1
|
Xu DQ, Geng JX, Gao ZK, Fan CY, Zhang BW, Han X, He LQ, Dai L, Gao S, Yang Z, Zhang Y, Arshad M, Fu Y, Mu XQ. To explore the potential combined treatment strategy for colorectal cancer: Inhibition of cancer stem cells and enhancement of intestinal immune microenvironment. Eur J Pharmacol 2025; 998:177533. [PMID: 40120791 DOI: 10.1016/j.ejphar.2025.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The antibiotic salinomycin, a well-known cancer stem cell inhibitor, may impact the diversity of the intestinal microbiota in colorectal cancer (CRC) mice, which plays a pivotal role in shaping the immune system. This study explores the anti-cancer effects and mechanisms of combining salinomycin and fecal microbiota transplantation (FMT) in treating CRC. METHODS FMT was given via enema, while salinomycin was injected intraperitoneally into the CRC mouse model induced by azoxymethane/dextran sodium sulfate. RESULTS In CRC mice, a large number of LGR5-labeled cancer stem cells and severe disturbances in the intestinal microbiota were observed. Interestingly, salinomycin inhibited the proliferation of cancer stem cells without exacerbating the microbial disorder as expected. In comparison to salinomycin treatment, the combination of salinomycin and FMT significantly improved pathological damage and restored intestinal microbial diversity, which is responsible for shaping the anti-cancer immune microenvironment. The supplementation of FMT significantly increased the levels of propionic acid and butyric acid while also promoting the infiltration of CD8+ T cells and Ly6G+ neutrophils, as well as reducing F4/80+ macrophage recruitment. Notably, cytokines that were not impacted by salinomycin exhibited robust reactions to alterations in the gut microbiota. These included pro-inflammatory factors (IL6, IL12b, IL17, and IL22), chemokine-like protein OPN, and immunosuppressive factor PD-L1. CONCLUSIONS Salinomycin plays the role of "eliminating pathogenic qi," targeting cancer stem cells; FMT plays the role of "strengthening vital qi," reversing the intestinal microbiota disorder and enhancing anti-cancer immunity. They have a synergistic effect on the development of CRC.
Collapse
Affiliation(s)
- Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Geng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Chao-Yuan Fan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qian He
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lin Dai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuo Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhou Yang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Muhammad Arshad
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yin Fu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
2
|
Liu H, Zhang J, Rao Y, Jin S, Zhang C, Bai D. Intratumoral microbiota: an emerging force in diagnosing and treating hepatocellular carcinoma. Med Oncol 2024; 41:300. [PMID: 39453562 DOI: 10.1007/s12032-024-02545-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer in the world and its incidence and mortality are increasing year by year, frequently diagnosed at an advanced stage. Traditional treatments such as surgery, chemotherapy, and radiotherapy have limited efficacy, so new diagnostic and treatment strategies are urgently needed. Recent research has discovered that intratumoral microbiota significantly influences the development, progression, and metastasis of HCC by modulating inflammation, immune responses, and cellular signaling pathways. Intratumoral microbiota contributes to the pathologic process of HCC by influencing the tumor microenvironment and altering the function of immune system. This article reviews the mechanism of intratumoral microbiota in HCC and anticipates the future possibilities of intratumoral microbiota-based therapeutic strategies for HCC management. This emerging field provides fresh insights into early diagnosis and personalized approaches for HCC while holding substantial clinical application potential to improve patient outcomes and tailor interventions to individual tumor profiles.
Collapse
Affiliation(s)
- Huanxiang Liu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Jiahao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuye Rao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
5
|
Cheng X, Hu Y, Yu X, Chen J, Guo X, Cao H, Hu G, Zhuang Y. Sodium Butyrate Alleviates Free Fatty Acid-Induced Steatosis in Primary Chicken Hepatocytes via Regulating the ROS/GPX4/Ferroptosis Pathway. Antioxidants (Basel) 2024; 13:140. [PMID: 38397738 PMCID: PMC10886346 DOI: 10.3390/antiox13020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional metabolic disease commonly observed in high-yielding laying hens. Sodium butyrate (NaB) and ferroptosis were reported to contribute to the pathogenesis of fatty liver-related diseases. However, the underlying mechanism of NaB in FLHS and whether it mediates ferroptosis remains unclear. A chicken primary hepatocyte induced by free fatty acids (FFAs, keeping the ratio of sodium oleate and sodium palmitate concentrations at 2:1) was established, which received treatments with NaB, the ferroptosis inducer RAS-selective lethal 3 (RSL3), and the inhibitor ferrostatin-1 (Fer-1). As a result, NaB increased biochemical and lipid metabolism indices, and the antioxidant level, while inhibiting intracellular ROS accumulation and the activation of the ferroptosis signaling pathway, as evidenced by a reduction in intracellular iron concentration, upregulated GPX4 and xCT expression, and inhibited NCOA4 and ACSL4 expression. Furthermore, treatment with Fer-1 reinforced the protective effects of NaB, while RSL3 reversed it by blocking the ROS/GPX4/ferroptosis pathway, leading to the accumulation of lipid droplets and oxidative stress. Collectively, our findings demonstrated that NaB protects hepatocytes by regulating the ROS/GPX4-mediated ferroptosis pathway, providing a new strategy and target for the treatment of FLHS.
Collapse
Affiliation(s)
- Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Yang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Xiaoqing Yu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Jinyan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, China
| |
Collapse
|
6
|
Guan SW, Lin Q, Wu XD, Yu HB. Weighted gene coexpression network analysis and machine learning reveal oncogenome associated microbiome plays an important role in tumor immunity and prognosis in pan-cancer. J Transl Med 2023; 21:537. [PMID: 37573394 PMCID: PMC10422781 DOI: 10.1186/s12967-023-04411-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND For many years, the role of the microbiome in tumor progression, particularly the tumor microbiome, was largely overlooked. The connection between the tumor microbiome and the tumor genome still requires further investigation. METHODS The TCGA microbiome and genome data were obtained from Haziza et al.'s article and UCSC Xena database, respectively. Separate WGCNA networks were constructed for the tumor microbiome and genomic data after filtering the datasets. Correlation analysis between the microbial and mRNA modules was conducted to identify oncogenome associated microbiome module (OAM) modules, with three microbial modules selected for each tumor type. Reactome analysis was used to enrich biological processes. Machine learning techniques were implemented to explore the tumor type-specific enrichment and prognostic value of OAM, as well as the ability of the tumor microbiome to differentiate TP53 mutations. RESULTS We constructed a total of 182 tumor microbiome and 570 mRNA WGCNA modules. Our results show that there is a correlation between tumor microbiome and tumor genome. Gene enrichment analysis results suggest that the genes in the mRNA module with the highest correlation with the tumor microbiome group are mainly enriched in infection, transcriptional regulation by TP53 and antigen presentation. The correlation analysis of OAM with CD8+ T cells or TAM1 cells suggests the existence of many microbiota that may be involved in tumor immune suppression or promotion, such as Williamsia in breast cancer, Biostraticola in stomach cancer, Megasphaera in cervical cancer and Lottiidibacillus in ovarian cancer. In addition, the results show that the microbiome-genome prognostic model has good predictive value for short-term prognosis. The analysis of tumor TP53 mutations shows that tumor microbiota has a certain ability to distinguish TP53 mutations, with an AUROC value of 0.755. The tumor microbiota with high importance scores are Corallococcus, Bacillus and Saezia. Finally, we identified a potential anti-cancer microbiota, Tissierella, which has been shown to be associated with improved prognosis in tumors including breast cancer, lung adenocarcinoma and gastric cancer. CONCLUSION There is an association between the tumor microbiome and the tumor genome, and the existence of this association is not accidental and could change the landscape of tumor research.
Collapse
Affiliation(s)
- Shi-Wei Guan
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Quan Lin
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Xi-Dong Wu
- Department of Neurosurgery Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Hai-Bo Yu
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|