1
|
Wang J, Li C, Song P, Qiu R, Song R, Li X, Ni Y, Zhao H, Liu H, Li S. Molecular and Biological Characterization of the First Mymonavirus Identified in Fusarium oxysporum. Front Microbiol 2022; 13:870204. [PMID: 35531277 PMCID: PMC9069137 DOI: 10.3389/fmicb.2022.870204] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
We characterized a negative sense single-stranded RNA mycovirus, Fusarium oxysporum mymonavirus 1 (FoMyV1), isolated from the phytopathogenic fungus Fusarium oxysporum. The genome of FoMyV1 is 10,114 nt, including five open reading frames (ORFs1–5) that are non-overlapping and linearly arranged. The largest, ORF5, encodes a large polypeptide L containing a conserved regions corresponding to Mononegavirales RNA-dependent RNA polymerase and mRNA-capping enzyme region V; the putative functions of the remaining four ORFs are unknown. The L protein encoded by ORF5 shared a high amino acid identity of 65% with that of Hubei rhabdo-like virus 4, a mymonavirus that associated with arthropods. However, the L protein of FoMyV1 also showed amino acid similarity (27–36%) with proteins of mynonaviruses that infect the phytopathogenic fungi Sclerotinia sclerotiorum and Botrytis cineaea. Phylogenetic analysis based on L protein showed that FoMyV1 is clustered with the members of the genus Hubramonavirus in the family Mymonaviridae. Moreover, we found that FoMyV1 could successfully transfer by hyphal anastomosis to a virus-free strain. FoMyV1 reduced the vegetative growth and conidium production of its fungal host but did not alter its virulence. To the best of our knowledge, this is not only the first mymonavirus described in the species F. oxysporum, but also the first Hubramonavirus species found to infect a fungus. However, the incidence of FoMyV1 infections in the tested F. oxysporum strains was only 1%.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chengjun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Pengyu Song
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rui Qiu
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruifang Song
- Tobacco Company of Henan Province, Zhengzhou, China
| | - Xiaojie Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yunxia Ni
- Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui Zhao
- Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongyan Liu
- Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Henan Key Laboratory of Crop Pest Control, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Hongyan Liu,
| | - Shujun Li
- Key Laboratory for Green Preservation and Control of Tobacco Diseases and Pest in Huanghuai Growing Area, Institute of Tobacco, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Shujun Li,
| |
Collapse
|
2
|
Zheng D, Hu X, Fu X, Xia Z, Zhou Y, Peng L, Yu Q, Peng X. Flowerlike Ni-NiO composite as magnetic solid-phase extraction sorbent for analysis of carbendazim and thiabendazole in edible vegetable oils by liquid chromatography-mass spectrometry. Food Chem 2021; 374:131761. [PMID: 34896946 DOI: 10.1016/j.foodchem.2021.131761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/30/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023]
Abstract
A rapid, selective, and sensitive method was developed for the detection of carbendazim and thiabendazole in edible vegetable oil. Two benzimidazole analytes were pre-concentrated by magnetic solid phase extraction (MSPE) using flowerlike Ni-NiO composite as sorbents and followed by LC-MS/MS analysis. The flowerlike Ni-NiO composite sorbent displayed a high affinity towards benzimidazole analytes due to the reversible coordination interaction between the Ni(Ⅱ) ion and the electron-donating imidazole group. In comparison to the previous methods, this procedure is less time-consuming and simpler during sample preparation. The parameters affecting the extraction efficiency were optimized in detail. The method was validated according to SANTE/12682/2019. The limits of detection were in the range of 0.001-0.003 mg•kg-1. The recoveries ranged from 89.3% to 110.7% with inter-day and inter-day precision less than 10.9%. The results indicate that flowerlike Ni-NiO composite might be a promising alternative for MSPE of benzimidazole compounds in foods.
Collapse
Affiliation(s)
- Dan Zheng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Xizhou Hu
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Xiaofang Fu
- Technology Center of Wuhan Customs District, Wuhan 430036, Hubei, PR China
| | - Zhenzhen Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Youxiang Zhou
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Lijun Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China
| | - Qiongwei Yu
- Department of Chemistry, Wuhan University, Wuhan, Hubei 430072, PR China.
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Nutritional Quality and Safety of Agro Products, Wuhan 430064, Hubei, PR China.
| |
Collapse
|
3
|
Garge RK, Cha HJ, Lee C, Gollihar JD, Kachroo AH, Wallingford JB, Marcotte EM. Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast. Genetics 2021; 219:iyab101. [PMID: 34849907 PMCID: PMC8633126 DOI: 10.1093/genetics/iyab101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.
Collapse
Affiliation(s)
- Riddhiman K Garge
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hye Ji Cha
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jimmy D Gollihar
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- US Army Research Laboratory—South, Austin, TX 78758, USA
| | - Aashiq H Kachroo
- The Department of Biology, Centre for Applied Synthetic Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Hou YP, Mao XW, Lin SP, Song XS, Duan YB, Wang JX, Zhou MG. Activity of a novel succinate dehydrogenase inhibitor fungicide pyraziflumid against Sclerotinia sclerotiorum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 145:22-28. [PMID: 29482728 DOI: 10.1016/j.pestbp.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 06/08/2023]
Abstract
Pyraziflumid is a novel member of succinate dehydrogenase inhibitor fungicides (SDHI). In this study, baseline sensitivity of Sclerotinia sclerotiorum (Lib.) de Bary to pyraziflumid was determined using 105 strains collected during 2015 and 2017 from different geographical regions in Jiangsu Province of China, and the average EC50 value was 0.0561 (±0.0263)μg/ml for mycelial growth. There was no cross-resistance between pyraziflumid and the widely used fungicides carbendazim, dimethachlon and the phenylpyrrole fungicide fludioxonil. After pyraziflumid treated, hyphae were contorted with offshoot of top increasing, cell membrane permeability increased markedly, oxalic acid content significantly decreased and mycelial respiration was strongly inhibited. But the number and dry weight of sclerotia did not change significantly. The protective and curative activity test of pyraziflumid suggested that pyraziflumid had great control efficiency against S. sclerotiorum on detached rapeseed leaves, and protective activity was better than curative activity. These results will contribute to us on evaluating the potential of the new SDHI fungicide pyraziflumid for management of diseases caused by S. sclerotiorum and understanding the mode of action of pyraziflumid against S. sclerotiorum.
Collapse
Affiliation(s)
- Yi-Ping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xue-Wei Mao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shi-Peng Lin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-Shi Song
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Bing Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian-Xin Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ming-Guo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
5
|
Di YL, Cong ML, Zhang R, Zhu FX. Hormetic Effects of Trifloxystrobin on Aggressiveness of Sclerotinia sclerotiorum. PLANT DISEASE 2016; 100:2113-2118. [PMID: 30682995 DOI: 10.1094/pdis-03-16-0403-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sclerotinia sclerotiorum is a devastating ascomycete plant pathogen with an extremely wide host range. Fungicides are still the mainstay for control of this pathogen, and stimulations to mycelial growth and aggressiveness by subtoxic doses of fungicides carbendazim and dimethachlon have been reported. The present study assessed hormetic effects of the quinone outside inhibitor (QoI) fungicide trifloxystrobin on aggressiveness of S. sclerotiorum. Trifloxystrobin at 0.0001, 0.0005, and 0.001 μg/ml exerted significant stimulatory effects on aggressiveness to potted rapeseed plants, and the highest percent stimulation were 20.5 and 24.2% for isolates HB15 and SX11, respectively. At 18 h postinoculation (HPI), initial necrotic lesions were visible to the naked eye on leaves treated with trifloxystrobin, whereas no obvious disease symptoms were discerned for the nontreated control. At 24, 36, and 48 HPI, aggressiveness stimulation was more obvious than at 18 HPI. Scanning electron microscopic observations demonstrated that no mycelia were detected on the nontreated leaves at 4 HPI; by contrast, mycelia were observed on leaves treated with trifloxystrobin at 0.0001 μg/ml. At 8 and 12 HPI, there were more mycelia and infecting hyphae on the treated leaves than on the nontreated control. These results indicated that fungal stimulation had occurred in the first 4 and 8 HPI, suggesting that direct stimulation was likely to be the underlying mechanism for hormetic actions of trifloxystrobin. Pretreatment with trifloxystrobin did not significantly affect subsequent mycelial growth on PDA or aggressiveness to detached rapeseed leaves in the absence of trifloxystrobin. However, in the presence of trifloxystrobin, mycelial growth and aggressiveness were significantly (P < 0.05) greater for the pretreatment with trifloxystrobin at 0.003 and 0.03 μg/ml compared with the nonpretreatment control, indicating that a prior exposure to the fungicide may undermine its subsequent effectiveness. These studies will raise our awareness of fungicide hormesis and have important implications for judicious application of fungicides.
Collapse
Affiliation(s)
- Ya-Li Di
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Long Cong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fu-Xing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|