1
|
Ferreira da Silva CV, da Silva CJF, Bacila Sade Y, Naressi Scapin SM, Thompson FL, Thompson C, da Silva-Boghossian CM, de Oliveira Santos E. Prospecting Specific Protein Patterns for High Body Mass Index (BMI), Metabolic Syndrome and Type 2 Diabetes in Saliva and Blood Plasma From a Brazilian Population. Proteomics Clin Appl 2024; 18:e202300238. [PMID: 39073314 DOI: 10.1002/prca.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Obesity and its associated metabolic disorders, such as T2DM and MeS, are a growing public health problem worldwide. Our goal was the identification of protein patterns that are uniquely characteristic of higher BMI, MeS, and T2DM in a Brazilian population. EXPERIMENTAL DESIGN Saliva and plasma proteomes, clinical parameters were analyzed in a population from the state of Rio de Janeiro, Brazil, a mixed-race population. Volunteers were sorted by their BMI into normal (n = 29), overweight (n = 25), and obese (n = 15) and were compared with individuals with MeS (n = 23) and T2DM (n = 11). RESULTS The Random Forest (RF) predictive model revealed that three clinical variables, BMI, HOMA-IR, and fasting blood glucose, are most important for predicting MeS and T2DM. A total of six plasmatic proteins (ABCD4, LDB1, PDZ, podoplanin, lipirin-alpha-3, and WRS) and six salivary proteins (hemoglobin subunit beta, POTEE, T cell receptor alpha variable 9-2, lactotransferrin, cystatin-S, carbonic anhydrase 6), are enhanced in T2DM and in MeS. CONCLUSIONS AND CLINICAL RELEVANCE Our data revealed similar alterations in protein composition across individuals with abnormal weight gain, T2DM, and MeS. This finding confirms the close link between these conditions at the molecular level in the studied population, potentially enhancing our understanding of these diseases and paving the way for the development of novel diagnostic tools.
Collapse
Affiliation(s)
| | - Carlos José Ferreira da Silva
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| | - Youssef Bacila Sade
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| | | | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | | - Eidy de Oliveira Santos
- Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
- Programa da Pós-graduação em Biomedicina Translacional, Universidade do Grande Rio -Unigranrio, Duque de Caxias, Brazil
| |
Collapse
|
2
|
Shen CY, Lu CH, Cheng CF, Li KJ, Kuo YM, Wu CH, Liu CH, Hsieh SC, Tsai CY, Yu CL. Advanced Glycation End-Products Acting as Immunomodulators for Chronic Inflammation, Inflammaging and Carcinogenesis in Patients with Diabetes and Immune-Related Diseases. Biomedicines 2024; 12:1699. [PMID: 39200164 PMCID: PMC11352041 DOI: 10.3390/biomedicines12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Increased production of advanced glycation end products (AGEs) among reducing sugars (glucose, fructose, galactose, or ribose) and amino acids/proteins via non-enzymatic Maillard reaction can be found in lifestyle-related disease (LSRD), metabolic syndrome (MetS), and obesity and immune-related diseases. Increased serum levels of AGEs may induce aging, diabetic complications, cardiovascular diseases (CVD), neurodegenerative diseases (NDD), cancer, and inflamm-aging (inflammation with immunosenescence). The Maillard reaction can also occur among reducing sugars and lipoproteins or DNAs to alter their structure and induce immunogenicity/genotoxicity for carcinogenesis. AGEs, as danger-associated molecular pattern molecules (DAMPs), operate via binding to receptor for AGE (RAGE) or other scavenger receptors on cell surface to activate PI3K-Akt-, P38-MAPK-, ERK1/2-JNK-, and MyD88-induced NF-κB signaling pathways to mediate various pathological effects. Recently, the concept of "inflamm-aging" became more defined, and we have unveiled some interesting findings in relation to it. The purpose of the present review is to dissect the potential molecular basis of inflamm-aging in patients with diabetes and immune-mediated diseases caused by different AGEs.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chiao-Feng Cheng
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital-Hsinchu Branch, # 2, Section 1, Shengyi Road, Hsinchu County 302058, Taiwan;
| | - Chin-Hsiu Liu
- Department of Internal Medicine, National Taiwan University Hospital-Yunlin Branch, # 579, Section 2, Yunlin Road, Yunlin County 640203, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| | - Chang-Youh Tsai
- Department of Internal Medicine, Fu-Jen Catholic University Hospital, College of Medicine, Fu-Jen Catholic University, # 69 Guizi Road, New Taipei City 24352, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, # 7 Chung-Shan South Road, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-F.C.); (K.-J.L.)
| |
Collapse
|
3
|
Jarosławska J, Kordas B, Miłowski T, Juranek JK. Mammalian Diaphanous1 signalling in neurovascular complications of diabetes. Eur J Neurosci 2024; 59:2628-2645. [PMID: 38491850 DOI: 10.1111/ejn.16310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Over the past few decades, diabetes gradually has become one of the top non-communicable disorders, affecting 476.0 million in 2017 and is predicted to reach 570.9 million people in 2025. It is estimated that 70 to 100% of all diabetic patients will develop some if not all, diabetic complications over the course of the disease. Despite different symptoms, mechanisms underlying the development of diabetic complications are similar, likely stemming from deficits in both neuronal and vascular components supplying hyperglycaemia-susceptible tissues and organs. Diaph1, protein diaphanous homolog 1, although mainly known for its regulatory role in structural modification of actin and related cytoskeleton proteins, in recent years attracted research attention as a cytoplasmic partner of the receptor of advanced glycation end-products (RAGE) a signal transduction receptor, whose activation triggers an increase in proinflammatory molecules, oxidative stressors and cytokines in diabetes and its related complications. Both Diaph1 and RAGE are also a part of the RhoA signalling cascade, playing a significant role in the development of neurovascular disturbances underlying diabetes-related complications. In this review, based on the existing knowledge as well as compelling findings from our past and present studies, we address the role of Diaph1 signalling in metabolic stress and neurovascular degeneration in diabetic complications. In light of the most recent developments in biochemical, genomic and transcriptomic research, we describe current theories on the aetiology of diabetes complications, highlighting the function of the Diaph1 signalling system and its role in diabetes pathophysiology.
Collapse
Affiliation(s)
- Julia Jarosławska
- Department of Biological Functions of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Bernard Kordas
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Tadeusz Miłowski
- Department of Emergency Medicine, School of Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Judyta K Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
4
|
Yang Y, Zhang C, Jiang Y, He Y, Cai J, Liang L, Chen Z, Pan S, Hua C, Wu K, Wang L, Zhang Z. Harnessing cytokine-induced killer cells to accelerate diabetic wound healing: an approach to regulating post-traumatic inflammation. Regen Biomater 2024; 11:rbad116. [PMID: 38333727 PMCID: PMC10850840 DOI: 10.1093/rb/rbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
Impaired immunohomeostasis in diabetic wounds prolongs inflammation and cytokine dysfunction, thus, delaying or preventing wound-surface healing. Extensive clinical studies have been conducted on cytokine-induced killer (CIK) cells recently, as they can be easily proliferated using a straightforward, inexpensive protocol. Therefore, the function of CIK cells in regulating inflammatory environments has been drawing attention for clinical management. Throughout the current investigation, we discovered the regenerative capacity of these cells in the challenging environment of wounds that heal poorly due to diabetes. We demonstrated that the intravenous injection of CIK cells can re-establish a proregenerative inflammatory microenvironment, promote vascularization and, ultimately, accelerate skin healing in diabetic mice. The results indicated that CIK cell treatment affects macrophage polarization and restores the function of regenerative cells under hyperglycemic conditions. This novel cellular therapy offers a promising intervention for clinical applications through specific inflammatory regulation functions.
Collapse
Affiliation(s)
- Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Cheng Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yuan Jiang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Yijun He
- Department of Osteoarthropathy and Sports Medicine, Panyu Central Hospital, Guangzhou 511400, P. R. China
| | - Jiawei Cai
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Lin Liang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhaohuan Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Sicheng Pan
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Chu Hua
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Keke Wu
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| | - Zhiyong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, Department of Orthopaedic Surgery, Medical Technology and Related Equipment Research for Spinal Injury Treatment, City Key Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong 510150, P. R. China
| |
Collapse
|
5
|
Xie Q, Ma L, Xiao Z, Yang M, Chen M. Role of profilin-1 in vasculopathy induced by advanced glycation end products (AGEs). J Diabetes Complications 2023; 37:108415. [PMID: 36989867 DOI: 10.1016/j.jdiacomp.2023.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
AIMS To construct a simple and feasible rat model to mimic diabetic vasculopathy by chronic injection of advanced glycation end products (AGEs) and further determine the role of profilin-1 in vasculopathy in AGE-injection rats. METHODS Sprague-Dawley rats were injected with AGEs-BSA (25 mg/kg/day) for 0, 20, 30, 40, and 60 days by caudal vein. Then, the morphological changes in the aorta, heart, and kidney and the expression of profilin-1 were assessed. In cultured endothelial cells, shRNA profilin-1 was used to clarify the role of profilin-1 in AGEs-induced vascular endothelial lesions and inflammatory reactions. RESULTS The aorta, heart, and kidney of the AGE-injection rats had obvious morphological changes. Also, the indicators of vascular remodeling in the aorta significantly increased, accompanied by the increased expression of profilin-1 in the aorta, heart, and kidney and polysaccharide content on the kidney basement membrane. In addition, the protein level of profilin-1 was markedly upregulated in the aorta of AGEs-injected rats and endothelial cells incubated with AGEs. shRNA profilin-1 markedly attenuated the upregulated expression of profilin-1, receptor for AGEs (RAGE), and NF-κB in endothelial cells incubated with AGEs, as well as reduced the high levels of ICAM-1, IL-8, TNF-α, ROS, and apoptosis induced by AGEs. CONCLUSIONS Exogenous AGEs can mimic diabetic vasculopathy in vivo to some extent and increase profilin-1 expression in the target organs of diabetic complications. Blockade of profilin-1 attenuates vascular lesions and inflammatory reactions, suggesting its critical role in the metabolic memory mediated by AGEs.
Collapse
Affiliation(s)
- Qiying Xie
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liping Ma
- Department of Cardiology, The First Affiliated Hospital of Shangdong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, Shandong 250014, China
| | - Zhilin Xiao
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mei Yang
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Meifang Chen
- Department of Geriatric Cardiology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
6
|
Yang Y, Wang L, Zhou Y, He Y, Lin S, Zeng Y, Zhou Y, Li W, He Z, Zhao Q, Chen L, Li Z, Wang W, Zhang ZY. Antioxidant-enriched autologous biogel promoted diabetic wound healing by remodeling inherent posttraumatic inflammatory patterning and restoring compromised microenvironment homeostasis. Regen Biomater 2022; 9:rbac023. [PMID: 35529048 PMCID: PMC9071060 DOI: 10.1093/rb/rbac023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Successful wound healing depends on the reconstruction of proper tissue homeostasis, particularly in the posttraumatic inflammatory tissue microenvironment. Diabetes jeopardizes tissues’ immune homeostasis in cutaneous wounds, causing persistent chronic inflammation and cytokine dysfunction. Previously, we developed an autologous regeneration factor (ARF) technology to extract the cytokine composite from autologous tissue to restore immune homeostasis and promote wound healing. However, treatment efficacy was significantly compromised in diabetic conditions. Therefore, we proposed that a combination of melatonin and ARF, which is beneficial for proper immune homeostasis reconstruction, could be an effective treatment for diabetic wounds. Our research showed that the utilization of melatonin-mediated ARF biogel (AM gel) promoted diabetic wound regeneration at a more rapid healing rate. RNA-seq analysis showed that AM gel treatment could restore more favorable immune tissue homeostasis with unique inflammatory patterning as a result of the diminished intensity of acute and chronic inflammation. Currently, AM gel could be a novel and promising therapeutic strategy for diabetic wounds in clinical practice through favorable immune homeostatic reconstructions in the tissue microenvironment and proper posttraumatic inflammation patterning.
Collapse
Affiliation(s)
- Yixi Yang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Le Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
- Medical Technology and Related Equipment Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yonglin Zhou
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yijun He
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Shaozhang Lin
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yuwei Zeng
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Yunhe Zhou
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Wei Li
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Shunde District, Foshan, P. R. China
| | - Zaopeng He
- Hand and Foot Surgery & Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Shunde District, Foshan, P. R. China
| | - Qi Zhao
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Lihao Chen
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Zijie Li
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Wenhao Wang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P. R. China
| |
Collapse
|