1
|
Martín-Valbuena J, Gestoso-Uzal N, Justel-Rodríguez M, Isidoro-García M, Marcos-Vadillo E, Lorenzo-Hernández SM, Criado-Muriel MC, Prieto-Matos P. PTEN hamartoma tumor syndrome: Clinical and genetic characterization in pediatric patients. Childs Nerv Syst 2024; 40:1689-1697. [PMID: 38407606 PMCID: PMC11111493 DOI: 10.1007/s00381-024-06301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
OBJECTIVE The aim of this study was to provide a full characterization of a cohort of 11 pediatric patients diagnosed with PTEN hamartoma tumor syndrome (PHTS). PATIENTS AND METHODS Eleven patients with genetic diagnostic of PHTS were recruited between February 2019 and April 2023. Clinical, imaging, demographic, and genetic data were retrospectively collected from their hospital medical history. RESULTS Regarding clinical manifestations, macrocephaly was the leading sign, present in all patients. Frontal bossing was the most frequent dysmorphism. Neurological issues were present in most patients. Dental malformations were described for the first time, being present in 27% of the patients. Brain MRI showed anomalies in 57% of the patients. No tumoral lesions were present at the time of the study. Regarding genetics, 72% of the alterations were in the tensin-type C2 domain of PTEN protein. We identified four PTEN genetic alterations for the first time. CONCLUSIONS PTEN mutations appear with a wide variety of clinical signs and symptoms, sometimes associated with phenotypes which do not fit classical clinical diagnostic criteria for PHTS. We recommend carrying out a genetic study to establish an early diagnosis in children with significant macrocephaly. This facilitates personalized monitoring and enables anticipation of potential PHTS-related complications.
Collapse
Affiliation(s)
| | - Nerea Gestoso-Uzal
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - María Isidoro-García
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | - Elena Marcos-Vadillo
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Clinical Biochemistry Department, University Hospital of Salamanca, Salamanca, Spain
| | | | - M Carla Criado-Muriel
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain.
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain.
| | - Pablo Prieto-Matos
- Department of Pediatrics, University Hospital of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
- Department of Biomedical and Diagnostic Sciences, University of Salamanca, Salamanca, Spain
| |
Collapse
|
2
|
Dai S, Xu M, Pang Q, Sun J, Lin X, Chu X, Guo C, Xu J. Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. BURNS & TRAUMA 2024; 12:tkad036. [PMID: 38434721 PMCID: PMC10905499 DOI: 10.1093/burnst/tkad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 03/05/2024]
Abstract
Background Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA. Methods The expression of CD206+ M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway. Results We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway. Conclusions The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.
Collapse
Affiliation(s)
- Siya Dai
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Mingyuan Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Qianqian Pang
- Department of Plastic Surgery, Ningbo Second Hospital, 41 Xibei Street, Ningbo, China
| | - Jiaqi Sun
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Xiaohu Lin
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Gongshu District, Hangzhou, China
| | - Xi Chu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Chunyi Guo
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| |
Collapse
|
3
|
Liu S, Yang H, Song J, Zhang Y, Abualhssain ATH, Yang B. Keloid: Genetic susceptibility and contributions of genetics and epigenetics to its pathogenesis. Exp Dermatol 2022; 31:1665-1675. [PMID: 36052657 DOI: 10.1111/exd.14671] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Keloid, characterized by fibroproliferative disorders of the skin, can be developed in people of different genders, ages, and ethnicities. Keloid can appear in any part of the body but are especially common on the earlobe, upper torso, and triangular muscle. The genetic heterogeneity and susceptibility of KD (keloid) vary among different races and ethnicities. Studies have found that multiple loci on multiple chromosomes are associated with the pathogenesis of KD, and specific gene variants may also be involved. Despite multiple investigations attempting to uncover the etiology of keloid formation, the genetic mechanism of keloid formation remains unknown. To establish a foundation for a better understanding of the genetics and epigenetics of keloids, we have evaluated and summarized current studies which are mostly related to heredity, genetic polymorphisms, predisposing gene, DNA methylation, and non-coding RNA. We also discussed the problems and potential of genetic and epigenetic investigations of keloids, with the goal of developing new therapeutic approaches to enhance the prognosis of keloid patients.
Collapse
Affiliation(s)
- Shuangfei Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huan Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jinru Song
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | | | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
5
|
Chuang HY, Hsu LY, Pan CM, Pikatan NW, Yadav VK, Fong IH, Chen CH, Yeh CT, Chiu SC. The E3 Ubiquitin Ligase NEDD4-1 Mediates Temozolomide-Resistant Glioblastoma through PTEN Attenuation and Redox Imbalance in Nrf2-HO-1 Axis. Int J Mol Sci 2021; 22:10247. [PMID: 34638586 PMCID: PMC8549703 DOI: 10.3390/ijms221910247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. METHODS The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. RESULTS NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. CONCLUSIONS These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.
Collapse
Affiliation(s)
- Hao-Yu Chuang
- School of Medicine, China Medical University, Taichung 40447, Taiwan;
- Translational Cell Therapy Center, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 70967, Taiwan
- Division of Neurosurgery, Tainan Municipal An-Nan Hospital-China Medical University, Tainan 70967, Taiwan
- Division of Neurosurgery, China Medical University Beigang Hospital, Beigang Township 65152, Taiwan
| | - Li-Yun Hsu
- Department of Emergency Medicine, Shuang-Ho Hospital-Taipei Medical University, New Taipei City 23561, Taiwan;
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
- Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Ming Pan
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Narpati Wesa Pikatan
- Doctorate Program of Medical and Health Science, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Vijesh Kumar Yadav
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Iat-Hang Fong
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
| | - Chao-Hsuan Chen
- Biomedicine Institution, Department of Neurosurgery, China Medical University, Taichung 40447, Taiwan;
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan; (V.K.Y.); (I.-H.F.)
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Shao-Chih Chiu
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40447, Taiwan
- Drug Development Center, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
6
|
Liu X, Chen W, Zeng Q, Ma B, Li Z, Meng T, Chen J, Yu N, Zhou Z, Long X. Single-cell RNA-seq reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids. J Invest Dermatol 2021; 142:124-135.e11. [PMID: 34242659 DOI: 10.1016/j.jid.2021.06.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Keloids are a benign dermal fibrotic disorder with features similar to malignant tumors. keloids remain a therapeutic challenge and lack medical therapies, which is partially due to the incomplete understanding of the pathogenesis mechanism. We performed single-cell RNA-seq of 28,064 cells from keloid skin tissue and adjacent relatively normal tissue. Unbiased clustering revealed substantial cellular heterogeneity of keloid tissue, which included 21 clusters assigned to 11 cell lineages. We observed significant expansion of fibroblast and vascular endothelial cell subpopulations in keloids, reflecting their strong association with keloid pathogenesis. Comparative analyses were performed to identify the dysregulated pathways, regulators and ligand-receptor interactions in keloid fibroblasts and vascular endothelial cells. Our results highlight the roles of transforming growth factor beta and Eph-ephrin signaling pathways in both the aberrant fibrogenesis and angiogenesis of keloids. Critical regulators probably involved in the fibrogenesis of keloid fibroblasts, such as TWIST1, FOXO3 and SMAD3, were identified. TWIST1 inhibitor harmine could significantly suppress the fibrogenesis of keloid fibroblasts. In addition, tumor-related pathways were activated in keloid fibroblasts and vascular endothelial cells, which may be responsible for the malignant features of keloids. Our study put insights into the pathogenesis of keloids and provides potential targets for medical therapies.
Collapse
Affiliation(s)
- Xuanyu Liu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Wen Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhujun Li
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Tian Meng
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jie Chen
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
7
|
Shen W, Zhang Z, Ma J, Lu D, Lyu L. The Ubiquitin Proteasome System and Skin Fibrosis. Mol Diagn Ther 2021; 25:29-40. [PMID: 33433895 DOI: 10.1007/s40291-020-00509-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
The ubiquitin proteasome system (UPS) is a highly conserved way to regulate protein turnover in cells. The UPS hydrolyzes and destroys variant or misfolded proteins and finely regulates proteins involved in differentiation, apoptosis, and other biological processes. This system is a key regulatory factor in the proliferation, differentiation, and collagen secretion of skin fibroblasts. E3 ubiquitin protein ligases Parkin and NEDD4 regulate multiple signaling pathways in keloid. Tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4) binding with deubiquitinase USP10 can induce p53 destabilization and promote keloid-derived fibroblast proliferation. The UPS participates in the occurrence and development of hypertrophic scars by regulating the transforming growth factor (TGF)-β/Smad signaling pathway. An initial study suggests that TNFα-induced protein 3 (TNFAIP3) polymorphisms may be significantly associated with scleroderma susceptibility in individuals of Caucasian descent. Sumoylation and multiple ubiquitin ligases, including Smurfs, UFD2, and KLHL42, play vital roles in scleroderma by targeting the TGF-β/Smad signaling pathway. In the future, drugs targeting E3 ligases and deubiquitinating enzymes have great potential for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Wanlu Shen
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Zhigang Zhang
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jiaqing Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Di Lu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
8
|
Hao Y, Dong X, Zhang M, Liu H, Zhu L, Wang Y. Effects of hyperbaric oxygen therapy on the expression levels of the inflammatory factors interleukin-12p40, macrophage inflammatory protein-1β, platelet-derived growth factor-BB, and interleukin-1 receptor antagonist in keloids. Medicine (Baltimore) 2020; 99:e19857. [PMID: 32312010 PMCID: PMC7220187 DOI: 10.1097/md.0000000000019857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Our study aimed to screen and explore the expression of inflammatory factors in keloid patients and to investigate how hyperbaric oxygen (HBO) therapy affects the expression levels of interleukin-12p40 (IL-12p40), macrophage inflammatory protein-1β (MIP-1β), platelet-derived growth factor-BB (PDGF-BB), and interleukin-1 receptor antagonist (IL-1Ra). OBJECTIVE 30 patients were randomly selected and divided into the following 3 groups: keloid samples from keloid patients treated with HBO therapy (A), keloid samples from keloid patients treated without HBO therapy (B), and normal control skin samples derived from individuals who had no clear scarring (C). Each group included 10 samples. METHODS Inflammatory factors in the keloid tissues were measured with the MILLIPLEX multiplexed Luminex system. Hematoxylin and eosin staining, immunohistochemical staining, and Western blotting were used to observe the morphological differences in different tissues and the expression levels. RESULTS The expression levels of inflammatory mediators, including IL-12p40, MIP-1β, PDGF-BB, and IL-1Ra, in keloid tissues were significantly different from those in samples of normal skin. Hematoxylin and eosin staining showed significantly greater inflammatory infiltration in keloid tissue. Significantly different expression levels were observed in group A, B, and C. CONCLUSION Significantly altered levels of inflammatory factors in the samples from keloid patients were observed, suggesting that formation of a keloid is potentially related to inflammatory responses. HBO therapy could significantly affect the expression levels of IL-12p40, MIP-1β, PDGF-BB, and IL-1Ra, indicating that the effects of HBO therapy are associated with the attenuation of inflammatory responses.
Collapse
Affiliation(s)
- Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Xinhang Dong
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Lin Zhu
- Department of Plastic Surgery, Peking Union Medical College Hospital
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital
| |
Collapse
|
9
|
Wang Y, Yuan B, Qiao L, Yang H, Li X. STAT3 operates as a novel transcription factor that regulates NEDD4 in Keloid. Biochem Biophys Res Commun 2019; 518:638-643. [DOI: 10.1016/j.bbrc.2019.08.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022]
|
10
|
|
11
|
Fibroproliferative genes are preferentially expressed in central centrifugal cicatricial alopecia. J Am Acad Dermatol 2018; 79:904-912.e1. [PMID: 29913259 DOI: 10.1016/j.jaad.2018.05.1257] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Central centrifugal cicatricial alopecia (CCCA) is a primary cicatricial alopecia that most commonly affects women of African descent. Like CCCA, fibroproliferative disorders (FPDs) such as keloids, atherosclerosis, and fibroids are characterized by low-grade inflammation and irritation, resulting in end-stage fibrosis. OBJECTIVE We sought to determine whether fibroproliferative genes were up-regulated in patients with CCCA. METHODS A total of 5 patients with biopsy-proven CCCA were recruited for this study. Two scalp biopsy specimens were obtained from each patient; 1 from CCCA-affected vertex scalp and 1 from the unaffected occipital scalp. Microarray analysis was performed to determine the differential gene expression patterns. RESULTS There was an upregulation of genes implicated in FPDs in patients with CCCA. Specifically, we noted increased expression of platelet derived growth factor gene (PDGF), collagen I gene (COL I), collagen III gene (COL III), matrix metallopeptidase 1 gene (MMP1), matrix metallopeptidase 2 gene (MMP2), matrix metallopeptidase 7 gene (MMP7), and matrix metallopeptidase 9 gene (MMP9) in affected scalp compared with in unaffected scalp. Significant overlap in the canonic pathways was noted between patients with CCCA and patients with both atherosclerosis and hepatic fibrosis (P < .001). LIMITATIONS Small sample size and the use of whole skin tissue for analysis. CONCLUSION We have identified the upregulation of critical genes implicated in FPDs in the gene expression profile of patients with CCCA. These findings may help identify future therapeutic targets for this otherwise difficult-to-treat condition.
Collapse
|