1
|
Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, Uchida T, Miftahussurur M. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life 2024; 17:4-14. [PMID: 38737656 PMCID: PMC11080499 DOI: 10.25122/jml-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.
Collapse
Affiliation(s)
- Yudith Annisa Ayu Rezkitha
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Raissa Virgy Rianda
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Isna Mahmudah
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aditya Doni Pradana
- Department of Emergency Services, Kendal Islamic Hospital, Kendal, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Gheytanchi E, Tajik F, Razmi M, Babashah S, Cho WCS, Tanha K, Sahlolbei M, Ghods R, Madjd Z. Circulating exosomal microRNAs as potential prognostic biomarkers in gastrointestinal cancers: a systematic review and meta-analysis. Cancer Cell Int 2023; 23:10. [PMID: 36670440 PMCID: PMC9862982 DOI: 10.1186/s12935-023-02851-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Recent reports suggested that circulating exosomal microRNAs (exomiRs) may serve as non-invasive prediction biomarkers in gastrointestinal (GI) cancers, yet their clinicopathological and prognostic values need to be more clarified. Hence, the present meta-analysis was aimed to quantitatively assess the evidence regarding the association between circulating exomiRs and prognosis in GI cancer patients. METHODS A comprehensive search was carried out in prominent literature databases, including PubMed, ISI Web of Science, Scopus, and Embase. Odds ratios (ORs) or hazard ratios (HRs) with 95% confidence intervals (CIs) were gathered to evaluate the strength of the association. The quality assessment was investigated through the Newcastle-Ottawa Scale (NOS) and publication bias via Eggers' test and funnel plots. RESULTS A total of 47 studies, comprising of 4881 patients, were considered eligible for this meta-analysis. Both up-regulated and down-regulated circulating exomiRs are significantly associated with differentiation (HR = 1.353, P = 0.015; HR = 1.504, P = 0.016), TNM stage (HR = 2.058, P < 0.001; HR = 2.745, P < 0.001), lymph node metastasis (HR = 1.527, P = 0.004; HR = 2.009, P = 0.002), distant metastasis (HR = 2.006, P < 0.001; HR = 2.799, P = 0.002), worse overall survival (OS) (HR = 2.053, P < 0.001; HR = 1.789, P = 0.001) and poorer disease/relapse/progression-free survival (DFS/RFS/PFS) (HR = 2.086, P < 0.001; HR = 1.607, P = 0.001) in GI cancer patients, respectively. In addition, subgroup analyses based on seven subcategories indicated the robustness of the association. The majority of findings were lack of publication bias except for the association between up-regulated exomiRs and OS or DFS/RFS/PFS and for the down-regulated exomiRs and TNM stage. CONCLUSION This study supports that up- and down-regulated circulating exomiRs are associated with poorer survival outcomes and could be served as potential prognostic biomarkers in GI cancers. Given the limitations of the current findings, such as significant heterogeneity, more investigations are needed to fully clarify the exomiRs prognostic role.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Tajik
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Razmi
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Babashah
- grid.412266.50000 0001 1781 3962Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - William Chi Shing Cho
- grid.415499.40000 0004 1771 451XDepartment of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region, China
| | - Kiarash Tanha
- grid.411746.10000 0004 4911 7066Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- grid.411746.10000 0004 4911 7066Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yoshikawa Y, Fukunaga M, Takahashi J, Shimizu D, Masuda T, Mizushima T, Yamada K, Mori M, Eguchi H, Doki Y, Ochiya T, Mimori K. Identification of the Minimum Combination of Serum microRNAs to Predict the Recurrence of Colorectal Cancer Cases. Ann Surg Oncol 2023; 30:233-243. [PMID: 36175711 PMCID: PMC9726799 DOI: 10.1245/s10434-022-12355-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Serum microRNAs (miRNAs) have been recognized as potential stable biomarkers for various types of cancer. Considering the clinical applications, there are certain critical requirements, such as minimizing the number of miRNAs, reproducibility in a longitudinal clinical course, and superiority to conventional tumor markers, such as carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9. This study aimed to identify serum miRNAs that indicate the recurrence of colorectal cancer (CRC), surpassing inter-tumor heterogeneity. METHODS We conducted an analysis of 434 serum samples from 91 patients with CRC and 71 healthy subjects. miRNAs were obtained from Toray Co., Ltd, and miRNA profiles were analyzed using a three-step approach. miRNAs that were highly expressed in patients with CRC than in the healthy controls in the screening phase, and those that were highly expressed in the preoperative samples than in the 1-month postoperative samples in the discovery phase, were extracted. In the validation phase, the extracted miRNAs were evaluated in 323 perioperative samples, in chronological order. RESULTS A total of 12 miRNAs (miR-25-3p, miR-451a, miR-1246, miR-1268b, miR-2392, miR-4480, miR-4648, miR-4732-5p, miR-4736, miR-6131, miR-6776-5p, and miR-6851-5p) were significantly concordant with the clinical findings of tumor recurrence, however their ability to function as biomarkers was comparable with CEA. In contrast, the combination of miR-1246, miR-1268b, and miR-4648 demonstrated a higher area under the curve (AUC) than CEA. These three miRNAs were upregulated in primary CRC tissues. CONCLUSION We identified ideal combinatorial miRNAs to predict CRC recurrence.
Collapse
Affiliation(s)
- Yukihiro Yoshikawa
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita Japan ,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka Japan
| | | | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka Japan
| | - Kazutaka Yamada
- Coloproctology Center Takano Hospital, Kumamoto, Kumamoto Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Oita Japan
| |
Collapse
|
4
|
Rafiee R, Razmara E, Motavaf M, Mossahebi-Mohammadi M, Khajehsharifi S, Rouhollah F, Babashah S. Circulating serum miR-1246 and miR-1229 as diagnostic biomarkers in colorectal carcinoma. J Cancer Res Ther 2022; 18:S383-S390. [PMID: 36510992 DOI: 10.4103/jcrt.jcrt_752_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Although colonoscopy is considered as the "Gold Standard" technique to detect CRC, its application is invasive and cost incurred. Thus, noninvasive or minimally invasive approaches are of utmost importance. The aberrant expression of some microRNAs (miRNAs, miRs) has been suggested in association with CRC pathogenesis. This study aimed to validate if circulating serum miR-1229 and miR-1246 are diagnostic biomarkers for CRC. Materials and Methods Serum samples were isolated from 45 CRC patients and also 45 healthy controls (HC). The expression levels of circulating serum-derived miR-1229 and miR-1246 were evaluated by quantitative real-time polymerase chain reaction. Receiver operating characteristic (ROC) curves were constructed to evaluate the CRC diagnostic accuracy of selected miRNAs. Furthermore, the association of candidate miRNAs and clinicopathological characteristics were evaluated. Functional enrichment of the candidate miRNAs was applied using in silico tools. Results The expression of miR-1229 and miR-1246 was significantly higher in CRC patients than HC (P < 0.0001) and also was found in association with lymph node metastasis (P < 0.05). We demonstrated a significant up-regulation of serum-derived miR-1246 in advanced tumor-node-metastasis stage III of CRC patients (P < 0.05). Areas under the ROC curve of miR-1229 and miR-1246 were 0.81 and 0.84, respectively (P < 0.0001). Conclusion We confirmed the capability of circulating serum miR-1229 and miR-1246 as novel diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Reihaneh Rafiee
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, TarbiatModares University, Tehran, Iran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Fellizar A, Refuerzo V, Ramos JD, Albano PM. Expression of specific microRNAs in tissue and plasma in colorectal cancer. J Pathol Transl Med 2022; 57:147-157. [PMID: 35501673 DOI: 10.4132/jptm.2022.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNA/miR) play significant roles in the regulation of cell differentiation, cell cycle progression, and apoptosis. They become dysregulated during carcinogenesis and are eventually released into the circulation, enabling their detection in body fluids. Thus, this study compared the miRNA expression in tissue and plasma samples of colorectal cancer (CRC) patients and clinically healthy controls and determined miRNA expression as a potential CRC biomarker. METHODS Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), miR-21-5p, miR-29a-3p, miR-92a-3p, miR-135b-5p, miR-196b-5p, and miR-197-3p, expression was analyzed and compared between the malignant (n = 41) and the adjacent neoplasm free mucosal tissues (n = 41) of CRC patients. The findings were validated in plasma samples (n = 36) collected from the same CRC patients prior to surgery or any form of treatment and compared to plasma from their age and sex-matched controls (n = 36). RESULTS MiR-21-5p, miR-29a-3p, miR-92a-3p, and miR- 196b-5p were upregulated and miR-135b-5p was downregulated in CRC malignant tissues compared to their expression in adjacent neoplasm-free tissue. This was further observed in the plasma of the same CRC cases compared to controls. MiR-92a-3p showed itself the most sensitive (0.93; p < .001) and most specific (0.95; p < .001) in detecting CRC in tissue. In plasma, miR-196b-5p was the most sensitive (0.97; p < .001) and specific (0.94; p < .001) in detecting CRC. Plasma miR-92a-3p and miR-196b-5p were the most sensitive (0.95; p < .001) and specific (0.94; p < .001) in the early detection of CRC. CONCLUSIONS Results show that specific miRNAs dysregulated in malignant tissues are released and can be detected in the circulation, supporting their potential as non-invasive biomarkers of CRC.
Collapse
|
6
|
Xing J, Liao Y, Zhang H, Zhang W, Zhang Z, Zhang J, Wang D, Tang D. Impacts of MicroRNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Front Cell Infect Microbiol 2022; 12:804689. [PMID: 35493741 PMCID: PMC9047021 DOI: 10.3389/fcimb.2022.804689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Although a dysfunctional gut microbiome is strongly linked to colorectal cancer (CRC), our knowledge of the mediators between CRC and the microbiome is limited. MicroRNAs (miRNAs) affect critical cellular processes, such as apoptosis, proliferation, and differentiation, and contribute to the regulation of CRC progression. Increasingly, studies found that miRNAs can significantly mediate bidirectional interactions between the host and the microbiome. Notably, miRNA expression is regulated by the gut microbiome, which subsequently affects the host transcriptome, thereby influencing the development of CRC. This study typically focuses on the specific functions of the microbiome in CRC and their effect on CRC-related miRNA production and reviews the role of several bacteria on miRNA, including Fusobacterium nucleatum, Escherichia coli, enterotoxigenic Bacteroides fragilis, and Faecalibacterium prausnitzii. Based on the important roles of miRNAs and the gut microbiome in CRC, strategies for modulating miRNA expression and regulating the gut microbiome composition need to be applied, such as bioactive dietary components and fecal microorganism transplantation.
Collapse
Affiliation(s)
- Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Dong Tang,
| |
Collapse
|
7
|
Moazzendizaji S, Sevbitov A, Ezzatifar F, Jalili HR, Aalii M, Hemmatzadeh M, Aslani S, Gholizadeh Navashenaq J, Safari R, Hosseinzadeh R, Rahmany MR, Mohammadi H. microRNAs: Small molecules with a large impact on colorectal cancer. Biotechnol Appl Biochem 2021; 69:1893-1908. [PMID: 34550619 DOI: 10.1002/bab.2255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) accounts for one of the main cancer-related mortality and morbidity worldwide. The molecular mechanisms of CRC development have been broadly investigated and, over the last decade, it has become evident that aberrant transcription of microRNAs (miRNAs), a class of small, noncoding RNA molecules, has a significant role in the inception and promotion of CRC. In the involved tissues of CRC, the transcription profile of miRNAs is modulated, and their expression templates are related with prognosis, diagnosis, and treatment outcomes. Here, in the current review, we attempted to discuss the latest information regarding the aberrantly expressed miRNAs in CRC and the advantages of utilizing miRNAs as biomarkers for early diagnosis and prognosis of CRC as well as potential therapeutic application. The effect of miRNAs involved in various signaling pathways, primarily p53, EGFR, Wnt, and TGF-β pathways, was clarified.
Collapse
Affiliation(s)
- Sahand Moazzendizaji
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Andrey Sevbitov
- Head of Department of Propaedeutics of Dental Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Ezzatifar
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Reza Jalili
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Morteza Aalii
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics (GIGA), University of Liege, Sart-Tilman Liège, Belgium.,13. Molecular and Cellular Biology (TERRA), Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmany
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Cervena K, Novosadova V, Pardini B, Naccarati A, Opattova A, Horak J, Vodenkova S, Buchler T, Skrobanek P, Levy M, Vodicka P, Vymetalkova V. Analysis of MicroRNA Expression Changes During the Course of Therapy In Rectal Cancer Patients. Front Oncol 2021; 11:702258. [PMID: 34540669 PMCID: PMC8444897 DOI: 10.3389/fonc.2021.702258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression in a tissue-specific manner. However, little is known about the miRNA expression changes induced by the therapy in rectal cancer (RC) patients. We evaluated miRNA expression levels before and after therapy and identified specific miRNA signatures reflecting disease course and treatment responses of RC patients. First, miRNA expression levels were assessed by next-generation sequencing in two plasma samplings (at the time of diagnosis and a year after) from 20 RC patients. MiR-122-5p and miR-142-5p were classified for subsequent validation in plasma and plasma extracellular vesicles (EVs) on an independent group of RC patients (n=107). Due to the intrinsic high differences in miRNA expression levels between samplings, cancer-free individuals (n=51) were included in the validation phase to determine the baseline expression levels of the selected miRNAs. Expression levels of these miRNAs were significantly different between RC patients and controls (for all p <0.001). A year after diagnosis, miRNA expression profiles were significantly modified in patients responding to treatment and were no longer different from those measured in cancer-free individuals. On the other hand, patients not responding to therapy maintained low expression levels in their second sampling (miR-122-5p: plasma: p=0.05, EVs: p=0.007; miR-142-5p: plasma: p=0.008). Besides, overexpression of miR-122-5p and miR-142-5p in RC cell lines inhibited cell growth and survival. This study provides novel evidence that circulating miR-122-5p and miR-142-5p have a high potential for RC screening and early detection as well as for the assessment of patients' outcomes and the effectiveness of treatment schedule.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia
| | - Vendula Novosadova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Prague, Czechia
| | - Barbara Pardini
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alessio Naccarati
- Molecular Genetics Epidemiology Unit, Italian Institute for Genomic Medicine, c/o IRCCS Candiolo,, Turin, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czechia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia.,Institute of Biology and Medical Genetics, 1stMedical Faculty, Charles University, Prague, Czechia.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
9
|
Yasser MB, Abdellatif M, Emad E, Jafer A, Ahmed S, Nageb L, Abdelshafy H, Al-Anany AM, Al-Arab MAE, Gibriel AA. Circulatory miR-221 & miR-542 expression profiles as potential molecular biomarkers in Hepatitis C Virus mediated liver cirrhosis and hepatocellular carcinoma. Virus Res 2021; 296:198341. [PMID: 33607184 DOI: 10.1016/j.virusres.2021.198341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis C virus (cHCV) is a leading cause for liver cirrhosis (LC) and hepatocellular carcinoma (HCC) globally. So far, there is no optimal non-invasive biomarker for diagnosing HCV associated hepatic disorders. Circulatory miRNAs have drawn great attention as potential non-invasive biomarkers in various diseases. We quantified miR-221 and miR-542 levels in the plasma of 153 Egyptian patients (38 healthy controls (HC), 36 cHCV, 39 HCV-LC and 40 HCV mediated HCC groups) using qRT-PCR. All diseased groups exhibited significant upregulation in miR-221 expression (P < 0.001) with an increasing trend towards late stages (HCV-LC+HCV-HCC) as compared to early stages (cHCV). MiR-221 could significantly discriminate HCC patients from cHCV and HCV-LC with (AUC=0.698; P = 0.002) and (AUC=0.644; P = 0.032) respectively. Furthermore, miR-221 could significantly discriminate between HCC and non-HCC groups (AUC=0.670, P<0.001). HCV-LC & cHCV groups showed significant upregulation in miR-542 with remarkable downregulation in HCC group (P = 0.004). MiR-542 exhibited diagnostic power of (AUC=0.640; P = 0.044) and (AUC= 0.644; P = 0.040) for discriminating HCV-LC from HCC and cHCV groups respectively. Both miR-221 and miR-542 were significantly upregulated in cirrhotic group (HCV-LC) (P = 0.046 and P = 0.002 respectively) as compared to non-cirrhotic group (cHCV+HC). Combining both miRNAs in a panel significantly improved diagnostic performance as follows; HC and HCC (AUC=0.714, P < 0.001); HCC and LC (AUC=0.714, P = 0.001); HC and LC (AUC=0.710, P = 0.002) and also cHCV and HCC (AUC=0.672, P = 0.006). In conclusion, both miR-221 & miR-542 could stand as a standalone biomarker for staging various HCV associated disorders. Combining them would greatly enhance their diagnostic potential.
Collapse
Affiliation(s)
- Montaser Bellah Yasser
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Mahmoud Abdellatif
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Esraa Emad
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Afnan Jafer
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Samar Ahmed
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Lobna Nageb
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Hanan Abdelshafy
- Final year undergraduate students, Faculty of Pharmacy, The British University in Egypt, Egypt
| | - Amany Mohamed Al-Anany
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Rd, El Sherouk City, Cairo Governorate, 11837 Egypt
| | - Mohamed Ali Ezz Al-Arab
- National Hepatology &Tropical Medicine Research Institute (NHTMRI), 10 El-Sayeda Zainab, Cairo Governorate, Egypt
| | - Abdullah Ahmed Gibriel
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Suez Rd, El Sherouk City, Cairo Governorate, 11837 Egypt.
| |
Collapse
|
10
|
Ahadi A. The significance of microRNA deregulation in colorectal cancer development and the clinical uses as a diagnostic and prognostic biomarker and therapeutic agent. Noncoding RNA Res 2020; 5:125-134. [PMID: 32954092 PMCID: PMC7476809 DOI: 10.1016/j.ncrna.2020.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most widely recognized and deadly malignancies worldwide. Although death rates have declined over the previous decade, mainly because of enhanced screening or potential treatment alternatives, CRC remains the third leading cause of cancer-related mortality globally, with an estimated incidence of over 1 million new cases and approximately 600 000 deaths estimated yearly. Therefore, many scientific efforts are put into the development of new diagnostic biomarkers for CRC. MicroRNAs (miRNAs), one of the epigenetics categories, have demonstrated significant roles in carcinogenesis and progression through regulating epithelial-mesenchymal transition (EMT), oncogenic signaling pathways, and metastasis. Dysregulation of miRNAs expression has been reported in many cancers, including CRC. The expression profile of miRNAs is reproducibly altered in CRC, and their expression patterns are associated with diagnosis, prognosis, and therapeutic outcomes in CRC. Recently, many studies were conducted on the dysregulation of miRNAs as a diagnostic and prognostic biomarker in CRC. Among them, some miRNAs, which include miR-21, miR-34 family, miR-155, miR-224, and miR-378, have been more studied in CRC with more prominent roles in diagnosis, prognosis, and therapy. In the present review, we summarized the latest information regarding the dysregulated miRNAs in CRC and the advantages of using miRNAs as a biomarker for CRC diagnosis, treatment, and their function in different signaling pathways involved in CRC progression. Moreover, we described the translation of miRNA research to potential therapeutic applications in the management of CRC in clinical settings.
Collapse
Affiliation(s)
- Alireza Ahadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Wei R, Chen L, Qin D, Guo Q, Zhu S, Li P, Min L, Zhang S. Liquid Biopsy of Extracellular Vesicle-Derived miR-193a-5p in Colorectal Cancer and Discovery of Its Tumor-Suppressor Functions. Front Oncol 2020; 10:1372. [PMID: 33014778 PMCID: PMC7461920 DOI: 10.3389/fonc.2020.01372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022] Open
Abstract
Previously, abnormal extracellular vesicle (EV) sorting of miR-193a was identified in colorectal cancer (CRC) progression. Although a reduced level of miR-193a-5p in plasma/serum has been reported in many different types of cancer, the EV-derived miR-193a-5p level in CRC and its potential application as a minimally invasive biomarker are still unknown. Here, we evaluated the circulating EV-derived miR-193a-5p expression levels in a cohort of 101 participants by real-time quantitative polymerase chain reaction (RT-qPCR). We found that plasma EV-miR-193a-5p decreased significantly in CRC patients as compared with precancerous colorectal adenoma (CA) and non-cancerous control (NC) individuals. The circulating EV-miR-193a-5p showed an area under the receiver operating characteristic curve (AUC) of 0.740 in distinguishing CRC from CA and an AUC of 0.759 in distinguishing CRC from NC. Furthermore, the suppression on CRC cells of miR-193a-5p was verified by transwell, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), EdU, RT-qPCR, and western blotting. Bioinformatic analysis predicted 32 genes, which were the most likely miR-193a-5p targeted and mainly focused on tumor progression. Among them, we revealed that miR-193a-5p could inhibit CRC migration and invasion via targeting tumor-associated genes like CUT-like homeobox 1 (CUX1) and intersectin 1 (ITSN1). In conclusion, miR-193a-5p could suppress CRC development, and decreased plasma EV-miR-193a-5p could be a promising biomarker for human CRC detection.
Collapse
Affiliation(s)
- Rui Wei
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Chen
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da Qin
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qingdong Guo
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengtao Zhu
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Peng Li
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Li Min
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shutian Zhang
- Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Current Evidence on miRNAs as Potential Theranostic Markers for Detecting Chemoresistance in Colorectal Cancer: A Systematic Review and Meta-Analysis of Preclinical and Clinical Studies. Mol Diagn Ther 2019; 23:65-82. [PMID: 30726546 DOI: 10.1007/s40291-019-00381-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Findings from observational clinical studies examining the relationship between biomarker expression and theranosis in colorectal cancer (CRC) have been conflicting. OBJECTIVE We conducted this systematic review and meta-analysis to summarise the existing evidence to demonstrate the involvement of microRNAs (miRNAs) in chemoresistance and sensitivity in CRC through drug genetic pathways. METHODS Using PRISMA guidelines, we systematically searched PubMed and Science Direct for relevant studies that took place between 2012 and 2017. A random-effects model of meta-analysis was applied to evaluate the pooled effect size of hazard ratios (HRs) across the included studies. Cochran's Q test and the I2 statistic were used to detect heterogeneity. A funnel plot was used to assess potential publication bias. RESULTS Of the 4700 studies found, 39 studies comprising 2822 patients with CRC met the inclusion criteria. The included studies used one or a combination of 14 chemotherapy drugs, including 5-fluorouracil and oxaliplatin. Of the 60 miRNAs, 28 were associated with chemosensitivity, 20 with chemoresistance, and one with differential expression and radiosensitivity; ten miRNAs were not associated with any impact on chemotherapy. The results outline the importance of 34 drug-regulatory pathways of chemoresistance and sensitivity in CRC. The mean effect size was 0.689 (95% confidence interval 0.428-1.110), indicating that the expression of miRNAs decreased the likelihood of death by about 32%. CONCLUSION Studies have consistently shown that multiple miRNAs could act as clinical predictors of chemoresistance and sensitivity. An inclusion of supplementary miRNA estimation in CRC routine practice needs to be considered to evaluate the efficacy of chemotherapy after confirming our findings with large-scale prospective cohort studies. PROSPERO REGISTRATION NUMBER CRD42017082196.
Collapse
|
13
|
Ardila HJ, Sanabria-Salas MC, Meneses X, Rios R, Huertas-Salgado A, Serrano ML. Circulating miR-141-3p, miR-143-3p and miR-200c-3p are differentially expressed in colorectal cancer and advanced adenomas. Mol Clin Oncol 2019; 11:201-207. [PMID: 31316774 DOI: 10.3892/mco.2019.1876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the prominent causes of cancer related deaths because, in part, there is not an early, non-invasive, effective detection strategy. Circulating microRNAs (miRNAs) have been proposed as potential non-invasive biomarkers for CRC. In this study, we evaluated the miRNA profile in sixteen CRC tissues by Next-Generation-Sequencing and compared the circulating expression levels of 22 miRNAs among 45 CRC, 14 hyperplastic polyps, 11 advanced adenoma patients and 45 control subjects, by reverse transcription-quantitative PCR, to search for miRNAs which could be potential biomarkers. In total, nine of them represented 70% of total read counts (miR-10a-5p, miR-192-5p, miR-10b-5p, miR-22-3p, miR-26a-5p, miR-148a-3p, miR-181a-5p, miR-92a-3p and miR-143-5p). In silico analysis found eight candidates to mature miRNAs. With respect to circulating miRNA, we found higher serum expression levels of miR-143-3p, miR-141-3p and miR-200c-3p in the CRC and adenoma groups compared with controls (P<0.002), and we also found significant higher levels of miR-141-3p and miR-200c-3p in serum of adenoma patients compared with the CRC group. In conclusion, the measurement of miRNAs in the blood could complement current screening methods for CRC and might provide new insights into mechanisms of tumorigenesis. miR-143-3p, miR-141-3p and miR-200c-3p could be interesting miRNAs to study as potential biomarkers for CRC.
Collapse
Affiliation(s)
- Héctor Javier Ardila
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Instituto de Genética, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Ximena Meneses
- Unidad de Análisis, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Rafael Rios
- Unidad de Genética y Resistencia Antimicrobiana, Centro Internacional de Genómica Microbiana, Universidad el Bosque, Bogotá, Colombia
| | | | - Martha Lucía Serrano
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia.,Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
14
|
Zhou J, Guo H, Yang Y, Zhang Y, Liu H. A meta-analysis on the prognosis of exosomal miRNAs in all solid tumor patients. Medicine (Baltimore) 2019; 98:e15335. [PMID: 31008992 PMCID: PMC6494361 DOI: 10.1097/md.0000000000015335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/05/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It has been reported that the encapsulated miRNAs from exosomes are potential biomarkers of tumors prognosis. Yet, the results are controversial, so it is obliged to do a meta-analysis to reach a definite conclusion. MATERIALS AND METHODS Studies were searched for published in PubMed, Embase, and Web of Science databases until April 20, 2018. A meta-analysis was conducted to appraise the role of exosomal miRNAs in prognosis of cancer patients. RESULTS The different exosomal miRNAs expression was remarkably related to overall survival (OS) (hazard ratio [HR] = 2.02, 95% confidence interval [CI]: 1.84-2.21) and disease-free survival (DFS) (HR = 2.43, 95% CI: 1.86-3.17) of cancer patients. High exosomal miR-21 expression was associated with poor OS (HR = 2.59; 95% CI: 1.71-3.90) and DFS (HR = 1.84; 95% CI: 1.37-2.47). High exosomal miR-451a expression was associated with poor OS (HR = 4.81; 95% CI: 2.33-9.93) and DFS (HR = 2.64; 95% CI: 1.62-4.31). High exosomal miR-1290 expression was associated with poor OS (HR = 1.73; 95% CI: 1.29-2.33). Low exosomal miR-638 expression was associated with poor OS (HR = 2.25; 95% CI: 1.46-3.46). CONCLUSION The expression levels of exosomal miRNAs, particularly miR-21, miR-451a, miR-1290, and miR-638 could strongly predict prognosis of solid tumor patients and might be a potential target for tumor treatment.
Collapse
Affiliation(s)
| | - Hui Guo
- The First Affiliated Hospital of Xi’an Jiaotong University, Shaanxi Province, China
| | | | | | | |
Collapse
|
15
|
Hernández R, Sánchez-Jiménez E, Melguizo C, Prados J, Rama AR. Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives. BMB Rep 2019. [PMID: 30158023 PMCID: PMC6283029 DOI: 10.5483/bmbrep.2018.51.11.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones. [BMB Reports 2018; 51(11): 563-571].
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Ester Sánchez-Jiménez
- Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research, Barcelona 08036, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Biosanitary Institute of Granada (ibs. GRANADA), SAS-Universidad de Granada, Granada 18100; Department of Human Anatomy and Embryology, School of Medicine, University of Granada, Granada 18100, Spain
| | - Ana Rosa Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100; Department of Health Science, University of Jaén, Jaén 23071, Spain
| |
Collapse
|
16
|
Huang M, Xie X, Song X, Gu S, Chang X, Su T, Liang B, Huang D. MiR-506 Suppresses Colorectal Cancer Development by Inhibiting Orphan Nuclear Receptor NR4A1 Expression. J Cancer 2019; 10:3560-3570. [PMID: 31293661 PMCID: PMC6603418 DOI: 10.7150/jca.28272] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 05/01/2019] [Indexed: 02/05/2023] Open
Abstract
NR4A1 acts as an oncogene and plays an important role in colorectal cancer development and progression, but little is known about the regulatory mechanism of NR4A1 expression. MicroRNA (miRNA) is involved in the progression of various tumors, affecting proliferation, apoptosis or migration. We aimed to elucidate whether miRNA regulates NR4A1 expression and determine its underlying significance in colorectal cancer. By using the TargetScan database, we identified a miR-506 binding site in the NR4A1 3'-UTR. Examination of colorectal cancer tissues and cells revealed that NR4A1 mRNA and protein were up-regulated, while miR-506 expression was down-regulated. Spearman correlation analysis revealed that expression of NR4A1 mRNA was negatively correlated with miR-506 levels in colorectal cancer tissue. Further studies indicated that miR-506 decreased NR4A1 expression through directly targeting the NR4A1 mRNA 3'-UTR. Functional experiments showed that rescue of NR4A1 expression in cells reversed the inhibitory effects of miR-506 on proliferation, migration and invasion of colorectal cancer cells. In conclusion, miR-506 acts as a tumor suppressor and inhibits proliferation, migration and invasion in colorectal cancer cells partly through decreasing NR4A1 expression.
Collapse
Affiliation(s)
- Meihui Huang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- Department of Pathology and Central Laboratory, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xina Xie
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- Institute of Translational Medicine, Shenzhen Second People's Hospital, the First Affiliated H-ospital of Shenzhen University, Health Science Center, Shenzhen 518035, China
| | - Xuhong Song
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Songgang Gu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiaolan Chang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Ting Su
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
| | - Bin Liang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- ✉ Corresponding authors: Dongyang Huang, Bin Liang. E-mail: and
| | - Dongyang Huang
- Department of Cell Biology and Genetics and Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China
- ✉ Corresponding authors: Dongyang Huang, Bin Liang. E-mail: and
| |
Collapse
|
17
|
Wang J, Lu Y, Zeng Y, Zhang L, Ke K, Guo Y. Expression profile and biological function of miR-455-5p in colorectal carcinoma. Oncol Lett 2018; 17:2131-2140. [PMID: 30675279 PMCID: PMC6341642 DOI: 10.3892/ol.2018.9862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023] Open
Abstract
Underexpression of microRNA-455-5p (miR-455-5p) in medullary thyroid carcinoma, melanoma, gastric cancer and additional cancer types has been reported, which may be associated with carcinoma development. The present study aimed to evaluate the expression profile and biological role of miR-455-5p in colorectal carcinoma. Carcinoma tissues and adjacent tissue specimens from 40 patients with colorectal cancer were randomly collected. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis was conducted to detect the expression levels of miR-455-5p in colorectal carcinoma and adjacent normal tissues. The biological effects of miR-455-5p on selected colorectal cancer cells were assessed using bromodeoxyuridine assays, wound healing migration assays and flow cytometry. Bioinformatics analysis was implemented to predict the potential target genes of miR-455-5p in colorectal cancer. The expression levels of target genes were further validated by RT-qPCR and western blot analysis of the mRNA and protein levels. The results of the experiments demonstrated that miR-455-5p expression was downregulated in colorectal cancer tissues compared with adjacent normal tissues. In colorectal cancer cells (SW-480, HT-29 and HCT-116), miR-455-5p was observed to inhibit cell proliferation and migration while promoting cell apoptosis. Bioinformatics analysis predicted that the oncogene phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) was one of the top ranked target genes of miR-455-5p in colorectal cancer cells. This association was validated by RT-qPCR and western blotting. In vivo studies revealed that the expression level of miR-455-5p was significantly downregulated in human colorectal cancer. Further in vitro studies suggested that miR-455-5p may prevent the development of colorectal cancer by downregulating the oncogene PIK3R1. It was concluded that miR-455-5p may target and downregulate PIK3R1 in colorectal cancer.
Collapse
Affiliation(s)
- Jinqiu Wang
- Department of Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yang Lu
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiyong Zeng
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Leming Zhang
- Department of Proctology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kongliang Ke
- Department of Proctology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Yu Guo
- Department of Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Zhao J, Li Z, Chen Y, Zhang S, Guo L, Gao B, Jiang Y, Tian W, Hao S, Zhang X. MicroRNA‑766 inhibits papillary thyroid cancer progression by directly targeting insulin receptor substrate 2 and regulating the PI3K/Akt pathway. Int J Oncol 2018; 54:315-325. [PMID: 30387841 DOI: 10.3892/ijo.2018.4615] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/21/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are widely dysregulated in papillary thyroid cancer (PTC). Dysregulated miRNAs, together with their target genes, comprise a complex network that has been implicated in the regulation of PTC pathogenesis. Further knowledge of the functional roles of aberrantly expressed miRNAs in PTC, and the underlying molecular mechanisms, may assist in the identification of novel therapeutic targets. miR‑766 has been well studied in human cancer; however, the expression status, specific roles and regulatory mechanisms of miR‑766 in PTC remain unclear. The present study aimed to detect miR‑766 expression in PTC tissues and cell lines, to explore the biological roles of miR‑766 in the malignant biological behaviors of PTC cells, and to determine the underlying mechanism of action of miR‑766 in PTC cells. The results revealed that miR‑766 was downregulated in PTC tissues and cell lines, and its downregulation was strongly associated with TNM stage and lymph node metastasis. Overexpression of miR‑766 inhibited PTC cell proliferation, colony formation, migration and invasion, promoted cell apoptosis and reduced tumor growth in vivo. Mechanistically, insulin receptor substrate 2 (IRS2) was identified as a direct target of miR‑766 in PTC cells. IRS2 was upregulated in PTC tissues, and this was inversely correlated with miR‑766 expression. Inhibition of IRS2 simulated the tumor suppressor activity of miR‑766 in PTC cells. Restoration of IRS2 expression negated the tumor‑suppressing effects of miR‑766 overexpression on PTC cells. Notably, miR‑766 directly targeted IRS2 to inhibit activation of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) pathway in PTC cells in vitro and in vivo. Overall, these findings indicated that miR‑766 may inhibit the malignant biological behaviors of PTC cells by directly targeting IRS2 and regulating the PI3K/Akt pathway, thus suggesting that this miRNA may be a promising therapeutic target for PTC.
Collapse
Affiliation(s)
- Jianjie Zhao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Lingji Guo
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Bo Gao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Yan Jiang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Shuai Hao
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of Breast and Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
19
|
Liu X, Pan B, Sun L, Chen X, Zeng K, Hu X, Xu T, Xu M, Wang S. Circulating Exosomal miR-27a and miR-130a Act as Novel Diagnostic and Prognostic Biomarkers of Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:746-754. [PMID: 29739748 DOI: 10.1158/1055-9965.epi-18-0067] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/22/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background: Colorectal cancer is one of the most common cancers worldwide usually is associated with poor prognosis due to the advanced stage when diagnosed. This study aimed to investigate whether specific circulating exosomal miRNAs could act as biomarkers for early diagnosis of colorectal cancer.Methods: A total of 369 peripheral blood samples were included in this study. In the discovery phase, circulating exosomal miR-27a and miR-130a were selected after synthetical analysis of two GEO datasets and TCGA database. The differential expression and diagnostic utility of miR-27a and miR-130a panel were validated using qRT-PCR and ROC curve analysis in subsequent training phase, validation phase, and external validation phase. The prognosis of circulating exosomal miR-27a and miR-130a were investigated using the Kaplan-Meier method.Results: The expression of exosomal miR-27a and miR-130a in plasma significantly increased in colorectal cancer. The area under ROC curves (AUC) of miR-27a (miR-130a) were 0.773 (0.742) in the training phase, 0.82 (0.787) in the validation phase, and 0.746 (0.697) in the external validation phase. The combination of two miRNAs presented higher diagnostic utility for colorectal cancer (AUCs = 0.846, 0.898, and 0.801 for the training, validation, and external validation phases, respectively). Patients with colorectal cancer with high expression of circulating exosomal miR-27a or miR-130a underwent poorer prognosis.Conclusions: We identified a circulating exosomal miRNAs panel for the detection of colorectal cancer.Impact: The exosomal miR-27a and miR-130a panel in plasma may act as a noninvasive biomarker for early detection and predicting prognosis of colorectal cancer. Cancer Epidemiol Biomarkers Prev; 27(7); 746-54. ©2018 AACR.
Collapse
Affiliation(s)
- Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Medical School of Southeast University, Jiangsu Sheng, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China. .,Medical School of Southeast University, Jiangsu Sheng, China
| |
Collapse
|
20
|
Huang Z, Lei W, Hu H, Zhang H, Zhu Y. H19 promotes non‐small‐cell lung cancer (NSCLC) development through STAT3 signaling via sponging miR‐17. J Cell Physiol 2018; 233:6768-6776. [PMID: 29693721 DOI: 10.1002/jcp.26530] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiwen Huang
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Wei Lei
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| | - Hai‐Bo Hu
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Hongyan Zhang
- Department of Respiratory Medicine Affiliated Renhe Hospital of China Three Gorges University Yichang Hubei China
| | - Yehan Zhu
- Department of Respiratory Medicine The First Affiliated Hospital of Soochow University Suzhou Jiangsu China
| |
Collapse
|
21
|
Shen J, Li M. MicroRNA-744 Inhibits Cellular Proliferation and Invasion of Colorectal Cancer by Directly Targeting Oncogene Notch1. Oncol Res 2018; 26:1401-1409. [PMID: 29471890 PMCID: PMC7844638 DOI: 10.3727/096504018x15188747585738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulated studies have strongly implicated aberrantly expressed microRNAs (miRNAs) in carcinogenesis and cancer progression of various cancers, including colorectal cancer (CRC). Hence, a comprehensive study of miRNAs and their association with CRC may be a promising therapeutic method for patients with this malignancy. MicroRNA-744 (miR-744) is abnormally expressed in several types of human cancer. Thus far, little is known about the expression, biological roles, and exact mechanisms of miR-744 in CRC. Thus, the present study measured the expression level of miR-744 and investigated its roles and associated molecular mechanisms in CRC. This study demonstrated that miR-744 expression was significantly underexpressed in CRC tissues and cell lines. Low miR-744 expression was positively associated with lymphatic metastasis and TNM stage. Functional experiments revealed that miR-744 overexpression obviously inhibited the proliferation and invasion of CRC cells. Furthermore, Notch1 was identified as a direct target of miR-744 in CRC. Moreover, the inhibition of Notch1 phenocopied the inhibitory effects of miR-744 overexpression on CRC cells. Restored Notch1 expression markedly rescued the tumor-suppressive effects of miR-744 overexpression on CRC cells. Overall, miR-744 exhibits an essential role in CRC progression, and the miR-744/Notch1 axis may provide novel insights into future treatments for patients with CRC.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Minzhe Li
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
22
|
Pan C, Yan X, Li H, Huang L, Yin M, Yang Y, Gao R, Hong L, Ma Y, Shi C, Qin H, Zhang P. Systematic literature review and clinical validation of circulating microRNAs as diagnostic biomarkers for colorectal cancer. Oncotarget 2017; 8:68317-68328. [PMID: 28978119 PMCID: PMC5620259 DOI: 10.18632/oncotarget.19344] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
Because patients with colorectal cancer (CRC) are usually diagnosed at an advanced stage and current serum tumor markers have limited diagnostic efficacy, there is an urgent need to identify reliable diagnostic biomarkers. To better define the diagnostic potential of microRNAs (miRNAs) for CRC, we performed a comprehensive evaluation of reported circulating CRC miRNA markers. After a systematic literature review, we selected 30 candidate miRNAs and used quantitative real-time polymerase chain reaction to examine their expression in a training cohort of 120 plasma samples (CRC vs healthy controls (HC) = 60:60). Expression data was confirmed in a validation cohort of 160 plasma samples (CRC vs HC = 80:80). We ultimately identified 5 dysregulated circulating miRNAs (miR-15b, miR-17, miR-21, miR-26b, and miR-145), of which miR-21 and miR-26b proved to have the best diagnostic performance in the training and validation cohorts, respectively. Based on these results, we propose a novel blood-based diagnostic model, integrating 5 CRC-related miRNAs and serum carcinoembryonic antigen (CEA), which provides better diagnostic performance than the combined 5 miRNAs, CEA alone, or any single miRNA. We propose that the novel CRC diagnostic model presented here will be useful for overcoming the limitations faced by current non-invasive diagnostic strategies.
Collapse
Affiliation(s)
- Cheng Pan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China.,Medical Department, Soochow University, Jiangsu 215123, China
| | - Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Mingming Yin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Yongzhi Yang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Renyuan Gao
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Leiming Hong
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China.,Department of General Surgery, Weihai Municipal Hospital, Shandong 264200, China
| | - Yanlei Ma
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Chenzhang Shi
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| | - Peng Zhang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University No. 301, Shanghai 200072, China
| |
Collapse
|
23
|
Yu J, Wu SW, Wu WP. A tumor-suppressive microRNA, miRNA-485-5p, inhibits glioma cell proliferation and invasion by down-regulating TPD52L2. Am J Transl Res 2017; 9:3336-3344. [PMID: 28804551 PMCID: PMC5553883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Glioblastoma multiforme is the most deadly primary brain tumor and has no effective treatment. Therefore, it is important to identify novel and effective therapies that impede glioma tumorigenesis. MicroRNAs (miRNAs) are helpful analytical biomarkers and may be useful targets for treating multiple human cancers. Previous reports suggest that miRNA-485-5p is dysregulated and contributes to tumorigenesis in some cancer types. Nevertheless, the biological role of miRNA-485-5p in glioma is not well understood. In this study, we demonstrated that miRNA-485-5p expression was reduced in gliomat issues and cell lines. In addition, miRNA-485-5p overexpression inhibited cell proliferation, migration, and invasion in glioma cell lines. Additionally, we identified Tumor Protein D52 Like 2 (TPD52L2) as a direct target of miRNA-485-5p. Moreover, we showed that miRNA-485-5p regulated glioma tumorigenesis by down-regulating TPD52L2 expression in vitro and in vivo. Our results suggest that miRNA-485-5p is a suppressor of glioma tumorigenesis and could serve as a novel candidate for therapeutic applications in glioma treatment.
Collapse
Affiliation(s)
- Jin Yu
- Department of Geriatric Neurology, Chinese PLA General HospitalBeijing, China
- Department of Neurology, General Hospital of Chinese People’s Armed Police ForceBeijing, China
| | - Shi-Wen Wu
- Department of Neurology, General Hospital of Chinese People’s Armed Police ForceBeijing, China
| | - Wei-Ping Wu
- Department of Geriatric Neurology, Chinese PLA General HospitalBeijing, China
| |
Collapse
|
24
|
Cao Z, Zheng X, Cao L, Liang N. [ARTICLE WITHDRAWN] MicroRNA-539 Inhibits the Epithelial-Mesenchymal Transition of Esophageal Cancer Cells by Twist-Related Protein 1-Mediated Modulation of Melanoma-Associated Antigen A4. Oncol Res 2017; 26:529-536. [PMID: 28653599 PMCID: PMC7844688 DOI: 10.3727/096504017x14972679378357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This article has been withdrawn at the request of the publisher in December 2020.
Collapse
Affiliation(s)
- Zhili Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiang Zheng
- Department of Cardiothoracic Surgery, People's Hospital of Beijing Daxing District, Beijing, P.R. China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
25
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
26
|
Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology 2017; 92:360-370. [PMID: 28376502 DOI: 10.1159/000463387] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We clarified the predictive and prognostic value of circulating plasma exosomal microRNA-21 (miR-21) in each TNM stage of colorectal cancer (CRC) patients. METHODS The microRNA (miRNA) profiles of the plasma exosomes, primary tumor tissues, and liver metastasis tissues from the same CRC patients were examined using a microarray. For validation analysis, the plasma exosome samples from 326 CRC patients were measured by TaqMan miRNA assays. RESULTS In the miRNA microarray analyses, miR-21 showed the highest upregulation in exosomes, primary tumor tissues, and liver metastasis tissues. Significant correlations were demonstrated between exosomal miR-21 and tissue miR-21 levels. As for the relationship to the pathological condition, exosomal miR-21 showed a significant association with liver metastasis and TNM stage. The overall survival (OS) rates and disease-free survival (DFS) rates in high-exosomal-miR-21 patients were significantly worse than those in low-miR-21 patients. Exosomal miR-21 levels were an independent prognostic factor for OS and DFS in CRC patients with TNM stage II or III, and for OS in patients with TNM stage IV. CONCLUSION Plasma exosomal miR-21 levels are a useful biomarker for the prediction of recurrence and poor prognosis in CRC patients with TNM stage II, III, or IV.
Collapse
Affiliation(s)
- Mitsuo Tsukamoto
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Wang L, Mou Y, Meng D, Sun Y, Chen X, Yang X, Jia C, Song X, Li X. MicroRNA-203 inhibits tumour growth and metastasis through PDPN. Clin Otolaryngol 2016; 42:620-628. [PMID: 27775879 DOI: 10.1111/coa.12785] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE MicroRNAs play an important role in regulating hypopharyngeal cancer development. miR-203 has been previously shown to possess antitumour capabilities in many cancers, but not in hypopharyngeal cancer. DESIGN Using human normal and hypopharyngeal cancer specimens, we explored the expression levels of miR-203 in the two groups and further correlated them with different stages of cancer and lymph node metastasis. SETTING AND PARTICIPANTS Applying human pharynx FaDu cancer cells and lentiviral transduction technique, we investigated the effects of miR-203 on cancer cell viability, migration and invasion. Moreover, we studied the novel relationship between miR-203 and podoplanin (PDPN) in hypopharyngeal cancer. RESULTS The downregulated levels of miR-203 in human hypopharyngeal cancer tissues were associated with advanced cancer stages and lymph node metastasis. High levels of miR-203 inhibited cell viability, migration and invasion of hypopharyngeal cancer cells. Further studies suggested miR-203 directly targeted and inhibited PDPN expression. PDPN silencing suppresses hypopharyngeal cancer cell abilities. In addition, PDPN overexpression was able to reverse miR-203 inhibitory effects on cell viability, migration and invasion. CONCLUSION PDPN acts as an oncogene to promote hypopharyngeal cancer cell viability, migration and invasion. miR-203 directly targets PDPN to suppress its expression, thus exerting inhibitory effects on cancer metastasis.
Collapse
Affiliation(s)
- L Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - Y Mou
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - D Meng
- Intensive Care Unit, Yuhuangding Hospital, Yantai, Shandong, China
| | - Y Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - C Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Chen S, Wang Y, Ni C, Meng G, Sheng X. HLF/miR-132/TTK axis regulates cell proliferation, metastasis and radiosensitivity of glioma cells. Biomed Pharmacother 2016; 83:898-904. [DOI: 10.1016/j.biopha.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 01/04/2023] Open
|
29
|
Pan Y, Jiao G, Wang C, Yang J, Yang W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed Pharmacother 2016; 83:1398-1406. [PMID: 27583980 DOI: 10.1016/j.biopha.2016.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/16/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of microRNAs is involved in the initiation and progression of several human cancers, including breast cancer, as strong evidence of miRNAs acting as oncogenes or tumour suppressor genes has been found. This study was performed to investigate the biological functions of microRNA-421 (miR-421) in breast cancer and the underlying mechanisms. The expression level of miR-421 was detected in 50 pairs of surgical specimens and human breast cancer cell lines. The results showed that miR-421 is downregulated in breast cancer tissues and metastatic cell lines. In addition, the decrease in miR-421 levels was significantly associated with lymph node metastasis, recurrence/metastasis, or pTNM stage. Functions of miR-421 in cell migration and invasion were assessed through its silencing and overexpression. The results showed that miR-421 knockdown promotes invasion and metastasis in MCF-7 cells and its overexpression suppresses invasion and metastasis in MDA-MB-231 cells. The specific target genes of miR-421 were predicted by TargetScan algorithm and determined by dual luciferase reporter assay, quantitative reverse transcriptase PCR, and western blot analysis. miR-421 could suppress luciferase activity of the reporter containing 3'-untranslated region of metastasis associated 1 (MTA1), a potent oncogene. miR-421 overexpression or knockdown had no effect on the mRNA expression of MTA1, but it could modulate MTA1 protein level. Furthermore, MTA1 knockdown receded the effect of miR-421 inhibitor on invasion and metastasis of MCF-7 cells, and its overexpression receded the effect of miR-421 on invasion and metastasis of MDA-MB-231 cells. Our findings clearly demonstrate that miR-421 suppresses breast cancer metastasis by directly inhibiting MTA1 expression. The present study provides a new insight into the tumour suppressor roles of miR-421 and suggests that miR-421/MTA1 pathway is a putative therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yongqin Pan
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Genlong Jiao
- Department of Orthopedics, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| | - Cunchuan Wang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Jingge Yang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China.
| | - Wah Yang
- Department of General Surgery, First Affiliated Hospital of Jinan University, Guangzhou, 510632, PR China
| |
Collapse
|
30
|
Gavrilas LI, Ionescu C, Tudoran O, Lisencu C, Balacescu O, Miere D. The Role of Bioactive Dietary Components in Modulating miRNA Expression in Colorectal Cancer. Nutrients 2016; 8:nu8100590. [PMID: 27681738 PMCID: PMC5083978 DOI: 10.3390/nu8100590] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and considered to be one of the most diet-related types of cancer. Extensive research has been conducted but still the link between diet and colorectal cancer is complex. Recent studies have highlight microRNAs (miRNAs) as key players in cancer-related pathways in the context of dietary modulation. MicroRNAs are involved in most biological processes related to tumor development and progression; therefore, it is of great interest to understand the underlying mechanisms by which dietary patterns and components influence the expression of these powerful molecules in colorectal cancer. In this review, we discuss relevant dietary patterns in terms of miRNAs modulation in colorectal cancer, as well as bioactive dietary components able to modify gene expression through changes in miRNA expression. Furthermore, we emphasize on protective components such as resveratrol, curcumin, quercetin, α-mangostin, omega-3 fatty acids, vitamin D and dietary fiber, with a focus on the molecular mechanisms in the context of prevention and even treatment. In addition, several bioactive dietary components that have the ability to re-sensitize treatment resistant cells are described.
Collapse
Affiliation(s)
- Laura I Gavrilas
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy "Iuliu Hatieganu", Marinescu Street 23, Cluj-Napoca 400337, Romania.
| | - Corina Ionescu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, University of Medicine and Pharmacy "Iuliu Hatieganu", Louis Pasteur Street 6, Cluj-Napoca 400349, Romania.
| | - Oana Tudoran
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Cosmin Lisencu
- Department of Surgical and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii Street 34-36, Cluj-Napoca 400015, Romania.
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, University of Medicine and Pharmacy "Iuliu Hatieganu", Marinescu Street 23, Cluj-Napoca 400337, Romania.
| |
Collapse
|
31
|
Ou D, Wu Y, Liu J, Lao X, Zhang S, Liao G. miRNA-335 and miRNA-182 affect the occurrence of tongue squamous cell carcinoma by targeting survivin. Oncol Lett 2016; 12:2531-2537. [PMID: 27698823 PMCID: PMC5038158 DOI: 10.3892/ol.2016.4938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to characterize the roles of two microRNAs (miRs) that have been reported to be differentially expressed in tongue squamous cell carcinoma (TSCC), miR-335 and miR-182. In total, 20 tumor tissue samples and 20 corresponding adjacent non-cancerous samples were collected from patients with TSCC to measure the expression of miR-335 and miR-182 and the potential shared target of these miRs, survivin, using reverse transcription-quantitative polymerase chain reaction and western blotting. In the TSCC tissue samples, significantly decreased expression of the two miRs and increased expression of survivin were detected compared with adjacent non-cancerous controls. Subsequently, it was confirmed that survivin was the target gene of miR-335 and miR-182 using a luciferase assay in TSCC cells. In order to examine the function of miR-335 and miR-182 in the development of TSCC, TSCC cells were transiently transfected with the mimics of the two miRs, and it was confirmed that the introduction of miR-335 and miR-182 to cells suppressed the expression of survivin and markedly inhibited the proliferation of the TSCC cells. Furthermore, miR-335 and miR-182 were found to induce cell cycle arrest by suppressing the expression of survivin. The present study revealed a negative regulatory role of miR-335 and miR-182 in the proliferation of TSCC cells by targeting survivin, and miR-335 and miR-182 may be novel therapeutic targets for the treatment of TSCC.
Collapse
Affiliation(s)
- Deming Ou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China; Department of Stomatology, Central Hospital of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Ying Wu
- Department of Stomatology, Foshan Hospital of Chinese Traditional Medicine, Foshan, Guangdong 528000 P.R. China
| | - Jun Liu
- Department of Stomatology, Central Hospital of Panyu, Guangzhou, Guangdong 511400, P.R. China
| | - Xiaomei Lao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|