1
|
Karpagavalli M, Sivagurunathan S, Panda TS, Srikakulam N, Arora R, Dohadwala L, Tiwary BK, Sadras SR, Arunachalam JP, Pandi G, Chidambaram S. piRNAs in the human retina and retinal pigment epithelium reveal a potential role in intracellular trafficking and oxidative stress. Mol Omics 2024; 20:248-264. [PMID: 38314503 DOI: 10.1039/d3mo00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Long considered active only in the germline, the PIWI/piRNA pathway is now known to play a significant role in somatic cells, especially neurons. In this study, piRNAs were profiled in the human retina and retinal pigment epithelium (RPE). Furthermore, RNA immunoprecipitation with HIWI2 (PIWIL4) in ARPE19 cells yielded 261 piRNAs, and the expression of selective piRNAs in donor eyes was assessed by qRT-PCR. Intriguingly, computational analysis revealed complete and partial seed sequence similarity between piR-hsa-26131 and the sensory organ specific miR-183/96/182 cluster. Furthermore, the expression of retina-enriched piR-hsa-26131 was positively correlated with miR-182 in HIWI2-silenced Y79 cells. In addition, the lnc-ZNF169 sequence matched with two miRNAs of the let-7 family, and piRNAs, piR-hsa-11361 and piR-hsa-11360, which could modulate the regulatory network of retinal differentiation. Interestingly, we annotated four enriched motifs among the piRNAs and found that the piRNAs containing CACAATG and CTCATCAKYG motifs were snoRNA-derived piRNAs, which are significantly associated with developmental functions. However, piRNAs consisting of ACCACTANACCAC and AKCACGYTCSC motifs were mainly tRNA-derived fragments linked to stress response and sensory perception. Additionally, co-expression network analysis revealed cell cycle control, intracellular transport and stress response as the important biological functions regulated by piRNAs in the retina. Moreover, loss of piRNAs in HIWI2 knockdown ARPE19 confirmed altered expression of targets implicated in intracellular transport, circadian clock, and retinal degeneration. Moreover, piRNAs were dysregulated under oxidative stress conditions, indicating their potential role in retinal pathology. Therefore, we postulate that piRNAs, miRNAs, and lncRNAs might have a functional interplay during retinal development and functions to regulate retinal homeostasis.
Collapse
Affiliation(s)
| | - Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - T Sayamsmruti Panda
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Reety Arora
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry-607402, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| |
Collapse
|
2
|
Zhang M, Shi J, Zhu Y, Pan H, Song L, Deng H. Polystyrene nanoplastics induce vascular stenosis via regulation of the PIWI-interacting RNA expression profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123441. [PMID: 38272162 DOI: 10.1016/j.envpol.2024.123441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
Nanoplastics (NPs) have become common worldwide and attracted increasing attention due to their serious toxic effects. Owing to their higher surface area and volume ratios and ability to easily enter tissues, NPs impose more serious toxic effects than microplastics. However, the effect of NP exposure on vascular stenosis remains unclear. To measure the effects of polystyrene NP (PS-NP) exposure on vascular toxicity, we conducted analyses of blood biochemical parameters, pathological histology, high-throughput sequencing, and bioinformatics. Red fluorescent PS-NPs (100 nm) were effectively uptake by mouse vascular arterial tissue. The uptake of PS-NPs resulted in vascular toxicity, including alterations in lipid metabolism and thickening of the arterial wall. Based on PIWI-interacting RNA (piRNA) sequencing, 1547 and 132 differentially expressed piRNAs (DEpiRNAs) were detected in the PS-NP treatment group after 180 and 30 days, including 787 and 86 upregulated and 760 and 46 downregulated compared with the control group, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the target genes of DEpiRNAs were mostly involved in cell growth and cell motility-related signaling, such as the MAPK signaling pathway. This is the first study to highlight the alteration in piRNA levels in mouse vascular arterial tissue after PS-NP exposure. This study adds to the knowledge regarding the regulatory mechanism of pathological changes induced by PS-NP exposure.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China.
| | - Jun Shi
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Yiqian Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huichao Pan
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Lei Song
- Division of Cardiology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 200336, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Yu H, Zhang X, Wang X, Chen W, Lao W, Chen Y. MiR-99a-5p Inhibits the Proliferation and Migration of Human Retinal Microvascular Endothelial Cells by Targeting NOX4. Horm Metab Res 2023; 55:142-148. [PMID: 36630972 DOI: 10.1055/a-1982-3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Diabetic retinopathy is one of the common microvascular complications of diabetes, and it is the main cause of vision loss among working-age people. This study interpreted the roles of miR-99a-5p in DR patients and human retinal microvascular endothelial cell (hRMECs) injury induced by high glucose. The expression of miR-99a-5p was detected in patients with NDR, NPDR, and PDR. The indictive impacts of miR-99a-5p were tested by the ROC curve, and the link between miR-99a-5p and clinical information was verified by the Pearson test. HG was used to instruct cell models. The CCK-8 and transwell methods were performed to detect the proliferative and migrated cells. The targeted relationship was explained by luciferase activity. The content of miR-99a-5p was gradually lessened in NPDR and PDR patients. MiR-99a-5p might differentiate DR patients from NDR patients and PDR patients from NPDR patients. The interconnection between miR-99a-5p and clinical factors was endorsed in all DR patients. Overexpression of miR-99a-5p assuaged the abnormality of cell migration and proliferation of hRMECs triggered by HG. NOX4 was a downstream signaling component of miR-99a-5p. In conclusion, MiR-99a-5p protected hRMECs against HG damage, and the miR-99a-5p might be a novel target for diagnosis of DR.
Collapse
Affiliation(s)
- Haizhen Yu
- Department of Clinical Laboratory, Zhucheng People's Hospital, Weifang, China
| | - Xu Zhang
- Department of Ophthalmology, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuyang Wang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| | - Wangling Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| | - Wei Lao
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| | - Yunxin Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, Haikou, Hainan, China
| |
Collapse
|
4
|
Li C, Zhao Z, Zhao S. Annexin A2 promotes development of retinal neovascularization through PI3K/ AKT signaling pathway. Curr Eye Res 2021; 47:579-589. [PMID: 34894941 DOI: 10.1080/02713683.2021.2018467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE Retinal Neovascularization (RNV) is a pathological characteristic of ocular diseases. Annexin A2 (ANXA2) plays important roles in RNV while the mechanism remains unclear. The study aimed to explore relationship between ANXA2 and PI3K/AKT signaling pathway in RNV. METHODS We used human retinal vascular endothelial cells (HRECs) and oxygen-induced retinopathy (OIR) mice model to show ANXA2 can promote the development of RNV through PI3K/AKT signaling pathway. We divided HRECs into six groups by infecting lentivirus containing appropriate plasmid and adding corresponding solution. Assays showing ability of HRECs were performed in vitro. Mice were randomly divided into three groups and treated accordingly. RESULTS Expression of ANXA2 and activity of PI3K/AKT signaling pathway in HRECs were detected. RNV and expression of ANXA2 in mice retinas were detected. Results showed that ANXA2 expression is positively related with RNV-forming ability of HRECs in vitro and development of RNV in vivo while low activity of PI3K/AKT signaling pathway could attenuate the role of ANXA2. CONCLUSIONS We can make ANXA2 and PI3K/ AKT signaling pathway as a promising target for the regulation of pathological neovascularization of the retina, which also provides a novel idea for effective prevention and treatment of diseases related to RNV in future.
Collapse
Affiliation(s)
- Chenyue Li
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Zichang Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China
| | - Shihong Zhao
- Department of Ophthalmology, the First Affiliated Hospital, Naval Military Medical University (Second Military Medical University), Shanghai, China.,Nanjing Aier Eye Hospital, Aier School of Ophthalmology, Central South University, Changsha, Hunan Province, China
| |
Collapse
|