To establish genotype-phenotype relationships and advance MAS in apple, we extracted over 24,000 phenotype scores from the USDA-Germplasm Resources Information Network (GRIN) database and linked them with over 8000 single nucleotide polymorphisms (SNPs) from 689 apple accessions from the USDA apple germplasm collection clonally preserved in Geneva, NY. We find significant genetic differentiation between Old World and New World cultivars and demonstrate that the genetic structure of the domesticated apple also reflects the time required for ripening. A genome-wide association study (GWAS) of 36 phenotypes confirms the association between fruit color and the MYB1 locus, and we also report a novel association between the transcription factor, NAC18.1, and harvest date and fruit firmness. We demonstrate that harvest time and fruit size can be predicted with relatively high accuracies ( > 0.46) using genomic prediction. Rapid decay of linkage disequilibrium (LD) in apples means millions of SNPs may be required for well-powered GWAS. However, rapid LD decay also promises to enable extremely high resolution mapping of causal variants, which holds great potential for advancing MAS.
Collapse
|
5
|
Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. Biotechnology and apple breeding in Japan. BREEDING SCIENCE 2016; 66:18-33. [PMID: 27069388 PMCID: PMC4780799 DOI: 10.1270/jsbbs.66.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/23/2015] [Indexed: 05/11/2023]
Abstract
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
Collapse
Affiliation(s)
- Megumi Igarashi
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
| | - Yoshimichi Hatsuyama
- Apple Research Institute, Aomori Prefectural Industrial Technology Research Center,
Fukutami 24, Botandaira, Kuroishi, Aomori 036-0332,
Japan
| | - Takeo Harada
- Department of Agriculture and Life Science, Hirosaki University,
Bunkyouchou 3, Hirosaki, Aomori 036-8563,
Japan
| | - Tomoko Fukasawa-Akada
- Hirosaki Industrial Research Institute, Aomori Prefectural Industrial Technology Research Center,
Ogimachi 1-1-8, Hirosaki, Aomori 036-8104,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
6
|
Ampomah-Dwamena C, Driedonks N, Lewis D, Shumskaya M, Chen X, Wurtzel ET, Espley RV, Allan AC. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content. BMC PLANT BIOLOGY 2015; 15:185. [PMID: 26215656 PMCID: PMC4517366 DOI: 10.1186/s12870-015-0573-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/17/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. RESULTS The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. CONCLUSION The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.
Collapse
Affiliation(s)
- Charles Ampomah-Dwamena
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Nicky Driedonks
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
- Institute for Wetland and Water Research, Radboud University, Postbus 9010, 6500 GL, Nijmegen, Netherlands.
| | - David Lewis
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - Maria Shumskaya
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA.
| | - Xiuyin Chen
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, 250 Bedford Park Blvd. West, Bronx, New York, NY, 10468, USA.
- The Graduate School and University Center-CUNY, 365 Fifth Ave, New York, NY, 10016-4309, USA.
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|