1
|
Ayed A. The role of natural products versus miRNA in renal cell carcinoma: implications for disease mechanisms and diagnostic markers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6417-6437. [PMID: 38691151 DOI: 10.1007/s00210-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Natural products are chemical compounds produced by living organisms. They are isolated and purified to determine their function and can potentially be used as therapeutic agents. The ability of some bioactive natural products to modify the course of cancer is fascinating and promising. In the past 50 years, there have been advancements in cancer therapy that have increased survival rates for localized tumors. However, there has been little progress in treating advanced renal cell carcinoma (RCC), which is resistant to radiation and chemotherapy. Oncogenes and tumor suppressors are two roles played by microRNAs (miRNAs). They are involved in important pathogenetic mechanisms like hypoxia and epithelial-mesenchymal transition (EMT); they control apoptosis, cell growth, migration, invasion, angiogenesis, and proliferation through target proteins involved in various signaling pathways. Depending on their expression pattern, miRNAs may identify certain subtypes of RCC or distinguish tumor tissue from healthy renal tissue. As diagnostic biomarkers of RCC, circulating miRNAs show promise. There is a correlation between the expression patterns of several miRNAs and the prognosis and diagnosis of patients with RCC. Potentially high-risk primary tumors may be identified by comparing original tumor tissue with metastases. Variations in miRNA expression between treatment-sensitive and therapy-resistant patients' tissues and serum allow for the estimation of responsiveness to target therapy. Our knowledge of miRNAs' function in RCC etiology has a tremendous uptick. Finding and validating their gene targets could have an immediate effect on creating anticancer treatments based on miRNAs. Several miRNAs have the potential to be used as biomarkers for diagnosis and prognosis. This review provides an in-depth analysis of the current knowledge regarding natural compounds and their modes of action in combating cancer. Also, this study aims to give information about the diagnostic and prognostic value of miRNAs as cancer biomarkers and their involvement in the pathogenesis of RCC.
Collapse
Affiliation(s)
- Abdullah Ayed
- Department of Surgery, College of Medicine, University of Bisha, P.O Box 551, 61922, Bisha, Saudi Arabia.
| |
Collapse
|
2
|
Cerqueira R, Domingues C, Veiga F, Jarak I, Figueiras A. Development and Characterization of Curcumin-Loaded TPGS/F127/P123 Polymeric Micelles as a Potential Therapy for Colorectal Cancer. Int J Mol Sci 2024; 25:7577. [PMID: 39062820 PMCID: PMC11276776 DOI: 10.3390/ijms25147577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prominent cancer worldwide, and the second leading cause of cancer death. Poor outcomes and limitations of current treatments fuel the search for new therapeutic options. Curcumin (CUR) is often presented as a safer alternative for cancer treatment with a staggering number of molecular targets involved in tumor initiation, promotion, and progression. Despite being promising, its therapeutic potential is hindered due to its hydrophobic nature. Hence, the ongoing development of optimal delivery strategies based on nanotechnology, such as polymeric micelles (PMs), to overcome issues in CUR solubilization and delivery to tumor cells. In this sense, this study aimed to optimize the development and stability of CUR-loaded P123:F127:TPGS PMs (PFT:CUR) based on the thin-film approach and evaluate their therapeutic potential in CRC. Overall, the results revealed that the solubility of CUR was improved when room temperature was used to hydrate the film. The PFT-CUR hydrated at room temperature presents an average hydrodynamic diameter of 15.9 ± 0.3 nm with a polydispersity index (PDI) of 0.251 ± 0.103 and a zeta potential of -1.5 ± 1.9 mV, and a 35.083 ± 1.144 encapsulation efficiency (EE%) and 3.217 ± 0.091 drug loading (DL%) were observed. To ensure the stability of the optimized PFT-CUR nanosystems, different lyophilization protocols were tested, the use of 1% of glycine (GLY) being the most promising protocol. Regarding the critical micellar concentration (CMC), it was shown that the cryoprotectant and the lyophilization process could impact it, with an increase from 0.064 mg/mL to 0.119 mg/mL. In vitro results showed greater cytotoxic effects when CUR was encapsulated compared to its free form, yet further analysis revealed the heightened cytotoxicity could be attributed to the system itself. Despite challenges, the developed CUR-loaded PM shows potential as an effective therapeutic agent for CRC. Nonetheless, the system must undergo refinements to enhance drug entrapment as well as improve overall stability.
Collapse
Affiliation(s)
- Rita Cerqueira
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
| | - Cátia Domingues
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CI MAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivana Jarak
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Ana Figueiras
- Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (R.C.); (C.D.); (F.V.); (I.J.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
3
|
Dahal P, Janaswamy S. Hydrocolloid-based nutraceutical delivery systems: Potential of κ-carrageenan hydrogel beads for sustained release of curcumin. Food Res Int 2024; 183:114223. [PMID: 38760142 DOI: 10.1016/j.foodres.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
This study investigates the potential of κ-carrageenan hydrogel beads as a delivery system for curcumin, a bioactive compound with various health benefits. Hydrogel beads were prepared using the extrusion technique with a hypodermic needle. The encapsulation efficiency of curcumin in the κ-carrageenan hydrogel beads was found to be 74.61 ± 3.2 %. FTIR spectroscopy analysis revealed shifts in absorption peaks, indicating possible hydrogen bonding and/or ionic interactions between the polymer and salt. An increase in the melting point of curcumin, by 25 °C, in curcumin- κ-carrageenan beads suggests the heat protection offered by the carrageenan chains to curcumin molecules. The in vitro release of curcumin from the beads suggests a sustained and pH-dependent release nature. The release kinetics follow the first order and the Korsmeyer-Peppas model. The outcome offers value-added delivery systems of bioactive compounds toward developing novel food and pharmaceutical applications.
Collapse
Affiliation(s)
- Prashant Dahal
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA
| | - Srinivas Janaswamy
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
4
|
Forouzanfar F, Pourbagher-Shahri AM, Vafaee F, Sathyapalan T, Sahebkar A. Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases. Curr Med Chem 2024; 31:5550-5566. [PMID: 37143267 DOI: 10.2174/0929867330666230504121523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull- HU3 2JZ, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Ge S, Sun X, Sang L, Zhang M, Yan X, Ju Q, Ma X, Xu M. Curcumin inhibits malignant behavior of colorectal cancer cells by regulating M2 polarization of tumor-associated macrophages and metastasis associated in colon cancer 1 (MACC1) expression. Chem Biol Drug Des 2023; 102:1202-1212. [PMID: 37599210 DOI: 10.1111/cbdd.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
The present study was to investigate the underlying mechanism of the antitumor effect of curcumin in colorectal cancer cells, focusing on the M2 polarization of tumor-associated macrophages (TAMs). The effect of curcumin on the malignant behavior of colorectal cancer cells was investigated by WST assay for cell growth, and Transwell assay for cell migration/invasion. THP-1 cells were differentiated into macrophages and coculture with colorectal cancer cells to study the influence of curcumin on M2 polarization, presenting as the levels of ARG1 mRNA, IL-10, and CD163-positive cells. GEO database was searched for the shared altered gene of curcumin in colorectal cells and human monocytes. Molecular docking was used to visualize the binding between curcumin and MACC1. Curcumin restricted the proliferation, apoptosis, and migration/invasion of HCT 116 and SW620 cells. Curcumin attenuated levels of the M2 macrophage markers, CD163 + cells, IL-10 secretion, and ARG1 mRNA. MACC1 was a target of curcumin in colorectal cancer cells, relating to macrophage. Rescue experiments showed that MACC1 overexpression can reverse the antitumor effect of curcumin in colorectal cancer cells and M2 polarization of TAMs. Curcumin's antiproliferative and anti-migratory effects in colorectal cancer cells may be mediated by MACC1 and inhibition of M2 polarization of TAMs.
Collapse
Affiliation(s)
- Shuke Ge
- Department of Thyroid Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Xu Sun
- Anorectal Department, Dalian Municipal Central Hospital, Dalian, China
| | - Limin Sang
- Department of Infection Management and Disease Control, Dalian Municipal Central Hospital, Dalian, China
| | - Min Zhang
- Anorectal Department, Dalian Municipal Central Hospital, Dalian, China
| | - Xubo Yan
- Anorectal Department, Dalian Municipal Central Hospital, Dalian, China
| | - Qi Ju
- Department of Operating Room, Dalian Municipal Central Hospital, Dalian, China
| | - Xuefeng Ma
- Department of Gastroenterology, Dalian Municipal Central Hospital, Dalian, China
| | - Meng Xu
- Anorectal Department, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
6
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Kesharwani P, Sathyapalan T, Sahebkar A. Modulatory properties of curcumin in cancer: A narrative review on the role of interferons. Phytother Res 2023; 37:1003-1014. [PMID: 36744753 DOI: 10.1002/ptr.7734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 02/07/2023]
Abstract
The immune network is an effective network of cell types and chemical compounds established to maintain the body's homeostasis from foreign threats and to prevent the risk of a wide range of diseases; hence, its proper functioning and balance are essential. A dysfunctional immune system can contribute to various disorders, including cancer. Therefore, there has been considerable interest in molecules that can modulate the immune network. Curcumin, the active ingredient of turmeric, is one of these herbal remedies with many beneficial effects, including modulation of immunity. Curcumin is beneficial in managing various chronic inflammatory conditions, improving brain function, lowering cardiovascular disease risk, prevention and management of dementia, and prevention of aging. Several clinical studies have supported this evidence, suggesting curcumin to have an immunomodulatory and anti-inflammatory function; nevertheless, its mechanism of action is still not clear. In the current review, we aim to explore the modulatory function of curcumin through interferons in cancers.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Behjati Hosseini S, Asadzadeh-Lotfabad M, Erfani M, Babayan-Mashhadi F, Mokaberi P, Amiri-Tehranizadeh Z, Saberi MR, Chamani J. A novel vision into the binding behavior of curcumin with human serum albumin-holo transferrin complex: molecular dynamic simulation and multi-spectroscopic perspectives. J Biomol Struct Dyn 2022; 40:11154-11172. [PMID: 34328379 DOI: 10.1080/07391102.2021.1957713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this work, we investigated the simultaneous binding of curcumin (CUR) to human serum albumin (HSA) and human-holo transferrin (HTF) in the roles of binary and ternary systems. The binding affinity and binding site of protein-protein interaction were studied by the methods of multiple spectroscopic and molecular dynamics (MD) simulation. According to the results, the measurements for binding constant of HSA-CUR, HTF-CUR and (HSA-HTF) CUR complexes were observed to be 1.51 × 105, 7.93 × 104 and 1.44 × 105 M-1 respectively. Thermodynamic parameters were considered to be set at three varying temperatures including 298, 303, and 308 K. In conformity to the negative values of ΔH0 and ΔS0 the significant roles of hydrogen binding and van der-Waals forces in the formation of complexes are quiet evident. The binding distance between Trp residues of HSA, HTF and HSA-HTF upon interaction with CUR, were acquired by applying the Förster's theory of non-radioactive energy transfer and reported to be 2.04 nm, 1.78 nm, and 1.86 nm, respectively. In accordance with the conductometry and Resonance light scattering (RLS) results, there were different interaction behaviors among the HSA-HTF complex and CUR in ternary system when being compared to the outcomes of binary system. The secondary structure of all three cases increased as the CUR concentration was intensified, which confirmed the inducement of proteins conformational changes through the application of circular dichroism (CD) technique. The experimental results that were acquired throughout the binding of HSA-CUR, HTF-CUR, and (HSA-HTF) CUR complexes were approved by molecular modeling.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soroush Behjati Hosseini
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Erfani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Babayan-Mashhadi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Mokaberi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medical Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
8
|
Turabi KS, Deshmukh A, Paul S, Swami D, Siddiqui S, Kumar U, Naikar S, Devarajan S, Basu S, Paul MK, Aich J. Drug repurposing-an emerging strategy in cancer therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1139-1158. [PMID: 35695911 DOI: 10.1007/s00210-022-02263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a complex disease affecting millions of people around the world. Despite advances in surgical and radiation therapy, chemotherapy continues to be an important therapeutic option for the treatment of cancer. The current treatment is expensive and has several side effects. Also, over time, cancer cells develop resistance to chemotherapy, due to which there is a demand for new drugs. Drug repurposing is a novel approach that focuses on finding new applications for the old clinically approved drugs. Current advances in the high-dimensional multiomics landscape, especially proteomics, genomics, and computational omics-data analysis, have facilitated drug repurposing. The drug repurposing approach provides cheaper, effective, and safe drugs with fewer side effects and fastens the process of drug development. The review further delineates each repurposed drug's original indication and mechanism of action in cancer. Along with this, the article also provides insight upon artificial intelligence and its application in drug repurposing. Clinical trials are vital for determining medication safety and effectiveness, and hence the clinical studies for each repurposed medicine in cancer, including their stages, status, and National Clinical Trial (NCT) identification, are reported in this review article. Various emerging evidences imply that repurposing drugs is critical for the faster and more affordable discovery of anti-cancerous drugs, and the advent of artificial intelligence-based computational tools can accelerate the translational cancer-targeting pipeline.
Collapse
Affiliation(s)
- Khadija Shahab Turabi
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Ankita Deshmukh
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Sayan Paul
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | - Dayanand Swami
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shafina Siddiqui
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Urwashi Kumar
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shreelekha Naikar
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Shine Devarajan
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Manash K Paul
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, Navi Mumbai, Maharashtra, 400614, India.
| |
Collapse
|
9
|
Butnariu M, Quispe C, Koirala N, Khadka S, Salgado-Castillo CM, Akram M, Anum R, Yeskaliyeva B, Cruz-Martins N, Martorell M, Kumar M, Vasile Bagiu R, Abdull Razis AF, Sunusi U, Muhammad Kamal R, Sharifi-Rad J. Bioactive Effects of Curcumin in Human Immunodeficiency Virus Infection Along with the Most Effective Isolation Techniques and Type of Nanoformulations. Int J Nanomedicine 2022; 17:3619-3632. [PMID: 35996526 PMCID: PMC9391931 DOI: 10.2147/ijn.s364501] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Human immunodeficiency virus (HIV) is one of the leading causes of death worldwide, with African countries being the worst affected by this deadly virus. Curcumin (CUR) is a Curcuma longa-derived polyphenol that has attracted the attention of researchers due to its antimicrobial, anti-inflammatory, antioxidant, immunomodulatory and antiviral effects. CUR also demonstrates anti-HIV effects by acting as a possible inhibitor of gp120 binding, integrase, protease, and topoisomerase II activities, besides also exerting a protective action against HIV-associated diseases. However, its effectiveness is limited due to its poor water solubility, rapid metabolism, and systemic elimination. Nanoformulations have been shown to be useful to enhance curcumin’s bioavailability and its effectiveness as an anti-HIV agent. In this sense, bioactive effects of CUR in HIV infection are carefully reviewed, along with the most effective isolation techniques and type of nanoformulations available.
Collapse
Affiliation(s)
- Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, 300645, Calea Aradului 119, Timis, Romania
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, 1110939, Chile
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu, 44600, Nepal.,Laboratory of Biotechnology, Faculty of Science and Technology, University of Macau, Macau SAR, 999078, People's Republic of China
| | - Sujan Khadka
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.,State Key Laboratory of Environmental Aquatic Chemistry" with "State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | | | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Anum
- SINA Health, Education and Welfare Trust, Karachi, Pakistan
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, 4585-116, Portugal.,TOXRUN-Oxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, 4585-116, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, 4070386, Chile.,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, 4070386, Chile
| | - Manoj Kumar
- Chemical and BioChemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Department of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.,Department of Pharmacology, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
10
|
Zafari N, Khosravi F, Rezaee Z, Esfandyari S, Bahiraei M, Bahramy A, Ferns GA, Avan A. The role of the tumor microenvironment in colorectal cancer and the potential therapeutic approaches. J Clin Lab Anal 2022; 36:e24585. [PMID: 35808903 PMCID: PMC9396196 DOI: 10.1002/jcla.24585] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) with a high prevalence is recognized as the fourth most common cause of cancer-related death globally. Over the past decade, there has been growing interest in the network of tumor cells, stromal cells, immune cells, blood vessel cells, and fibroblasts that comprise the tumor microenvironment (TME) to identify new therapeutic interventions. METHODS Databases, such as Google Scholar, PubMed, and Scopus, were searched to provide an overview of the recent research progress related to targeting the TME as a novel therapeutic approach. RESULTS Tumor microenvironment as a result of the cross talk between these cells may result in either advantages or disadvantages in tumor development and metastasis, affecting the signals and responses from the surrounding cells. Whilst chemotherapy has led to an improvement in CRC patients' survival, the metastatic aspect of the disease remains difficult to avoid. CONCLUSIONS The present review emphasizes the structure and function of the TME, alterations in the TME, its role in the incidence and progression of CRC, the effects on tumor development and metastasis, and also the potential of its alterations as therapeutic targets. It should be noted that providing novel studies in this field of research might help us to achieve practical therapeutic strategies based on their interaction.
Collapse
Affiliation(s)
- Narges Zafari
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Khosravi
- Molecular Medicine Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Zahra Rezaee
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sahar Esfandyari
- Department of Anatomy, School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohamad Bahiraei
- Department of Radiology, Besat HospitalHamedan University of Medical SciencesHamedanIran
| | - Afshin Bahramy
- Department of Medical Genetics, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Gordon A. Ferns
- Brighton & Sussex Medical SchoolDivision of Medical EducationSussexUK
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Basic Medical Sciences InstituteMashhad University of Medical SciencesMashhadIran
- Medical Genetics Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
11
|
Zhao Y, Zhang Y, Liu D, Feng H, Wang X, Su J, Yao Y, Ng EHY, Yeung WSB, Li RHW, Rodriguez-Wallberg KA, Liu K. Identification of curcumin as a novel potential drug for promoting the development of small ovarian follicles for infertility treatment. PNAS NEXUS 2022; 1:pgac108. [PMID: 36741430 PMCID: PMC9896916 DOI: 10.1093/pnasnexus/pgac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/02/2022] [Indexed: 02/07/2023]
Abstract
In-vitro fertilization is an effective treatment for various causes of infertility. However, management of women with poor ovarian response or premature ovarian insufficiency remains challenging because these women have underdeveloped small ovarian follicles that do not respond to hormone treatment. In-vitro activation of small follicles has been developed but its efficiency has much room for improvement. In the current study, we provide several lines of evidence showing that curcumin, an FDA-approved traditional medicine, can specifically promote the development of mouse ovarian follicles from the primary to secondary stage, which greatly potentiates these small follicles for subsequent in-vivo development into antral follicles that can be ovulated. Mechanistically, we show that curcumin promotes the proliferation and differentiation of granulosa cells and the growth of oocytes by activating the phosphatidylinositol 3 kinase (PI3K) signaling pathway. Most importantly, we show that in-vitro treatment of human ovarian tissues with curcumin can promote the in-vivo survival and development of small human ovarian follicles, showing that curcumin can be used as a potential drug to increase the success rate of in-vitro activation of small human follicles. We thus identify curcumin as a novel potential drug for promoting the development of small human ovarian follicles for infertility treatment.
Collapse
Affiliation(s)
- Yu Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yihui Zhang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongteng Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Haiwei Feng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Xiaohui Wang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Jiajun Su
- Department of Anatomical Pathology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China
| | - Ernest H Y Ng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - William S B Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Raymond H W Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong—Shenzhen Hospital, Haiyuan First Road 1, Shenzhen, Guangdong 518053, China,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | | | - Kui Liu
- To whom correspondence should be addressed:
| |
Collapse
|
12
|
Idoudi S, Bedhiafi T, Hijji YM, Billa N. Curcumin and Derivatives in Nanoformulations with Therapeutic Potential on Colorectal Cancer. AAPS PharmSciTech 2022; 23:115. [PMID: 35441267 DOI: 10.1208/s12249-022-02268-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/03/2022] [Indexed: 01/12/2023] Open
Abstract
There is growing concern in the rise of colorectal cancer (CRC) cases globally, and with this rise is the presentation of drug resistance. Like other cancers, current treatment options are either invasive or manifest severe side effects. Thus, there is a move towards implementing safer treatment options. Curcumin (CUR), extracted from Curcuma longa, has received significant attention by scientists as possible alternative to chemotherapeutic agents. It is safe and effective against CRC and nontoxic in moderate concentrations. Crucially, it specifically modulates apoptotic effects on CRC. However, the use of CUR is limited by its low solubility and poor bioavailability in aqueous media. These limitations are surmountable through novel approaches, such as nanoencapsulation of CUR, which masks the physicochemical properties of CUR, thus potentiating its anti-CRC effects. Furthermore, chemical derivatization of CUR is another approach that can be used to address the above constraints. This review spans published work in the last two decades, with key findings employing either of the two approaches, in addition to a combined approach in managing CRC. The combined approach affords the possibility of better treatment outcomes but not widely investigated nor yet clinically implemented.
Collapse
|
13
|
Microsatellite Status and IκBα Expression Levels Predict Sensitivity to Pharmaceutical Curcumin in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:cancers14041032. [PMID: 35205780 PMCID: PMC8870219 DOI: 10.3390/cancers14041032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The global burden of colorectal cancer is high. Chemotherapy has been the backbone of colorectal cancer therapy for decades. Toxic side effects and frequently occurring drug resistances remain challenging problems. Therefore, exploring natural compounds with low or even no toxicity holds great potential. However, natural curcumin is poorly absorbed, limiting its clinical use. Therefore, our focus was to screen different molecular types of colorectal cancer to find the ones with the highest sensitivity to curcumin. We observed very individual responses to curcumin for various colorectal cancer cell lines. Most curcumin-sensitive cell lines were of the microsatellite-stable molecular type, and expressed high baseline levels of the IκBα protein. Contrarily, curcumin-resistant lines were mainly microsatellite instable, with low baseline IκBα levels. Considering all of the data obtained, we conclude that patients with microsatellite-stable tumors and high baseline IκBα protein expression would benefit from treatment with novel curcumin formulations and derivatives. Abstract Clinical utilization of curcumin in colorectal cancer (CRC) was revived as a result of the development of novel curcumin formulations with improved bioavailability. Additionally, identification of biomarkers for curcumin sensitivity would also promote successful clinical applications. Here, we wanted to identify such biomarkers in order to establish a predictive model for curcumin sensitivity. Thirty-two low-passage CRC cell lines with specified tumor characteristics were included. Curcumin suppressed cell proliferation, yet sensitivity levels were distinct. Most curcumin-sensitive CRC cell lines were microsatellite stable and expressed high levels of IκBα. The predictive capacity of this biomarker combination possessed a statistical significance of 72% probability to distinguish correctly between curcumin-sensitive and -resistant CRC cell lines. Detailed functional analyses were performed with three sensitive and three resistant CRC cell lines. As curcumin’s mode of action, inhibition of NF-κB p65 activation via IκBα was identified. In consequence, we hypothesize that novel curcumin formulations—either alone or, more likely, in combination with standard therapeutics—can be expected to prove clinically beneficial for CRC patients with high IκBα expression levels.
Collapse
|
14
|
Setiawati A, Candrasari D, Setyajati FDE, Prasetyo V, Setyaningsih D, Hartini Y. Anticancer drug screening of natural products: In vitro cytotoxicity assays, techniques, and challenges. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Yang H, Yue GGL, Leung PC, Wong CK, Lau CBS. A review on the molecular mechanisms, the therapeutic treatment including the potential of herbs and natural products, and target prediction of obesity-associated colorectal cancer. Pharmacol Res 2021; 175:106031. [PMID: 34896542 DOI: 10.1016/j.phrs.2021.106031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death worldwide. Obesity has been proven to be closely related to colorectal carcinogenesis. This review summarized the potential underlying mechanisms linking obesity to CRC in different aspects, including energy metabolism, inflammation, activities of adipokines and hormones. Furthermore, the potential therapeutic targets of obesity-associated CRC were predicted using network-based target analysis, with total predicted pathways not only containing previously reported pathways, but also putative signaling pathways pending for investigation. In addition, the current conventional therapeutic treatment options, plus the potential use of herbs and natural products in the management of obesity-associated CRC were also discussed. Taken together, the aim of this review article is to provide strong theoretical basis for future drug development, particularly herbs and natural products, in obesity-associated CRC.
Collapse
Affiliation(s)
- Huihai Yang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Gar Lee Yue
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
16
|
Elbaz NM, Tatham LM, Owen A, Rannard S, McDonald TO. Redispersible nanosuspensions as a plausible oral delivery system for curcumin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Curcumin induces apoptosis through caspase dependent pathway in human colon carcinoma cells. Mol Biol Rep 2021; 49:1351-1360. [PMID: 34806141 DOI: 10.1007/s11033-021-06965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the apoptotic effects of curcumin in the colon carcinoma cell line SW480. METHODS AND RESULTS Cells were treated with 40-200 μM curcumin for 24, 48, and 72 h, and the IC50 values were determined for each time interval. BrdU, caspase-3, and TUNEL staining results and the gene expression of FADD, CASP8, and CASP3 were evaluated. Curcumin treatments significantly inhibited cell proliferation and significantly induced apoptosis for 24, 48, and 72 h. The proportion of BrdU-stained cells in the control groups were 58%, 57% and 61% and 28%, 27%, and 30% in the curcumin treatment groups at 24, 48, and 72 h, respectively. The proportion of apoptotic cells was 28%, 29%, and 28% in the control groups and 59%, 61%, and 60% in the curcumin treatment groups at 24, 48, and 72 h, respectively. As expected, caspase-3 staining also revealed a higher number of apoptotic cells in curcumin treatment groups at 24, 48, and 72 h compared to controls. The proportion of Caspase-3-stained cells in the control groups were 23%, 25%, and 24% and 59%, 60%, and 62% in the curcumin treatment groups at 24, 48, and 72 h, respectively. To prove caspase-3 staining results, FADD, CASP8, and CASP3 gene expressions were evaluated by real-time qPCR. Unlike the immunohistochemical results, no statistically significant upregulation was found at 24 and 48 h, while relative gene expressions of FADD, CASP8, and CASP3 was significantly upregulated at 72 h. The expression level increase was 0.88-, 1.19-, and 2.11-fold for FADD, 1.25-, 1.29-, and 1.59-fold for CASP8, and 1.33-, 1.46-, and 3.00-fold for CASP3 at 24, 48, and 72 h, respectively. CONCLUSIONS These results suggest that curcumin may be a potential protective or treatment agent against colon cancer; however, further studies on curcumin-rich diets and curcumin bioavailability are required.
Collapse
|
18
|
Turgut Y, Yurdakok-Dikmen B, Uyar R, Birer M, Filazi A, Acarturk F. Effects of electrospun fiber curcumin on bisphenol A exposed Caco-2 cells. Drug Chem Toxicol 2021; 45:2613-2625. [PMID: 34696662 DOI: 10.1080/01480545.2021.1979031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Curcumin; the major polyphenolic compound, isolated from Curcuma longa L.; loaded polyvinylpyrrolidone K90 fibers were prepared using electrospinning method. Effectiveness was tested on human colorectal adenocarcinoma cells with the presence of the endocrine disrupter Bisphenol A. Curcumin-loaded fibers were shown to have good physicochemical properties where excellent morphology of the electrospin fibers were formed. With the presence of 8 nM Bisphenol A, 17.37 mM fibers were found to inhibit proliferation in the cells in a dose-dependent manner. Fibers induced a significant increase in malondialdehyde by Thiobarbituric Acid Reactive Substances Assay compared to the control and this effect was supported by the presence of Bisphenol A. Western blot results indicate Super Oxide Dismutase-1 levels were increased by fiber, while Bisphenol A coincubated group resulted in a decrease. Fibers increased the expression of Estrogen Receptor 2, while Estrogen Receptor 1 expression did not change. Estrogen Receptor 2 expression was increased by coincubation with Bisphenol A; indicating a possible role of Estrogen Receptor 2 in the protective effects of fiber. This study presents that fiber had enhanced bioavailability and solubility with increased anticancer effect in human colon adenocarcinoma cells in presence of Bisphenol A; where involved mechanisms are antioxidant system and estrogen receptor expression.
Collapse
Affiliation(s)
- Yağmur Turgut
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Recep Uyar
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Mehmet Birer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Ayhan Filazi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Fusun Acarturk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Karthika C, Hari B, Mano V, Radhakrishnan A, Janani SK, Akter R, Kaushik D, Rahman MH. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp Gerontol 2021; 152:111438. [PMID: 34098006 DOI: 10.1016/j.exger.2021.111438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the life-taking diseases worldwide and among cancer-related death; colorectal cancer is the third most. Though conventional methods of treatment are available, multidrug resistance and side effects are predominant. Physicians and scientists are working side by side to develop an effective medicament, which is safe and cost-effective. However, most failures are obtained when focused on the clinical perspective. This review mainly brings out the correlation between the curcumin and its use for the mitigation of colorectal cancer, the use of curcumin as a chemotherapeutic agent, chemosensitizer, and in a combination and synergistic approach. The pharmacokinetics and pharmacodynamics properties of curcumin and its formulation approach helps in giving an idea to develop new approaches for the treatment of colorectal cancer using curcumin.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| | - Balaji Hari
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS Academy of Higher Education & Research, Ooty-643001, The Nilgiris, Tamil Nadu, India
| | - Vignesh Mano
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Arun Radhakrishnan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - S K Janani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University,Wonju 26426, Gangwon-do, Korea..
| |
Collapse
|
20
|
Hidayat YM, Wagey F, Suardi D, Susanto H, Laihad BJ, Tobing MDL. Analysis of Curcumin as a Radiosensitizer in Cancer Therapy with Serum Survivin Examination: Randomised Control Trial. Asian Pac J Cancer Prev 2021; 22:139-143. [PMID: 33507691 PMCID: PMC8184198 DOI: 10.31557/apjcp.2021.22.1.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE One of the important treatments for cervical cancer is radiation therapy. This study sought to determine the role of curcumin as a radio-sensitizing agent for use with radiation therapy for cervical cancer. To accomplish this, we assessed the levels of survivin, which is an anti-apoptotic protein that plays a role in cell division and apoptosis inhibition. METHOD This study used a quasi-experimental design, including a pretest-posttest control group design approach. The study subjects included cervical carcinoma stage IIB-IIIB patients who were scheduled to undergo surgery at the Hasan Sadikin Hospital Bandung during the research period. The advanced cervical cancer patients were assigned to two groups: i) those who received curcumin + radiation therapy and ii) those who received placebo + radiation therapy. RESULTS In the group treated with curcumin + radiation, 15 (75%) patients showed decreased survivin levels and 5 (25%) showed increased survivin levels. Whereas, in the placebo + radiation group, there were 8 (40%) patients who showed decreased survivin levels and 12 (60%) who showed increased survivin levels. CONCLUSION In conclusion, curcumin is an effective, alternative radiosensitizer agent for application in cervical cancer treatment. .
Collapse
Affiliation(s)
- Yudi Mulyana Hidayat
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Frank Wagey
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Dodi Suardi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Herman Susanto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjajaran, Bandung, Indonesia.
| | - Bismarck J Laihad
- Department of Obstetrics and Gynecology, School of Medicine, Universitas Sam Ratulangi, Manado, Indonesia.
| | | |
Collapse
|
21
|
Mohamed JMM, Alqahtani A, Ahmad F, Krishnaraju V, Kalpana K. Stoichiometrically Governed Curcumin Solid Dispersion and Its Cytotoxic Evaluation on Colorectal Adenocarcinoma Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4639-4658. [PMID: 33173275 PMCID: PMC7648666 DOI: 10.2147/dddt.s273322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second most commonly occurring cancer in women. Curcumin (CMN) is obtained from a natural source and has no toxicity, even at high doses (8,000 mg/kg body weight in 24 hours) and was determined to have anticancer potency on several kinds of carcinoma. However, its medical applications were limited because of its low solubility and poor bioavailability. Materials and Methods To improve the medical applications of CMN, various hydrophilic carriers such as poloxamer 407 (PMX-407), poloxamer 188 (PMX-188), Gelucire 50/13 (Gel-50/13), and mannitol (MNL) were used to prepare a binary complex solid dispersion (SD). These binary SDs were characterized for aqueous solubility in various solvents. Physical stability, thermal behaviors, and morphology were determined by Fourier transform infrared spectrophotometric analysis, powder X-ray diffraction analysis, thermogravimetric analysis, differential scanning calorimetric analysis, scanning electron microscopy, dynamic light scattering study, and the novel dyeing test. In vitro drug release was determined by dissolution study. Based on the characterization, the better SD complex was optimized using Box-Behnken design (BBD). The cytotoxicity and apoptosis study of prepared CMN (C-SD) were used to test for colorectal adenocarcinoma cell lines. Results These results showed that the solubility of CMN is greatly improved after complexation with PXM-407 in SD. CMN is practically insoluble in water at acidic and neutral pH; however, the SD of CMN with PXM-407 produced significant improvement in solubility (1.266±0.0242 mg/mL) and dissolution (91.36±0.431% at 30 minutes); similarly, these data fit with a phase solubility study and in silico molecular modeling. Moreover, the solid-state characterization revealed that the SD complex exhibits the intermolecular hydrogen bond with drug and carrier. Also, the complex does not undergo any chemical modification owing to the amorphous form, and the dye test showed better coloring impact indicating the solubility of CMN. The cell cycle arrest confirmed at G2/M phase from flow cytometry analysis, and Western blot investigation was recognized molecular level cell death and the complex induced more exploit DNA during apoptosis. Conclusion This study confirmed that the ideal stoichiometric ratio of CMN with carrier to enhance its solubility was 1:1. This molecular complex of PXM-407 was found to be more effective against colorectal cancer (CRC) than pure CMN.
Collapse
Affiliation(s)
- Jamal Moideen Muthu Mohamed
- Department of Pharmaceutical Technology, BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Fazil Ahmad
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - V Krishnaraju
- Department of Pharmacology, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - K Kalpana
- Department of Pharmaceutical Analysis, Erode College of Pharmacy, Veppampalayam, Erode, Tamil Nadu 638112, India
| |
Collapse
|
22
|
Szlasa W, Supplitt S, Drąg-Zalesińska M, Przystupski D, Kotowski K, Szewczyk A, Kasperkiewicz P, Saczko J, Kulbacka J. Effects of curcumin based PDT on the viability and the organization of actin in melanotic (A375) and amelanotic melanoma (C32) - in vitro studies. Biomed Pharmacother 2020; 132:110883. [PMID: 33113417 DOI: 10.1016/j.biopha.2020.110883] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Curcumin is a turmeric, antioxidative compound, well-known of its anti-cancer properties. Nowadays more and more effort is made in the field of enhancing the efficiency of the anticancer therapies. Combining the photoactive properties of curcumin with the superficial localization of melanoma and photodynamic therapy (PDT) seems to be a promising treatment method. The research focused on the evaluation of the curcumin effectiveness as an anticancer therapeutic agent in the in vitro treatment of melanotic (A375) and amelanotic (C32) melanoma cell lines. Keratinocytes (HaCat) and fibroblasts (HGF) were used to assess the impact of the therapy on the skin tissue. The aim of the study was to investigate the cell death after exposure to light irradiation after preincubation with curcumin. Additionaly the authors analized the interactions between curcumin and the actin cytoskeleton. The cytotoxic effect initiated by curcumin and increased by irradiation confirm the usefulness of the flavonoid in the PDT approach. Depending on curcumin concentration and incubation time, melanoma cells survival rate ranged from: 93.68 % (C32 cell line, 10 μM, 24 h) and 83.47 % (A375 cell line, 10 μM, 24 h) to 8.98 % (C32 cell line, 50 μM, 48 h) and 12.42 % (A375 cell line, 50 μM, 48 h). Moreover, photodynamic therapy with curcumin increased the number of apoptotic and necrotic cells in comparison to incubation with curcumin without irradiation. The study demonstrated that PDT induced caspase-3 overexpression and DNA cleavage in the studied cell lines. The cells revealed decreased proliferation after the therapy due to the actin cytoskeleton rearrangement. Although effective, the therapy remains not selective towards melanoma cells.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Wroclaw, Poland; Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw, Poland
| | | | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
23
|
Effects of curcumin complexes on MDA‑MB‑231 breast cancer cell proliferation. Int J Oncol 2020; 57:445-455. [PMID: 32626932 PMCID: PMC7307592 DOI: 10.3892/ijo.2020.5065] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Curcumin displays anticancer properties; however, some issues with the drug delivery mode limit its therapeutic use. Although reformulation and derivatization of curcumin have improved its bioavailability, curcumin derivatives may not retain the same anticancer properties as the parent compound. The present study investigated the anticancer properties of two curcumin complexes, the iron‑curcumin [Fe(Cur)3] and boron‑curcumin [B(Cur)2] complexes, in the MDA‑MB‑231 breast cancer cell line. The cellular localization of curcumin, B(Cur)2 and Fe(Cur)3 was determined by fluorescence microscopy. Cell proliferation, migration and invasion were also analysed. Furthermore, apoptosis‑associated proteins were detected by using a proteome profiler array, and ion channel gene expression was analysed by reverse transcription‑quantitative PCR. The results demonstrated that the three compounds were localized in the perinuclear and cytoplasmic regions of the cell, and displayed cytotoxicity with IC50 values of 25, 35 and 8 µM for curcumin, B(Cur)2 and Fe(Cur)3, respectively. In addition, the three compounds inhibited cell invasion, whereas only curcumin and B(Cur)2 inhibited cell migration. Furthermore, cell exposure to curcumin resulted in an increase in the relative expression of the two key proapoptotic proteins, cytochrome c and cleaved caspase‑3, as well as the antiapoptotic protein haem oxygenase‑1. In addition, curcumin increased the expression levels of the voltage‑gated potassium channels Kv2.1 and Kv3.2. Similarly, the expression levels of the chloride channel bestrophin‑1 and the calcium channel coding gene calcium voltage‑gated channel auxiliary subunit γ4 were increased following exposure to curcumin. Taken together, these results indicated that Fe(Cur)3 and B(Cur)2 may display similar anticancer properties as curcumin, suggesting that chemical complexation may be considered as a strategy for improving the potency of curcumin in the treatment of breast cancer.
Collapse
|
24
|
Keyvani-Ghamsari S, Khorsandi K, Gul A. Curcumin effect on cancer cells' multidrug resistance: An update. Phytother Res 2020; 34:2534-2556. [PMID: 32307747 DOI: 10.1002/ptr.6703] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy is one of the main methods for cancer treatment. However, despite many advances in the design of anticancer drugs, their efficiency is limited due to their high toxicity and resistance of cells to chemotherapeutic drugs. In order to improve the cancer therapy, it is essential to use the compounds that can overcome drug resistance and increase treatment efficiency. Researchers have studied the effects of natural compounds for the controlling various drug resistance mechanisms. Curcumin is a natural phenolic compound which shows potent anticancer activities in different tumors, alone or as an adjuvant with other antitumor drugs to prevent or inhibit the survival and cancer progression by various mechanisms. The role of curcumin in overcoming drug resistance was followed by reviewing different applications of curcumin in cancer therapy. Afterward, the clinical impacts of curcumin, role of curcumin in decreasing drug resistance in different cancer cells and its mechanisms were discussed. It has been demonstrated that curcumin regulates signaling pathways in cancer cells, reduces the expression of proteins related to drug resistance, and increases the performance of antitumor drugs at various levels. Curcumin reverses multidrug resistance mechanisms and increases sensitivity of resistance cells to chemotherapy. This review mainly focuses on different mechanisms of drug resistance and curcumin as a nontoxic natural substance to eliminate the effects of drug resistance through modulation and controlling cell resistance pathways and eventually suggests curcumin as a potent chemosensitizer in cancers.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Asma Gul
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
25
|
Saghatelyan T, Tananyan A, Janoyan N, Tadevosyan A, Petrosyan H, Hovhannisyan A, Hayrapetyan L, Arustamyan M, Arnhold J, Rotmann AR, Hovhannisyan A, Panossian A. Efficacy and safety of curcumin in combination with paclitaxel in patients with advanced, metastatic breast cancer: A comparative, randomized, double-blind, placebo-controlled clinical trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 70:153218. [PMID: 32335356 DOI: 10.1016/j.phymed.2020.153218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND The clinical efficacy of curcumin has not yet been established for the treatment of cancer, despite a large body of evidence from numerous preclinical studies suggesting the therapeutic potential of curcumin, particularly in a synergistic combination with paclitaxel. The main obstacle in using curcumin for adjunctive cancer therapy is its low bioavailability via oral administration. PURPOSE We assessed the efficacy and safety of intravenous curcumin infusion in combination with paclitaxel in patients with metastatic and advanced breast cancer. STUDY DESIGN A randomized, double-blind, placebo-controlled, parallel-group comparative clinical study was conducted. METHODS A total of 150 women with advanced and metastatic breast cancer were randomly assigned to receive either paclitaxel (80 mg/m2) plus placebo or paclitaxel plus curcumin (CUC-1®, 300 mg solution, once per week) intravenously for 12 weeks with 3 months of follow-up. The primary outcome was determined based on the objective response rate (ORR), as assessed by the Response Evaluation Criteria in Solid Tumors (RECIST). The secondary outcomes were progression-free survival (PFS), time to tumor progression (TTP), time to tumor treatment failure (TTTF), safety, and quality of life. RESULTS The intention-to-treat (ITT) analysis revealed that the ORR of curcumin was significantly higher than that of the placebo (51% vs. 33%, p < 0.01) at 4 weeks of follow-up. The difference between the groups was even greater when only patients who had completed the treatment (61% vs. 38%, odds ratio ==2.64, p < 0.01) were included. A superior effect of curcumin vs placebo was observed in both patients who had completed the treatment and all patients included in the ITT analysis, 3 months after termination of the treatment. No other significant differences were observed between the curcumin and the placebo groups, except for fatigue (3 vs. 10 patients, respectively; odds ratio ==3.7, p = 0.05). However, the patients' self-assessed overall physical performance was significantly higher with curcumin than the placebo during the treatment and at the end of the follow-up, suggesting better tolerance in the curcumin group. CONCLUSIONS Overall, treatment with curcumin in combination with paclitaxel was superior to the paclitaxel-placebo combination with respect to ORR and physical performance after 12 weeks of treatment. Intravenously administered curcumin caused no major safety issues and no reduction in quality of life, and it may be beneficial in reducing fatigue. ADVANCES IN KNOWLEDGE This is the first clinical study to explore the efficacy and safety of administering curcumin intravenously in combination with chemotherapy in the treatment of cancer patients.
Collapse
Affiliation(s)
- Tatul Saghatelyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia.
| | - Armen Tananyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | - Naira Janoyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | - Anna Tadevosyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | - Hasmik Petrosyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | | | - Lidia Hayrapetyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | - Mikael Arustamyan
- National Center of Oncology, 76 Fanarjyan str, 0052 Yerevan, Armenia
| | - Jürgen Arnhold
- BRIU GmbH, Germany, Altkönigstrasse10, 65462 Königstein, Germany
| | - Andre-Robert Rotmann
- Center of Complementary Oncology, Obere Martkstrasse 7, 63110 Rodgau Nieder-Roden, Germany
| | - Areg Hovhannisyan
- Sport Medicine & Anti-Doping Service Republican Centre, Yerevan, Acharyan Str., 2/6, Yerevan, Armenia
| | | |
Collapse
|
26
|
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int J Mol Sci 2020; 21:E2364. [PMID: 32235371 PMCID: PMC7178200 DOI: 10.3390/ijms21072364] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin diffuses through cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it exerts actions, as an antioxidant property. Therefore, its use has been advocated for chemopreventive, antimetastatic, and anti-angiogenic purposes. We conducted a literature review to summarize studies investigating the relationship between curcumin and colorectal cancer (CRC). In vitro studies, performed on human colon cancer cell lines, showed that curcumin inhibited cellular growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis by interacting with multiple molecular targets. In vivo studies have been performed in inflammatory and genetic CRC animal models with a chemopreventive effect. To improve curcumin bioavailability, it has been associated with small particles that increase its absorption when orally administered with excellent results on both inflammation and carcinogenesis. Curcumin has been used, moreover, as a component of dietetic formulations for CRC chemoprevention. These combinations showed in vitro and in vivo anticarcinogenetic properties in inflammation-related and genetic CRC. A synergic effect was suggested using an individual constituent dosage, which was lower than that experimentally used "in vivo" for single components. In conclusion, curcumin falls within the category of plant origin substances able to prevent CRC in animals. This property offers promising expectations in humans.
Collapse
Affiliation(s)
- Maria Pricci
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Bruna Girardi
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Floriana Giorgio
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Giuseppe Losurdo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| | - Enzo Ierardi
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| | - Alfredo Di Leo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| |
Collapse
|
27
|
Dai Y, Bai S, Hu C, Chu K, Shen B, Smith ZJ. Combined Morpho-Chemical Profiling of Individual Extracellular Vesicles and Functional Nanoparticles without Labels. Anal Chem 2020; 92:5585-5594. [PMID: 32162516 DOI: 10.1021/acs.analchem.0c00607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological nanoparticles are important targets of study, yet their small size and tendency to aggregate makes their heterogeneity difficult to profile on a truly single-particle basis. Here we present a label-free system called 'Raman-enabled nanoparticle trapping analysis' (R-NTA) that optically traps individual nanoparticles, records Raman spectra and tracks particle motion to identify chemical composition, size, and refractive index. R-NTA has the unique capacity to characterize aggregation status and absolute chemical concentration at the single-particle level. We validate the method on NIST standards and liposomes, demonstrating that R-NTA can accurately characterize size and chemical heterogeneity, including determining combined morpho-chemical properties such as the number of lamellae in individual liposomes. Applied to extracellular vesicles (EVs), we find distinct differences between EVs from cancerous and noncancerous cells, and that knockdown of the TRPP2 ion channel, which is pathologically highly expressed in laryngeal cancer cells, leads the EVs to more closely resemble EVs from normal epithelial cells. Intriguingly, the differences in EV content are found in small subpopulations of EVs, highlighting the importance of single-particle measurements. These experiments demonstrate the power of the R-NTA system to measure and characterize the morpho-chemical heterogeneity of bionanoparticles.
Collapse
Affiliation(s)
- Yichuan Dai
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Suwen Bai
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Chuanzhen Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kaiqin Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230026, China
| | - Zachary J Smith
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Dept. of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
28
|
DiMarco-Crook C, Rakariyatham K, Li Z, Du Z, Zheng J, Wu X, Xiao H. Synergistic anticancer effects of curcumin and 3',4'-didemethylnobiletin in combination on colon cancer cells. J Food Sci 2020; 85:1292-1301. [PMID: 32144766 DOI: 10.1111/1750-3841.15073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
Abstract
Chemoprevention strategies employing the use of multiple dietary bioactive components and their metabolites in combination offer advantages due to their low toxicity and potential synergistic interactions. Herein, for the first time, we studied the combination of curcumin and 3',4'-didemethylnobiletin (DDMN), a primary metabolite of nobiletin, to determine their combinatory effects in inhibiting growth of human colon cancer cells. Isobologram analysis revealed a synergistic interaction between curcumin and DDMN in the inhibition of cell growth of HCT116 colon cancer cells. The combination treatment induced significant G2 -M cell-cycle arrest and extensive apoptosis, which greatly exceeded the effects of individual treatments with curcumin or DDMN. Proteins associated with these heightened anticarcinogenic effects were p53, p21, HO-1, c-poly(ADP-ribose) polymerase, Cdc2, and Cdc25c; each of the proteins was confirmed to be substantially impacted by the combination treatment, more than by individual treatments alone. Interestingly, an increase in the stability of curcumin was also observed with the presence of DDMN in cell culture medium, which could offer an explanation in part for the synergistic interaction between curcumin and DDMN. This newly identified synergy between curcumin and DDMN should be explored further to determine its chemopreventive potential against colon cancer in vivo. PRACTICAL APPLICATION: This study identifies for the first time the synergistic inhibition of colon cancer cell growth by the dietary component curcumin present in turmeric, in combination with a metabolite of nobiletin, a unique citrus flavonoid. The synergism of the combination may be due to cell-cycle arrest and apoptosis induced by the combination as well as an improvement in the stability of curcumin as a result of the antioxidant property of the nobiletin metabolite. These significant findings of synergism between curcumin and the nobiletin metabolite could offer potential chemopreventive value against colon cancer.
Collapse
Affiliation(s)
| | | | - Zhengze Li
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Zheyuan Du
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Jinkai Zheng
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xian Wu
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA.,Dept. of Kinesiology and Health, Miami Univ., Oxford, OH, 45056, USA
| | - Hang Xiao
- Dept. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
29
|
Mass spectrometric investigation of concentration-dependent effect of curcumin and oxidative stress on intracellular glutathione levels. Anal Bioanal Chem 2020; 412:2873-2880. [PMID: 32112130 DOI: 10.1007/s00216-020-02524-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
Herein, we investigated the correlation between curcumin and glutathione (GSH) levels in mammalian cells using gold nanoparticles (AuNPs) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). GSH exists in high concentration in the cytosol and acts as a major antioxidant and reducing agent in organisms. Previous studies showed that curcumin, a well-known antioxidant with anti-inflammatory, anti-proliferative, and anti-carcinogenic activities, affects GSH levels in mammalian cells. However, the correlation between their levels remains controversial and has not yet been completely elucidated. This study used our recent strategy of GSH quantification, where GSH in cell lysate is captured on maleimide groups of AuNPs and analyzed using MALDI-TOF MS with isotopomer GSH (GSH*)-conjugated AuNPs as an internal standard. The comparison between GSH and GSH* relative intensities allows the quantitation of GSH in cells. In this way, GSH levels in mammalian cells were investigated after incubation with curcumin at various concentrations with or without oxidative stress. We observed that intracellular GSH levels were affected by curcumin in a concentration-dependent manner with oxidative stress; GSH levels decrease at a lower curcumin concentration, which can be recovered at increased curcumin concentrations. We also found that the GSH level increased at all curcumin concentrations after a certain incubation time. We believe our strategy can be commonly used to determine GSH levels in cells that are treated differently with various exogenous stimulants like reactive oxygen species, biofunctional natural products, and drug candidates. Graphical abstract.
Collapse
|
30
|
Gupta MK, Vadde R, Sarojamma V. Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer. Curr Drug Metab 2020; 20:977-987. [DOI: 10.2174/1389200220666191007153238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Colorectal cancer is the third important cause of cancer-associated deaths across the world.
Hence, there is an urgent need for understanding the complete mechanism associated with colorectal cancer, which in
turn can be utilized toward early detection as well as the treatment of colorectal cancer in humans. Though colorectal
cancer is a complex process and chemotherapy is the first step toward the treatment of colorectal cancer, recently
several studies suggested that dietary phytochemicals may also aid significantly in reducing colorectal cancer risk in
human. However, only few phytochemicals, specifically curcumin derived from the rhizomes of Curcuma longa,
have better chemotherapeutic property, which might be because of its ability to regulate the activity of key factors
associated with the initiation, promotion, as well as progression of tumors.
Objectives:
In the present review, the authors made an attempt to summarize the physiochemical properties of curcumin,
which in turn prevent colorectal cancer via regulating numerous cell signaling as well as genetic pathways.
Conclusions:
Accumulated evidence suggested that curcumin suppresses tumour/colon cancer in various ways, (a)
restricting cell cycle progression, or stimulating apoptosis, (b) restricting angiogenesis, anti-apoptotic proteins expression,
cell survival signaling pathways & their cross-communication and (c) regulating immune responses. The
information discussed in the present review will be useful in the drug discovery process as well as the treatment and
prevention of colorectal cancer in humans.
Collapse
Affiliation(s)
- Manoj K. Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, A.P, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, A.P, India
| | - Vemula Sarojamma
- Department of Microbiology, Sri Venkateswara Medical College, Tirupathi 517501, A.P, India
| |
Collapse
|
31
|
Hisamuddin N, Shaik Mossadeq WM, Sulaiman MR, Abas F, Leong SW, Kamarudin N, Ong HM, Ahmad Azmi AF, Ayumi RR, Talib M. Anti-Edematogenic and Anti-Granuloma Activity of a Synthetic Curcuminoid Analog, 5-(3,4-Dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one, in Mouse Models of Inflammation. Molecules 2019; 24:molecules24142614. [PMID: 31323775 PMCID: PMC6680833 DOI: 10.3390/molecules24142614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022] Open
Abstract
Curcumin, derived from the rhizome Curcuma longa, has been scientifically proven to possess anti-inflammatory activity but is of limited clinical and veterinary use owing to its low bioavailability and poor solubility. Hence, analogs of curcuminoids with improved biological properties have been synthesized to overcome these limitations. This study aims to provide the pharmacological basis for the use of 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), a synthetic curcuminoid analog, as an anti-edematogenic and anti-granuloma agent. The carrageenan-induced paw edema and the cotton pellet-induced granuloma assays were used to assess the anti-inflammatory activity of DHHPD in mice. The effects of DHHPD on the histaminergic, serotonergic, and bradykininergic systems were determined by the histamine-, serotonin-, and bradykinin-induced paw edema tests, respectively. DHHPD (0.1, 0.3, 1, and 3 mg/kg, intraperitoneal) evoked significant reductions (p < 0.05) in carrageenan-induced paw edema at different time intervals and granuloma formation (p < 0.0001) by 22.08, 32.57, 37.20, and 49.25%, respectively. Furthermore, DHHPD significantly reduced paw edema (p < 0.05) induced by histamine, serotonin, and bradykinin. The present study suggests that DHHPD exerts anti-edematogenic activity, possibly by inhibiting the synthesis or release of autacoid mediators of inflammation through the histaminergic, serotonergic, and bradykininergic systems. The anti-granuloma effect may be attributed to the suppression of transudative, exudative, and proliferative activities associated with inflammation.
Collapse
Affiliation(s)
- Nadia Hisamuddin
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wan Mastura Shaik Mossadeq
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sze Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nadhirah Kamarudin
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Hui Ming Ong
- Department of Biomedical Sciences Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ahmad Farhan Ahmad Azmi
- Department of Biomedical Sciences Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Rasyidah Ryta Ayumi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Madihah Talib
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
32
|
Click chemistry approach to characterize curcumin-protein interactions in vitro and in vivo. J Nutr Biochem 2019; 68:1-6. [DOI: 10.1016/j.jnutbio.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
|
33
|
Sheweita SA, Almasmari AA, El-Banna SG. Tramadol-induced hepato- and nephrotoxicity in rats: Role of Curcumin and Gallic acid as antioxidants. PLoS One 2018; 13:e0202110. [PMID: 30110401 PMCID: PMC6093657 DOI: 10.1371/journal.pone.0202110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tramadol is an analgesic used to treat moderate to severe pain caused by cancer, osteoarthritis, and other musculoskeletal diseases. Cytochrome P450 system metabolizes tramadol and induces oxidative stress in different organs. Therefore, the present study aims at investigating the changes in the activities and the protein expressions of CYPs isozymes (2E1, 3A4, 2B1/2), antioxidants status, free radicals levels after pretreatment of rats with Curcumin and/or Gallic as single- and/or repeated-doses before administration of tramadol. In repeated-dose treatments of rats with tramadol, the activities of cytochrome P450, cytochrome b5, and NADPH-cytochrome-c-reductase, and the antioxidant enzymes including glutathione reductase, glutathione peroxidase, glutathione S-transferase, catalase, superoxide dismutase, and levels of glutathione were inhibited in the liver and the kidney of rats. Interestingly, such changes caused by tramadol restored to their normal levels after pretreatment of rats with either Curcumin and/or Gallic acid. On the other hand, repeated-dose treatment of rats with tramadol increased the activities of both dimethylnitrosamine N-demethylase I (DMN-dI), and aryl hydrocarbon hydroxylase (AHH) compared to the control group. However, pretreatment of rats with Curcumin and/or Gallic acid prior to administration of tramadol restored the inhibited DMN-dI activity and its protein expression (CYP 2E1) to their normal levels. On the other hand, tramadol inhibited the activity of ethoxycoumarin O-deethylase (ECOD) and suppressed its protein marker expression (CYP2B1/2), whereas Curcumin, Gallic acid and/or their mixture restored such changes to their normal levels. In conclusion, Curcumin and/or Gallic acid alleviated the adverse effects caused by tramadol. In addition, patients should be advice to take Curcumin and/or Gallic acid prior to tramadol treatment to alleviate the hepatic and renal toxicities caused by tramadol.
Collapse
Affiliation(s)
- Salah A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Ainour A. Almasmari
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| | - Sabah G. El-Banna
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandra, Egypt
| |
Collapse
|
34
|
The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review. Int J Mol Sci 2017; 19:ijms19010107. [PMID: 29301217 PMCID: PMC5796057 DOI: 10.3390/ijms19010107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 12/24/2022] Open
Abstract
Renal Cell Carcinoma (RCC) is the most prominent kidney cancer derived from renal tubules and accounts for roughly 85% of all malignant kidney cancer. Every year, over 60,000 new cases are registered, and about 14,000 people die from RCC. The incidence of this has been increasing significantly in the U.S. and other countries. An increased understanding of molecular biology and the genomics of RCC has uncovered several signaling pathways involved in the progression of this cancer. Significant advances in the treatment of RCC have been reported from agents approved by the Food and Drug Administration (FDA) that target these pathways. These agents have become drugs of choice because they demonstrate clinical benefit and increased survival in patients with metastatic disease. However, the patients eventually relapse and develop resistance to these drugs. To improve outcomes and seek approaches for producing long-term durable remission, the search for more effective therapies and preventative strategies are warranted. Treatment of RCC using natural products is one of these strategies to reduce the incidence. However, recent studies have focused on these chemoprevention agents as anti-cancer therapies given they can inhibit tumor cell grow and lack the severe side effects common to synthetic compounds. This review elaborates on the current understanding of natural products and their mechanisms of action as anti-cancer agents. The present review will provide information for possible use of these products alone or in combination with chemotherapy for the prevention and treatment of RCC.
Collapse
|
35
|
Kalashnikova I, Mazar J, Neal CJ, Rosado AL, Das S, Westmoreland TJ, Seal S. Nanoparticle delivery of curcumin induces cellular hypoxia and ROS-mediated apoptosis via modulation of Bcl-2/Bax in human neuroblastoma. NANOSCALE 2017; 9:10375-10387. [PMID: 28702620 DOI: 10.1039/c7nr02770b] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, several formulations of nanoceria and dextran-nanoceria with curcumin, each demonstrated to have anti-cancer properties, were synthesized and applied as treatment for human childhood neuroblastoma. The anti-cancer activities of these formulations were explored in neuroblastoma models of both MYCN-amplified and non-amplified cell lines. Ceria nanoparticles, coated with dextran and loaded with curcumin, were found to induce substantial cell death in neuroblastoma cells (up to a 2-fold and a 1.6-fold decrease in cell viability for MYCN-upregulated and normal expressing cell lines, respectively; *p < 0.05) while producing no or only minor toxicity in healthy cells (no toxicity at 100 μM; **p < 0.01). This formulation evokes prolonged oxidative stress, stabilizing HIF-1α, and inducing caspase-dependent apoptosis (up to a 2.4-fold increase over control; *p < 0.05). Overall, nano-therapeutic treatments showed a more pronounced effect in MYCN-amplified cells, which are traditionally more resistant to drug therapies. These results represent a very promising alternative to small molecule drug therapies for robust cancers.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA
| | - Joseph Mazar
- Nemours Children Hospital, 13535 Nemours Parkway, Orlando, FL 32827, USA
| | - Craig J Neal
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA
| | - Amy L Rosado
- Nemours Children Hospital, 13535 Nemours Parkway, Orlando, FL 32827, USA
| | - Soumen Das
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Tamarah J Westmoreland
- Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA and College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | - Sudipta Seal
- Materials Science and Engineering, Advanced Materials Processing Center, University of Central Florida, Orlando, FL 32816, USA and Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA and College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| |
Collapse
|
36
|
Ullah MF, Bhat SH, Husain E, Abu-Duhier F, Hadi SM, Sarkar FH, Ahmad A. Pharmacological Intervention through Dietary Nutraceuticals in Gastrointestinal Neoplasia. Crit Rev Food Sci Nutr 2017; 56:1501-18. [PMID: 25365584 DOI: 10.1080/10408398.2013.772091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoplastic conditions associated with gastrointestinal (GI) tract are common worldwide with colorectal cancer alone accounting for the third leading rate of cancer incidence. Other GI malignancies such as esophageal carcinoma have shown an increasing trend in the last few years. The poor survival statistics of these fatal cancer diseases highlight the need for multiple alternative treatment options along with effective prophylactic strategies. Worldwide geographical variation in cancer incidence indicates a correlation between dietary habits and cancer risk. Epidemiological studies have suggested that populations with high intake of certain dietary agents in their regular meals have lower cancer rates. Thus, an impressive embodiment of evidence supports the concept that dietary factors are key modulators of cancer including those of GI origin. Preclinical studies on animal models of carcinogenesis have reflected the pharmacological significance of certain dietary agents called as nutraceuticals in the chemoprevention of GI neoplasia. These include stilbenes (from red grapes and red wine), isoflavones (from soy), carotenoids (from tomatoes), curcuminoids (from spice turmeric), catechins (from green tea), and various other small plant metabolites (from fruits, vegetables, and cereals). Pleiotropic action mechanisms have been reported for these diet-derived chemopreventive agents to retard, block, or reverse carcinogenesis. This review presents a prophylactic approach to primary prevention of GI cancers by highlighting the translational potential of plant-derived nutraceuticals from epidemiological, laboratory, and clinical studies, for the better management of these cancers through consumption of nutraceutical rich diets and their intervention in cancer therapeutics.
Collapse
Affiliation(s)
- Mohammad F Ullah
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Showket H Bhat
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Eram Husain
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - Faisel Abu-Duhier
- a Prince Fahad Research Chair , Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk , Tabuk , Saudi Arabia
| | - S M Hadi
- b Department of Biochemistry , Faculty of Life Sciences, Aligarh Muslim University , Uttar Pradesh , India
| | - Fazlul H Sarkar
- c Department of Pathology , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , Michigan USA
| | - Aamir Ahmad
- c Department of Pathology , Karmanos Cancer Institute, Wayne State University School of Medicine , Detroit , Michigan USA
| |
Collapse
|
37
|
|
38
|
Righeschi C, Bergonzi MC, Isacchi B, Bazzicalupi C, Gratteri P, Bilia AR. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
The inhibition of Typhonium flagelliforme Lodd. Blume leaf extract on COX-2 expression of WiDr colon cancer cells. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Rana C, Piplani H, Vaish V, Nehru B, Sanyal SN. Downregulation of PI3-K/Akt/PTEN pathway and activation of mitochondrial intrinsic apoptosis by Diclofenac and Curcumin in colon cancer. Mol Cell Biochem 2015; 402:225-41. [PMID: 25644785 DOI: 10.1007/s11010-015-2330-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/16/2015] [Indexed: 02/07/2023]
Abstract
Phosphatidylinositol 3-kinase (PI3-K)/PTEN/Akt signaling is over activated in various tumors including colon cancer. Activation of this pathway regulates multiple biological processes such as apoptosis, metabolism, cell proliferation, and cell growth that underlie the biology of a cancer cell. In the present study, the chemopreventive effects have been observed of Diclofenac, a preferential COX-2 inhibitory non-steroidal anti-inflammatory drugs, and Curcumin, a natural anti-inflammatory agent, in the early stage of colorectal carcinogenesis induced by 1,2-dimethylhydrazine dihydrochloride in rats. The tumor-promoting role of PI3-K/Akt/PTEN signal transduction pathway and its association with anti-apoptotic family of proteins are also observed. Both Diclofenac and Curcumin downregulated the PI3-K and Akt expression while promoting the apoptotic mechanism. Diclofenac and Curcumin administration significantly increased the expression of pro-apoptotic Bcl-2 family members (Bad and Bax) while decreasing the anti-apoptotic Bcl-2 protein. An up-regulation of cysteine protease family apoptosis executioner, such as caspase-3 and -9, is seen. Diclofenac and Curcumin inhibited the Bcl-2 protein by directly interacting at the active site by multiple hydrogen bonding, as also evident by negative glide score of Bcl-2. These drugs stimulated apoptosis by increasing reactive oxygen species (ROS) generation and simultaneously decreasing the mitochondrial membrane potential (ΔΨ M). Diclofenac and Curcumin showed anti-neoplastic effects by downregulating PI3-K/Akt/PTEN pathway, inducing apoptosis, increasing ROS generation, and decreasing ΔΨ M. The anti-neoplastic and apoptotic effects were found enhanced when both Diclofenac and Curcumin were administered together, rather than individually.
Collapse
Affiliation(s)
- Chandan Rana
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | | | | | |
Collapse
|
41
|
Lee JG, McKinney KQ, Pavlopoulos AJ, Park JH, Hwang S. Identification of anti-metastatic drug and natural compound targets in isogenic colorectal cancer cells. J Proteomics 2014; 113:326-36. [PMID: 25451013 DOI: 10.1016/j.jprot.2014.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/14/2014] [Accepted: 10/19/2014] [Indexed: 12/26/2022]
Abstract
UNLABELLED Therapeutic strategies for cancer treatment often remain challenging due to the cumulative risk derived from metastasis, which has been described as an aggressive state of cancer cell proliferation often resulting in failure of clinical therapy. In the current study, anti-metastatic properties of three chemotherapeutic drugs and three compounds from natural sources were investigated by comparative proteomic analysis. Proteomic profile comparison of the isogenic primary and metastatic colon cancer cell lines SW480 and SW620 identified two potential metastasis related molecular targets: fatty acid synthase and histone H4. To demonstrate their biological roles in cancer metastasis, the expression of these target genes was suppressed by siRNA transfection. Subsequent cell migration assays demonstrated reduced migratory effects. SW620 cells were treated with six anti-cancerous components. Through comprehensive proteomic analysis, three of the tested compounds, oxaliplatin, ginsenoside 20(S)-Rg3 and curcumin, were revealed to have a suppressive effect on FASN and histone H4 expression. SW620 cells treated with these drugs showed significantly reduced migratory activity, which suggests that drug-induced targeted suppression of these genes may affect cell migration. The validity of the proteomic datasets was verified by knowledgebase pathway analysis and immunoblotting assays. The anti-metastatic components revealed by the current proteomic analysis represent promising chemotherapeutic candidates for the treatment of colorectal adenocarcinoma. BIOLOGICAL SIGNIFICANCE The current study demonstrates anti-metastatic activity of chemotherapeutics and natural components by the suppression of target molecules, fatty acid synthase and histone H4 identified by a comparative proteomic analysis employing the isogenic primary and metastatic colon cancer cell lines, SW480 and SW620. Three tested drugs, namely, oxaliplatin, ginsenoside 20(S)-Rg3 and curcumin were revealed to possess suppressive effects on fatty acid synthase and histone H4 and reduce metastasis as determined by cell migration assay. Data were confirmed by the correlation between spectral counts from proteomic data and Western blot analysis, which were in good agreement with immunohistochemistry.
Collapse
Affiliation(s)
- Jin-Gyun Lee
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203, United States
| | - Kimberly Q McKinney
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203, United States
| | - Antonis J Pavlopoulos
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203, United States
| | - Jeong-Hill Park
- College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Sunil Hwang
- Proteomics Laboratory for Clinical and Translational Research, Carolinas HealthCare System, Charlotte, NC 28203, United States.
| |
Collapse
|
42
|
Curcumin: a potential candidate in prevention of cancer via modulation of molecular pathways. BIOMED RESEARCH INTERNATIONAL 2014; 2014:761608. [PMID: 25295272 PMCID: PMC4176907 DOI: 10.1155/2014/761608] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/25/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Cancer is the most dreadful disease worldwide in terms of morbidity and mortality. The exact cause of cancer development and progression is not fully known. But it is thought that cancer occurs due to the structural and functional changes in the genes. The current approach to cancer treatment based on allopathic is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a safe and effective mode of treatment is needed to control the cancer development and progression. Some medicinal plants provide a safe, effective and affordable remedy to control the progression of malignant cells. The importance of medicinal plants and their constituents has been documented in Ayurveda, Unani medicine, and various religious books. Curcumin, a vital constituent of the spice turmeric, is an alternative approach in the prevention of cancer. Earlier studies have shown the effect of curcumin as an antioxidant, antibacterial, antitumor and it also has a noteworthy role in the control of different diseases. In this review, we summarize the understanding of chemopreventive effects of curcumin in the prevention of cancer via the regulation of various cell signaling and genetic pathways.
Collapse
|
43
|
Lolodi O, Eriyamremu GE. Effect of methanolic extract of Vernonia amygdalina (common bitter leaf) on lipid peroxidation and antioxidant enzymes in rats exposed to cycasin. Pak J Biol Sci 2013; 16:642-6. [PMID: 24505988 DOI: 10.3923/pjbs.2013.642.646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effect of a methanolic extract of Vernonia amygdalina (VA) on lipid peroxidation and antioxidant status of the colon of rats maintained on a normal diet containing 5% Cycas revoluta (cycads). Fifty male Wistar albino rats were randomly assigned into five groups of ten experimental animals in a study that lasted for six weeks. One control group was maintained on a normal diet only while another group was fed a normal diet containing 5% cycads. The other three groups were maintained on the normal diet and 5% cycads and orally fed 200 mg VA/kg body weight for 1, 5 or 6 weeks. The results obtained revealed that the level of malondialdehyde (an index of lipid peroxidation) was significantly elevated (p < 0.05) in rats exposed to cycads only compared with the control. However, oral administration of VA in conjunction with exposure to cycads appeared to reduce the extent of lipid peroxidation to values that are not significantly (p > 0.05) different from those of the control. The activity of Superoxide Dismutase (SOD) was significantly reduced (p < 0.05) in the experimental animals fed cycads compared with the controls. Oral administration of VA seemed to counteract the effect of cycads on SOD in the colon as no significant difference (p > 0.05) was observed in rats fed VA compared with the controls. The results of this study suggest that methanolic extract of VA may mitigate the biochemical consequences of cycasin-induced lipid peroxidation in the colon of rats.
Collapse
Affiliation(s)
- O Lolodi
- Department of Biochemistry, University of Benin, PMB 1154, Benin City, Nigeria
| | - G E Eriyamremu
- Department of Biochemistry, University of Benin, PMB 1154, Benin City, Nigeria
| |
Collapse
|
44
|
Yang L, Su L, Cao C, Xu L, Zhong D, Xu L, Liu X. The chalcone 2′-hydroxy-4′,5′-dimethoxychalcone activates death receptor 5 pathway and leads to apoptosis in human nonsmall cell lung cancer cells. IUBMB Life 2013; 65:533-43. [DOI: 10.1002/iub.1161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/12/2022]
|
45
|
Healy S, Khan P, Davie JR. Immediate early response genes and cell transformation. Pharmacol Ther 2013; 137:64-77. [DOI: 10.1016/j.pharmthera.2012.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/20/2023]
|
46
|
Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son YO, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee JC, Shi X. Cancer prevention with promising natural products: mechanisms of action and molecular targets. Anticancer Agents Med Chem 2012; 12:1159-84. [PMID: 22583402 PMCID: PMC4983770 DOI: 10.2174/187152012803833035] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death worldwide. There is greater need for more effective and less toxic therapeutic and preventive strategies. Natural products are becoming an important research area for novel and bioactive molecules for drug discovery. Phytochemicals and dietary compounds have been used for the treatment of cancer throughout history due to their safety, low toxicity, and general availability. Many active phytochemicals are in human clinical trials. Studies have indicated that daily consumption of dietary phytochemicals have cancer protective effects against carcinogens. They can inhibit, delay, or reverse carcinogenesis by inducing detoxifying and antioxidant enzymes systems, regulating inflammatory and proliferative signaling pathways, and inducing cell cycle arrest and apoptosis. Epidemiological studies have also revealed that high dietary intakes of fruits and vegetables reduce the risk of cancer. This review discusses potential natural cancer preventive compounds, their molecular targets, and their mechanisms of actions.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Amit Budhraja
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Songze Ding
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Young-Ok Son
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xin Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew Hitron
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Kim Hyun-Jung
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Jeong-Chae Lee
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
47
|
Fang M, Jin Y, Bao W, Gao H, Xu M, Wang D, Wang X, Yao P, Liu L. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int J Nanomedicine 2012; 7:5395-404. [PMID: 23091382 PMCID: PMC3471604 DOI: 10.2147/ijn.s36257] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Curcumin has a variety of pharmacological effects. However, poor water solubility and low oral bioavailability limit its clinical utility. A delivery system for nanostructured lipid carriers has been reported to be a promising approach to enhancing the oral absorption of curcumin. The aim of the present study was to investigate the pharmacokinetics, tissue distribution, and relative bioavailability of curcumin in rats after a single intragastric dose of a nanostructured lipid curcumin carrier formulation. Methods Nanostructured lipid curcumin carriers were prepared using the ethanol dripping method and characterized in terms of the particle size, polydispersity index, zeta potential, differential scanning calorimetry, drug-loading capacity, encapsulation efficiency, and in vitro release. The pharmacokinetics and tissue distribution of nanostructured lipid curcumin carriers and curcumin suspension were compared after intragastric administration. Results Nanostructured lipid curcumin carriers showed a significantly higher peak plasma concentration (564.94 ± 14.98 ng/mL versus 279.43 ± 7.21 ng/mL, P < 0.01), a shorter time taken to reach peak plasma concentration (0.5 ± 0.01 hour versus 1.0 ± 0.12 hour, P < 0.01), and a greater AUC0–∞ (820.36 ± 25.11 mg × hour/L versus 344.11 ± 10.01 mg × hour/L, P < 0.05) compared with curcumin suspension. In the tissue distribution studies, curcumin could be detected in the spleen, heart, liver, kidneys, lungs, and brain. Following intragastric administration of the nanostructured lipid curcumin carrier formulation, tissue concentrations of curcumin also increased, especially in the brain. The nanostructured lipid curcumin carrier formulation improved the ability of curcumin to cross the blood–brain barrier, with an 11.93-fold increase in the area under the curve achieved in the brain when compared with curcumin suspension. Conclusion The nanostructured lipid carrier formulation significantly improved the oral bioavailability of curcumin and represents a promising method for its oral delivery.
Collapse
Affiliation(s)
- Min Fang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hebbar S, Fuggle WJ, Nevill AM, Veitch AM. Colorectal cancer incidence and trend in UK South Asians: a 20-year study. Colorectal Dis 2012; 14:e319-22. [PMID: 22284437 DOI: 10.1111/j.1463-1318.2012.02960.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIMS South Asians comprise 13.6% of the Wolverhampton population. We aimed to compare the incidence and trend of colorectal cancer in this subgroup with the non South Asian population over a 20-year period. METHOD Patients of South Asian origin diagnosed with colorectal cancer from 1989 to 2008 were identified from the hospital histopathology database and compared with those of non South Asian origin. 1991 and 2001 census data were used to standardize for differing age and sex distributions in the two study populations. RESULTS The median unadjusted incidence of colorectal cancer from 1989 to 2008 was 6.17 per 100,000 per year in South Asians compared with 71.70 per 100,000 per year in non South Asians (77.79% white British). The age and sex adjusted odds ratio for colorectal cancer in South Asians was 0.2 (P < 0.001). There was an equal increased trend in the incidence in both the South Asians and non South Asians over the study period (0.8% per year). In patients < 50 years, the gender difference in the incidence of cancer was not significant, but as age increased this rose significantly (males > females). CONCLUSION There was a markedly lower incidence of colorectal cancer in South Asians compared with non South Asians, maintained over 20 years. Colorectal cancer incidence increased by a small and similar amount over the period in both groups. There was a male preponderance of colorectal cancer in both populations over 50 years.
Collapse
Affiliation(s)
- S Hebbar
- Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | | | | | | |
Collapse
|
49
|
Zheng J, Payne K, Taggart JE, Jiang H, Lind SE, Ding WQ. Trolox enhances curcumin's cytotoxicity through induction of oxidative stress. Cell Physiol Biochem 2012; 29:353-60. [PMID: 22508043 DOI: 10.1159/000338490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2012] [Indexed: 01/18/2023] Open
Abstract
Curcumin, a natural polyphenol in the spice turmeric, has been found to exhibit anticancer activity. Although curcumin is generally considered an antioxidant, it is also able to elicit apoptosis through the generation of ROS, thereby functioning as a pro-oxidant in cancer cells. The present study investigated the effects of antioxidant pretreatment on curcumin-induced cytotoxicity in the human cancer cell lines A2780, MCF-7, and MDA-MB-231. Cytotoxicity was enhanced by trolox, vitamin C or vitamin E; trolox, a water soluble vitamin E derivative, was the most potent. The combination of curcumin (10 μM) and trolox (10-50 μM) induced apoptosis of cancer cells as evidenced by PARP cleavage and caspase-3 activation. Furthermore, expression of the pro-apoptotic protein Bad was up-regulated and expression of the anti-apoptotic proteins Bcl-2 and Bcl-xl was down-regulated in cells that had been treated with trolox plus curcumin. ROS generation was detected in curcumin-treated cells and was significantly enhanced when cells were treated with trolox plus curcumin. Exogenous catalase or SOD1 did not alter cytotoxicity, while over-expression of either catalase or SOD1 did, pointing to the importance of intracellular hydrogen peroxide generation in cell killing. In conclusion, we demonstrated for the first time that antioxidants such as trolox can potentiate cancer cell killing by curcumin, a finding which may help in the development of novel drug combination therapies.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abdel Aziz MT, El-Asmar MF, Rezq AM, Fouad HH, Ahmed HH, Hassouna AA, Taha FM, Hafez HF. Novel Anticancer Curcumin Derivative with Conserved Functional Groups. ACTA ACUST UNITED AC 2012. [DOI: 10.7243/2049-7962-1-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|