1
|
Baptista Pereira P, Torrejón E, Ferreira I, Carvalho AS, Teshima A, Sousa-Lima I, Beck HC, Costa-Silva B, Matthiesen R, Macedo MP, de Oliveira RM. Proteomic Profiling of Plasma- and Gut-Derived Extracellular Vesicles in Obesity. Nutrients 2024; 16:736. [PMID: 38474865 DOI: 10.3390/nu16050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Obesity entails metabolic alterations across multiple organs, highlighting the role of inter-organ communication in its pathogenesis. Extracellular vesicles (EVs) are communication agents in physiological and pathological conditions, and although they have been associated with obesity comorbidities, their protein cargo in this context remains largely unknown. To decipher the messages encapsulated in EVs, we isolated plasma-derived EVs from a diet-induced obese murine model. Obese plasma EVs exhibited a decline in protein diversity while control EVs revealed significant enrichment in protein-folding functions, highlighting the importance of proper folding in maintaining metabolic homeostasis. Previously, we revealed that gut-derived EVs' proteome holds particular significance in obesity. Here, we compared plasma and gut EVs and identified four proteins exclusively present in the control state of both EVs, revealing the potential for a non-invasive assessment of gut health by analyzing blood-derived EVs. Given the relevance of post-translational modifications (PTMs), we observed a shift in chromatin-related proteins from glycation to acetylation in obese gut EVs, suggesting a regulatory mechanism targeting DNA transcription during obesity. This study provides valuable insights into novel roles of EVs and protein PTMs in the intricate mechanisms underlying obesity, shedding light on potential biomarkers and pathways for future research.
Collapse
Affiliation(s)
- Pedro Baptista Pereira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Estefania Torrejón
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Ferreira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Akiko Teshima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Inês Sousa-Lima
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisboa, Portugal
| | - Rune Matthiesen
- Computational and Experimental Biology Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Paula Macedo
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Rita Machado de Oliveira
- Metabolic Diseases Research Group, iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
2
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Structural Lessons From the Mutant Proinsulin Syndrome. Front Endocrinol (Lausanne) 2021; 12:754693. [PMID: 34659132 PMCID: PMC8514764 DOI: 10.3389/fendo.2021.754693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Insight into folding mechanisms of proinsulin has been provided by analysis of dominant diabetes-associated mutations in the human insulin gene (INS). Such mutations cause pancreatic β-cell dysfunction due to toxic misfolding of a mutant proinsulin and impairment in trans of wild-type insulin secretion. Anticipated by the "Akita" mouse (a classical model of monogenic diabetes mellitus; DM), this syndrome illustrates the paradigm endoreticulum (ER) stress leading to intracellular proteotoxicity. Diverse clinical mutations directly or indirectly perturb native disulfide pairing leading to protein misfolding and aberrant aggregation. Although most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships, but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of non-syndromic Type 2 DM. Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of non-foldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
| | | | | | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Dhayalan B, Chatterjee D, Chen YS, Weiss MA. Diabetes mellitus due to toxic misfolding of proinsulin variants. Mol Metab 2021:101229. [PMID: 33823319 DOI: 10.1016/j.molmet.2021.101229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dominant mutations in the human insulin gene (INS) lead to pancreatic β-cell dysfunction and diabetes mellitus (DM) due to toxic misfolding of a mutant proinsulin. Analogous to a classical mouse model of monogenic DM ("Akita"), this syndrome highlights the susceptibility of β-cells to endoreticulum (ER) stress due to protein misfolding and aberrant aggregation. SCOPE OF REVIEW Diverse clinical mutations directly or indirectly perturb native disulfide pairing. Whereas most introduce or remove a cysteine (Cys; leading in either case to an unpaired thiol group), non-Cys-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the hormone's evolution has been constrained not only by structure-function relationships but also by the susceptibility of its single-chain precursor to impaired foldability. An intriguing hypothesis posits that INS overexpression in response to peripheral insulin resistance likewise leads to chronic ER stress and β-cell dysfunction in the natural history of nonsyndromic Type 2 DM. MAJOR CONCLUSIONS Cryptic contributions of conserved residues to folding efficiency, as uncovered by rare genetic variants, define molecular links between biophysical principles and the emerging paradigm of Darwinian medicine: Biosynthesis of proinsulin at the edge of nonfoldability provides a key determinant of "diabesity" as a pandemic disease of civilization.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Alhaidan Y, Christesen HT, Højlund K, Al Balwi MA, Brusgaard K. A novel gene in early childhood diabetes: EDEM2 silencing decreases SLC2A2 and PXD1 expression, leading to impaired insulin secretion. Mol Genet Genomics 2020; 295:1253-1262. [PMID: 32556999 DOI: 10.1007/s00438-020-01695-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Monogenic diabetes is a rare type of diabetes resulting from mutations in a single gene. To date, most cases remain genetically unexplained, posing a challenge for accurate diabetes treatment, which leads to on a molecular diagnosis. Therefore, a trio exome scan was performed in a lean, nonsyndromic Caucasian girl with diabetes onset at 2½ years who was negative for autoantibodies. The lean father had diabetes from age 11 years. A novel heterozygous mutation in EDEM2, c.1271G > A; p.Arg424His, was found in the proband and father. Downregulation of Edem2 in rat RIN-m β-cells resulted in a decrease in insulin genes Ins1 to 67.9% (p = 0.006) and Ins2 to 16.8% (p < 0.001) and reduced insulin secretion by 60.4% (p = 0.0003). Real-time PCR revealed a major disruption of endocrine pancreas-specific genes, including Glut2 and Pxd1, with mRNA suppression to 54% (p < 0.001) and 85.7% (p = 0.01), respectively. No other expression changes related to stress or apoptotic genes were observed. Extended clinical follow-up involving ten family members showed that two healthy individuals carried the same mutation with no sign of diabetes in the clinical screen except for a slight increase in IA-2 antibody in one of them, suggesting incomplete penetrance. In conclusion, we describe EDEM2 as a likely/potential novel diabetes gene, in which inhibition in vitro reduces the expression of β-cell genes involved in the glucose-stimulated insulin secretion (GSIS) pathway, leading to an overall suppression of insulin secretion but not apoptosis.
Collapse
Affiliation(s)
- Yazeid Alhaidan
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark. .,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark. .,Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia. .,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Henrik Thybo Christesen
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Hans Christian Andersen Children's Hospital, Odense University Hospital, 5000, Odense C, Denmark.,Odense Pancreases Center, Odense C, Denmark
| | - Kurt Højlund
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Steno Diabetes Center Odense, Odense University Hospital, 5000, Odense, Denmark
| | - Mohammed A Al Balwi
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, Riyadh, 11426, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, J.B. Windsløws Vej 4, 5000, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, 5000, Odense C, Denmark.,Near East University, Nicosia, Cyprus
| |
Collapse
|
5
|
Abstract
Type two diabetes (T2D) is a challenging metabolic disorder for which a cure has not yet been found. Its etiology is associated with several phenomena, including significant loss of insulin-producing, beta cell (β cell) mass via progressive programmed cell death and disrupted cellular autophagy. In diabetes, the etiology of β cell death and the role of mitochondria are complex and involve several layers of mechanisms. Understanding the dynamics of those mechanisms could permit researchers to develop an intervention for the progressive loss of β cells. Currently, diabetes research has shifted toward rejuvenation and plasticity technology and away from the simplified approach of hormonal compensation. Diabetes research is currently challenged by questions such as how to enhance cell survival, decrease apoptosis and replenish β cell mass in diabetic patients. In this review, we discuss evidence that β cell development and mass formation are guided by specific signaling systems, particularly hormones, transcription factors, and growth factors, all of which could be manipulated to enhance mass growth. There is also strong evidence that β cells are dynamically active cells, which, under specific conditions such as obesity, can increase in size and subsequently increase insulin secretion. In certain cases of aggressive or advanced forms of T2D, β cells become markedly impaired, and the only alternatives for maintaining glucose homeostasis are through partial or complete cell grafting (the Edmonton protocol). In these cases, the harvesting of an enriched population of viable β cells is required for transplantation. This task necessitates a deep understanding of the pharmacological agents that affect β cell survival, mass, and function. The aim of this review is to initiate discussion about the important signals in pancreatic β cell development and mass formation and to highlight the process by which cell death occurs in diabetes. This review also examines the attempts that have been made to recover or increase cell mass in diabetic patients by using various pharmacological agents.
Collapse
Affiliation(s)
- Husnia I Marrif
- Department of Pharmacology, Faculty of Medicine, University of Benghazi Benghazi, Libya
| | - Salma I Al-Sunousi
- Department of Histology and Anatomy, Faculty of Medicine, University of Benghazi Benghazi, Libya
| |
Collapse
|
6
|
Wright J, Birk J, Haataja L, Liu M, Ramming T, Weiss MA, Appenzeller-Herzog C, Arvan P. Endoplasmic reticulum oxidoreductin-1α (Ero1α) improves folding and secretion of mutant proinsulin and limits mutant proinsulin-induced endoplasmic reticulum stress. J Biol Chem 2013; 288:31010-8. [PMID: 24022479 DOI: 10.1074/jbc.m113.510065] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon chronic up-regulation of proinsulin synthesis, misfolded proinsulin can accumulate in the endoplasmic reticulum (ER) of pancreatic β-cells, promoting ER stress and type 2 diabetes mellitus. In Mutant Ins-gene-induced Diabetes of Youth (MIDY), misfolded mutant proinsulin impairs ER exit of co-expressed wild-type proinsulin, limiting insulin production and leading to eventual β-cell death. In this study we have investigated the hypothesis that increased expression of ER oxidoreductin-1α (Ero1α), despite its established role in the generation of H2O2, might nevertheless be beneficial in limiting proinsulin misfolding and its adverse downstream consequences. Increased Ero1α expression is effective in promoting wild-type proinsulin export from cells co-expressing misfolded mutant proinsulin. In addition, we find that upon increased Ero1α expression, some of the MIDY mutants themselves are directly rescued from ER retention. Secretory rescue of proinsulin-G(B23)V is correlated with improved oxidative folding of mutant proinsulin. Indeed, using three different variants of Ero1α, we find that expression of either wild-type or an Ero1α variant lacking regulatory disulfides can rescue mutant proinsulin-G(B23)V, in parallel with its ability to provide an oxidizing environment in the ER lumen, whereas beneficial effects were less apparent for a redox-inactive form of Ero1. Increased expression of protein disulfide isomerase antagonizes the rescue provided by oxidatively active Ero1. Importantly, ER stress induced by misfolded proinsulin was limited by increased expression of Ero1α, suggesting that enhancing the oxidative folding of proinsulin may be a viable therapeutic strategy in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Jordan Wright
- From the Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Diabetes mellitus due to the toxic misfolding of proinsulin variants. FEBS Lett 2013; 587:1942-50. [PMID: 23669362 DOI: 10.1016/j.febslet.2013.04.044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 02/06/2023]
Abstract
Dominant mutations in the human insulin gene can lead to pancreatic β-cell dysfunction and diabetes mellitus due to toxic folding of a mutant proinsulin. Analogous to a classical mouse model (the Akita mouse), this monogenic syndrome highlights the susceptibility of human β-cells to endoreticular stress due to protein misfolding and aberrant aggregation. The clinical mutations directly or indirectly perturb native disulfide pairing. Whereas the majority of mutations introduce or remove a cysteine (leading in either case to an unpaired residue), non-cysteine-related mutations identify key determinants of folding efficiency. Studies of such mutations suggest that the evolution of insulin has been constrained not only by its structure and function, but also by the susceptibility of its single-chain precursor to impaired foldability.
Collapse
|