1
|
Dobner J, Diecke S, Krutmann J, Prigione A, Rossi A. Reassessment of marker genes in human induced pluripotent stem cells for enhanced quality control. Nat Commun 2024; 15:8547. [PMID: 39358374 PMCID: PMC11447164 DOI: 10.1038/s41467-024-52922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have great potential in research, but pluripotency testing faces challenges due to non-standardized methods and ambiguous markers. Here, we use long-read nanopore transcriptome sequencing to discover 172 genes linked to cell states not covered by current guidelines. We validate 12 genes by qPCR as unique markers for specific cell fates: pluripotency (CNMD, NANOG, SPP1), endoderm (CER1, EOMES, GATA6), mesoderm (APLNR, HAND1, HOXB7), and ectoderm (HES5, PAMR1, PAX6). Using these genes, we develop a machine learning-based scoring system, "hiPSCore", trained on 15 iPSC lines and validated on 10 more. hiPSCore accurately classifies pluripotent and differentiated cells and predicts their potential to become specialized 2D cells and 3D organoids. Our re-evaluation of cell fate marker genes identifies key targets for future studies on cell fate assessment. hiPSCore improves iPSC testing by reducing time, subjectivity, and resource use, thus enhancing iPSC quality for scientific and medical applications.
Collapse
Affiliation(s)
- Jochen Dobner
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Jean Krutmann
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Chowdhury MM, Zimmerman S, Leeson H, Nefzger CM, Mar JC, Laslett A, Polo JM, Wolvetang E, Cooper-White JJ. Superior Induced Pluripotent Stem Cell Generation through Phactr3-Driven Mechanomodulation of Both Early and Late Phases of Cell Reprogramming. Biomater Res 2024; 28:0025. [PMID: 38774128 PMCID: PMC11106629 DOI: 10.34133/bmr.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 05/24/2024] Open
Abstract
Human cell reprogramming traditionally involves time-intensive, multistage, costly tissue culture polystyrene-based cell culture practices that ultimately produce low numbers of reprogrammed cells of variable quality. Previous studies have shown that very soft 2- and 3-dimensional hydrogel substrates/matrices (of stiffnesses ≤ 1 kPa) can drive ~2× improvements in human cell reprogramming outcomes. Unfortunately, these similarly complex multistage protocols lack intrinsic scalability, and, furthermore, the associated underlying molecular mechanisms remain to be fully elucidated, limiting the potential to further maximize reprogramming outcomes. In screening the largest range of polyacrylamide (pAAm) hydrogels of varying stiffness to date (1 kPa to 1.3 MPa), we have found that a medium stiffness gel (~100 kPa) increased the overall number of reprogrammed cells by up to 10-fold (10×), accelerated reprogramming kinetics, improved both early and late phases of reprogramming, and produced induced pluripotent stem cells (iPSCs) having more naïve characteristics and lower remnant transgene expression, compared to the gold standard tissue culture polystyrene practice. Functionalization of these pAAm hydrogels with poly-l-dopamine enabled, for the first-time, continuous, single-step reprogramming of fibroblasts to iPSCs on hydrogel substrates (noting that even the tissue culture polystyrene practice is a 2-stage process). Comparative RNA sequencing analyses coupled with experimental validation revealed that a novel reprogramming regulator, protein phosphatase and actin regulator 3, up-regulated under the gel condition at a very early time point, was responsible for the observed enhanced reprogramming outcomes. This study provides a novel culture protocol and substrate for continuous hydrogel-based cell reprogramming and previously unattained clarity of the underlying mechanisms via which substrate stiffness modulates reprogramming kinetics and iPSC quality outcomes.
Collapse
Affiliation(s)
- Mohammad Mahfuz Chowdhury
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Hannah Leeson
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jessica Cara Mar
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew Laslett
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jose Maria Polo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute and the Australian Regenerative Medicine Institute,
Monash University, Clayton, VIC 3800, Australia
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences,
The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ernst Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justin John Cooper-White
- Australian Institute of Bioengineering and Nanotechnology (AIBN),
The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemical Engineering, Andrew N. Liveris Building,
The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Bose D, Ortolan D, Farnoodian M, Sharma R, Bharti K. Considerations for Developing an Autologous Induced Pluripotent Stem Cell (iPSC)-Derived Retinal Pigment Epithelium (RPE) Replacement Therapy. Cold Spring Harb Perspect Med 2024; 14:a041295. [PMID: 37487631 PMCID: PMC10910357 DOI: 10.1101/cshperspect.a041295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cell-replacement therapies are a new class of treatments, which include induced pluripotent stem cell (iPSC)-derived tissues that aim to replace degenerated cells. iPSCs can potentially be used to generate any cell type of the body, making them a powerful tool for treating degenerative diseases. Cell replacement for retinal degenerative diseases is at the forefront of cell therapies, given the accessibility of the eye for surgical procedures and a huge unmet medical need for retinal degenerative diseases with no current treatment options. Clinical trials are ongoing in different parts of the world using stem cell-derived retinal pigment epithelium (RPE). This review focuses on scientific and regulatory considerations when developing an iPSC-derived RPE cell therapy from the development of a robust and efficient differentiation protocol to critical quality control assays for cell validation, the choice of an appropriate animal model for preclinical testing, and the regulatory aspects that dictate the final approval for proceeding to a first-in-human clinical trial.
Collapse
Affiliation(s)
- Devika Bose
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Davide Ortolan
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mitra Farnoodian
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Bull D, Matte JC, Navarron CM, McIntyre R, Whiting P, Katan M, Ducotterd F, Magno L. The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166978. [PMID: 38061598 DOI: 10.1016/j.bbadis.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.
Collapse
Affiliation(s)
- Daniel Bull
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Julie C Matte
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Carmen M Navarron
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Rebecca McIntyre
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul Whiting
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Fiona Ducotterd
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Babini H, Jiménez-Sábado V, Stogova E, Arslanova A, Butt M, Dababneh S, Asghari P, Moore EDW, Claydon TW, Chiamvimonvat N, Hove-Madsen L, Tibbits GF. hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca 2+-activated K + (SK) ion channel variants associated with atrial fibrillation. Front Cell Dev Biol 2024; 12:1298007. [PMID: 38304423 PMCID: PMC10830749 DOI: 10.3389/fcell.2024.1298007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Atrial fibrillation (AF), the most common arrhythmia, has been associated with different electrophysiological, molecular, and structural alterations in atrial cardiomyocytes. Therefore, more studies are required to elucidate the genetic and molecular basis of AF. Various genome-wide association studies (GWAS) have strongly associated different single nucleotide polymorphisms (SNPs) with AF. One of these GWAS identified the rs13376333 risk SNP as the most significant one from the 1q21 chromosomal region. The rs13376333 risk SNP is intronic to the KCNN3 gene that encodes for small conductance calcium-activated potassium channels type 3 (SK3). However, the functional electrophysiological effects of this variant are not known. SK channels represent a unique family of K+ channels, primarily regulated by cytosolic Ca2+ concentration, and different studies support their critical role in the regulation of atrial excitability and consequently in the development of arrhythmias like AF. Since different studies have shown that both upregulation and downregulation of SK3 channels can lead to arrhythmias by different mechanisms, an important goal is to elucidate whether the rs13376333 risk SNP is a gain-of-function (GoF) or a loss-of-function (LoF) variant. A better understanding of the functional consequences associated with these SNPs could influence clinical practice guidelines by improving genotype-based risk stratification and personalized treatment. Although research using native human atrial cardiomyocytes and animal models has provided useful insights, each model has its limitations. Therefore, there is a critical need to develop a human-derived model that represents human physiology more accurately than existing animal models. In this context, research with human induced pluripotent stem cells (hiPSC) and subsequent generation of cardiomyocytes derived from hiPSC (hiPSC-CMs) has revealed the underlying causes of various cardiovascular diseases and identified treatment opportunities that were not possible using in vitro or in vivo studies with animal models. Thus, the ability to generate atrial cardiomyocytes and atrial tissue derived from hiPSCs from human/patients with specific genetic diseases, incorporating novel genetic editing tools to generate isogenic controls and organelle-specific reporters, and 3D bioprinting of atrial tissue could be essential to study AF pathophysiological mechanisms. In this review, we will first give an overview of SK-channel function, its role in atrial fibrillation and outline pathophysiological mechanisms of KCNN3 risk SNPs. We will then highlight the advantages of using the hiPSC-CM model to investigate SNPs associated with AF, while addressing limitations and best practices for rigorous hiPSC studies.
Collapse
Affiliation(s)
- Hosna Babini
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Verónica Jiménez-Sábado
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ekaterina Stogova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Mariam Butt
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Saif Dababneh
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Parisa Asghari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edwin D. W. Moore
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas W. Claydon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | | | - Leif Hove-Madsen
- IIB SANT PAU, and CIBERCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Netsrithong R, Garcia-Perez L, Themeli M. Engineered T cells from induced pluripotent stem cells: from research towards clinical implementation. Front Immunol 2024; 14:1325209. [PMID: 38283344 PMCID: PMC10811463 DOI: 10.3389/fimmu.2023.1325209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived T (iT) cells represent a groundbreaking frontier in adoptive cell therapies with engineered T cells, poised to overcome pivotal limitations associated with conventional manufacturing methods. iPSCs offer an off-the-shelf source of therapeutic T cells with the potential for infinite expansion and straightforward genetic manipulation to ensure hypo-immunogenicity and introduce specific therapeutic functions, such as antigen specificity through a chimeric antigen receptor (CAR). Importantly, genetic engineering of iPSC offers the benefit of generating fully modified clonal lines that are amenable to rigorous safety assessments. Critical to harnessing the potential of iT cells is the development of a robust and clinically compatible production process. Current protocols for genetic engineering as well as differentiation protocols designed to mirror human hematopoiesis and T cell development, vary in efficiency and often contain non-compliant components, thereby rendering them unsuitable for clinical implementation. This comprehensive review centers on the remarkable progress made over the last decade in generating functional engineered T cells from iPSCs. Emphasis is placed on alignment with good manufacturing practice (GMP) standards, scalability, safety measures and quality controls, which constitute the fundamental prerequisites for clinical application. In conclusion, the focus on iPSC as a source promises standardized, scalable, clinically relevant, and potentially safer production of engineered T cells. This groundbreaking approach holds the potential to extend hope to a broader spectrum of patients and diseases, leading in a new era in adoptive T cell therapy.
Collapse
Affiliation(s)
- Ratchapong Netsrithong
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Laura Garcia-Perez
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Maria Themeli
- Department of Hematology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
9
|
DuBose CO, Daum JR, Sansam CL, Gorbsky GJ. Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes (Basel) 2022; 13:genes13071157. [PMID: 35885940 PMCID: PMC9318709 DOI: 10.3390/genes13071157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold great potential for regenerative medicine. By reprogramming a patient′s own cells, immunological rejection can be avoided during transplantation. For expansion and gene editing, iPSCs are grown in artificial culture for extended times. Culture affords potential danger for the accumulation of genetic aberrations. To study these, two induced pluripotent stem (iPS) cell lines were cultured and periodically analyzed using advanced optical mapping to detect and classify chromosome numerical and segmental changes that included deletions, insertions, balanced translocations and inversions. In one of the lines, a population trisomic for chromosome 12 gained dominance over a small number of passages. This appearance and dominance of the culture by chromosome 12 trisomic cells was tracked through intermediate passages by the analysis of chromosome spreads. Mathematical modeling suggested that the proliferation rates of diploid versus trisomic cells could not account for the rapid dominance of the trisomic population. In addition, optical mapping revealed hundreds of structural variations distinct from those generally found within the human population. Many of these structural variants were detected in samples obtained early in the culturing process and were maintained in late passage samples, while others were acquired over the course of culturing.
Collapse
Affiliation(s)
- Casey O. DuBose
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
| | - John R. Daum
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
| | - Christopher L. Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Gary J. Gorbsky
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; (C.O.D.); (J.R.D.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
10
|
Luce E, Messina A, Duclos-Vallée JC, Dubart-Kupperschmitt A. Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology 2021; 74:1101-1116. [PMID: 33420753 PMCID: PMC8457237 DOI: 10.1002/hep.31705] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022]
Abstract
Liver transplantation is currently the only curative treatment for several liver diseases such as acute liver failure, end-stage liver disorders, primary liver cancers, and certain genetic conditions. Unfortunately, despite improvements to transplantation techniques, including live donor transplantation, the number of organs available remains insufficient to meet patient needs. Hepatocyte transplantation has enabled some encouraging results as an alternative to organ transplantation, but primary hepatocytes are little available and cannot be amplified using traditional two-dimensional culture systems. Indeed, although recent studies have tended to show that three-dimensional culture enables long-term hepatocyte culture, it is still agreed that, like most adult primary cell types, hepatocytes remain refractory to in vitro expansion. Because of their exceptional properties, human pluripotent stem cells (hPSCs) can be amplified indefinitely and differentiated into any cell type, including liver cells. While many teams have worked on hepatocyte differentiation, there has been a consensus that cells obtained after hPSC differentiation have more fetal than adult hepatocyte characteristics. New technologies have been used to improve the differentiation process in recent years. This review discusses the technical improvements made to hepatocyte differentiation protocols and the clinical approaches developed to date and anticipated in the near future.
Collapse
Affiliation(s)
- Eléanor Luce
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Antonietta Messina
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Jean-Charles Duclos-Vallée
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| | - Anne Dubart-Kupperschmitt
- INSERMUniversité Paris-SaclayUnité Mixte de Recherche (UMR_S) 1193VillejuifFrance.,Fédération Hospitalo-Universitaire HépatinovHôpital Paul-BrousseVillejuifFrance
| |
Collapse
|
11
|
Mollo N, Esposito M, Aurilia M, Scognamiglio R, Accarino R, Bonfiglio F, Cicatiello R, Charalambous M, Procaccini C, Micillo T, Genesio R, Calì G, Secondo A, Paladino S, Matarese G, Vita GD, Conti A, Nitsch L, Izzo A. Human Trisomic iPSCs from Down Syndrome Fibroblasts Manifest Mitochondrial Alterations Early during Neuronal Differentiation. BIOLOGY 2021; 10:biology10070609. [PMID: 34209429 PMCID: PMC8301075 DOI: 10.3390/biology10070609] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The presence of mitochondrial alterations in Down syndrome suggests that it might affect neuronal differentiation. We established a model of trisomic iPSCs, differentiating into neural precursor cells (NPCs) to monitor the occurrence of differentiation defects and mitochondrial dysfunction. METHODS Isogenic trisomic and euploid iPSCs were differentiated into NPCs in monolayer cultures using the dual-SMAD inhibition protocol. Expression of pluripotency and neural differentiation genes was assessed by qRT-PCR and immunofluorescence. Meta-analysis of expression data was performed on iPSCs. Mitochondrial Ca2+, reactive oxygen species (ROS) and ATP production were investigated using fluorescent probes. Oxygen consumption rate (OCR) was determined by Seahorse Analyzer. RESULTS NPCs at day 7 of induction uniformly expressed the differentiation markers PAX6, SOX2 and NESTIN but not the stemness marker OCT4. At day 21, trisomic NPCs expressed higher levels of typical glial differentiation genes. Expression profiles indicated that mitochondrial genes were dysregulated in trisomic iPSCs. Trisomic NPCs showed altered mitochondrial Ca2+, reduced OCR and ATP synthesis, and elevated ROS production. CONCLUSIONS Human trisomic iPSCs can be rapidly and efficiently differentiated into NPC monolayers. The trisomic NPCs obtained exhibit greater glial-like differentiation potential than their euploid counterparts and manifest mitochondrial dysfunction as early as day 7 of neuronal differentiation.
Collapse
Affiliation(s)
- Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Matteo Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Miriam Aurilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Roberta Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Rossella Accarino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Ferdinando Bonfiglio
- CEINGE-Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy;
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Maria Charalambous
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Claudio Procaccini
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Teresa Micillo
- Neuroimmunology Unit, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Agnese Secondo
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy;
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Giuseppe Matarese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Gabriella De Vita
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council, 80131 Naples, Italy; (M.C.); (C.P.); (G.C.)
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (M.E.); (M.A.); (R.S.); (R.A.); (R.C.); (R.G.); (S.P.); (G.M.); (G.D.V.); (A.C.); (L.N.)
- Correspondence: ; Tel.: +39-081-746-3237
| |
Collapse
|
12
|
iPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter? Cells 2021; 10:cells10061470. [PMID: 34208270 PMCID: PMC8230744 DOI: 10.3390/cells10061470] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
The production of induced pluripotent stem cells (iPSCs) represent a breakthrough in regenerative medicine, providing new opportunities for understanding basic molecular mechanisms of human development and molecular aspects of degenerative diseases. In contrast to human embryonic stem cells (ESCs), iPSCs do not raise any ethical concerns regarding the onset of human personhood. Still, they present some technical issues related to immune rejection after transplantation and potential tumorigenicity, indicating that more steps forward must be completed to use iPSCs as a viable tool for in vivo tissue regeneration. On the other hand, cell source origin may be pivotal to iPSC generation since residual epigenetic memory could influence the iPSC phenotype and transplantation outcome. In this paper, we first review the impact of reprogramming methods and the choice of the tissue of origin on the epigenetic memory of the iPSCs or their differentiated cells. Next, we describe the importance of induction methods to determine the reprogramming efficiency and avoid integration in the host genome that could alter gene expression. Finally, we compare the significance of the tissue of origin and the inter-individual genetic variation modification that has been lightly evaluated so far, but which significantly impacts reprogramming.
Collapse
|
13
|
Uhlmann C, Kuhn LM, Tigges J, Fritsche E, Kahlert UD. Efficient Modulation of TP53 Expression in Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 52:e102. [PMID: 31883435 DOI: 10.1002/cpsc.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TP53 point mutations are found in 50% of all cancers and seem to play an important role in cancer pathogenesis. Thus, human induced pluripotent stem cells (hiPSCs) overexpressing mutant TP53 are a valuable tool for the generation of in vitro models of cancer stem cells or for in vivo xenograft models. Here, we describe a protocol for the alteration of gene expression in hiPSCs via overexpression of a mutant form of the TP53 (R249S) gene using lentiviral transduction. A high amount of TP53 protein is detected 1 week after transduction and antibiotic selection. Differentiation of transduced hiPSCs gives insight into better understanding cancer formation in different tissues and may be a useful tool for genetic or pharmacologic screening assays. © 2019 The Authors. Basic Protocol 1: Production and concentration of third-generation lentivirus Support Protocol 1: Cloning of gene of interest into modulation vector Support Protocol 2: Preparation of DMEM GlutaMAX™ with 10% fetal bovine serum and 1% penicillin-streptomycin Basic Protocol 2: Transduction of human induced pluripotent stem cells and selection of positively transfected cells Support Protocol 3: Preparation of Matrigel® -coated plates Support Protocol 4: Preparation of mTeSR™1 medium.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lisa-Maria Kuhn
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Düsseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
14
|
Sutcliffe DJ, Dinasarapu AR, Visser JE, Hoed JD, Seifar F, Joshi P, Ceballos-Picot I, Sardar T, Hess EJ, Sun YV, Wen Z, Zwick ME, Jinnah HA. Induced pluripotent stem cells from subjects with Lesch-Nyhan disease. Sci Rep 2021; 11:8523. [PMID: 33875724 PMCID: PMC8055678 DOI: 10.1038/s41598-021-87955-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/24/2021] [Indexed: 12/18/2022] Open
Abstract
Lesch-Nyhan disease (LND) is an inherited disorder caused by pathogenic variants in the HPRT1 gene, which encodes the purine recycling enzyme hypoxanthine-guanine phosphoribosyltransferase (HGprt). We generated 6 induced pluripotent stem cell (iPSC) lines from 3 individuals with LND, along with 6 control lines from 3 normal individuals. All 12 lines had the characteristics of pluripotent stem cells, as assessed by immunostaining for pluripotency markers, expression of pluripotency genes, and differentiation into the 3 primary germ cell layers. Gene expression profiling with RNAseq demonstrated significant heterogeneity among the lines. Despite this heterogeneity, several anticipated abnormalities were readily detectable across all LND lines, including reduced HPRT1 mRNA. Several unexpected abnormalities were also consistently detectable across the LND lines, including decreases in FAR2P1 and increases in RNF39. Shotgun proteomics also demonstrated several expected abnormalities in the LND lines, such as absence of HGprt protein. The proteomics study also revealed several unexpected abnormalities across the LND lines, including increases in GNAO1 decreases in NSE4A. There was a good but partial correlation between abnormalities revealed by the RNAseq and proteomics methods. Finally, functional studies demonstrated LND lines had no HGprt enzyme activity and resistance to the toxic pro-drug 6-thioguanine. Intracellular purines in the LND lines were normal, but they did not recycle hypoxanthine. These cells provide a novel resource to reveal insights into the relevance of heterogeneity among iPSC lines and applications for modeling LND.
Collapse
Affiliation(s)
- Diane J Sutcliffe
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ashok R Dinasarapu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jasper E Visser
- Department of Neurology, Cognition and Behavior, Donders Institute for Brain, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Neurology, Amphia Hospital, Breda, The Netherlands
| | - Joery den Hoed
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Fatemeh Seifar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
| | - Piyush Joshi
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Irene Ceballos-Picot
- Laboratoire de Biochimie Métabolomique Et Protéomique, Hôpital Universitaire Necker, Paris, France
| | - Tejas Sardar
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
| | - Ellen J Hess
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA. 30322, USA
| | - Zhexing Wen
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Michael E Zwick
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, 6305 Woodruff Memorial Building, Atlanta, GA, 30322, USA.
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Neurosciences Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, 30322, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
15
|
Kim HJ, Hong SJ, Lee S, Park JM, Park J, Park JS, Shim SH, Park K. Induction of Bone Formation by 3D Biologically Active Scaffolds Containing RGD‐NPs, BMP2, and NtMPCs. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hye Jin Kim
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Suk Jun Hong
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sujin Lee
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Jong Min Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji‐In Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Ji Sun Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Sung Han Shim
- Laboratory of Molecular Genetics Department of Biomedical Science College of Life Science CHA University 629, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| | - Keun‐Hong Park
- Laboratory of Nano‐regenerative Medical Engineering Department of Biomedical Science College of Life Science CHA University 618, CHA Biocomplex, Sampyeong‐Dong Bundang‐gu Seongnam‐si 13488 Republic of Korea
| |
Collapse
|
16
|
Umbilical Cord Tissue as a Source of Young Cells for the Derivation of Induced Pluripotent Stem Cells Using Non-Integrating Episomal Vectors and Feeder-Free Conditions. Cells 2020; 10:cells10010049. [PMID: 33396312 PMCID: PMC7824218 DOI: 10.3390/cells10010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical application of induced pluripotent stem cells (iPSC) needs to balance the use of an autologous source that would be a perfect match for the patient against any safety or efficacy issues that might arise with using cells from an older patient or donor. Drs. Takahashi and Yamanaka and the Office of Cellular and Tissue-based Products (PMDA), Japan, have had concerns over the existence of accumulated DNA mutations in the cells of older donors and the possibility of long-term negative effects. To mitigate the risk, they have chosen to partner with the Umbilical Cord (UC) banks in Japan to source allogeneic-matched donor cells. Production of iPSCs from UC blood cells (UCB) has been successful; however, reprogramming blood cells requires cell enrichment with columns or flow cytometry and specialized growth media. These requirements add to the cost of production and increase the manipulation of the cells, which complicates the regulatory approval process. Alternatively, umbilical cord tissue mesenchymal stromal cells (CT-MSCs) have the same advantage as UCB cells of being a source of young donor cells. Crucially, CT-MSCs are easier and less expensive to harvest and grow compared to UCB cells. Here, we demonstrate that CT-MSCs can be easily isolated without expensive enzymatic treatment or columns and reprogramed well using episomal vectors, which allow for the removal of the reprogramming factors after a few passages. Together the data indicates that CT-MSCs are a viable source of donor cells for the production of clinical-grade, patient matched iPSCs.
Collapse
|
17
|
Burdeyron P, Giraud S, Hauet T, Steichen C. Urine-derived stem/progenitor cells: A focus on their characterization and potential. World J Stem Cells 2020; 12:1080-1096. [PMID: 33178393 PMCID: PMC7596444 DOI: 10.4252/wjsc.v12.i10.1080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Cell therapy, i.e., the use of cells to repair an affected tissue or organ, is at the forefront of regenerative and personalized medicine. Among the multiple cell types that have been used for this purpose [including adult stem cells such as mesenchymal stem cells or pluripotent stem cells], urine-derived stem cells (USCs) have aroused interest in the past years. USCs display classical features of mesenchymal stem cells such as differentiation capacity and immunomodulation. Importantly, they have the main advantage of being isolable from one sample of voided urine with a cheap and unpainful procedure, which is broadly applicable, whereas most adult stem cell types require invasive procedure. Moreover, USCs can be differentiated into renal cell types. This is of high interest for renal cell therapy-based regenerative approaches. This review will firstly describe the isolation and characterization of USCs. We will specifically present USC phenotype, which is not an object of consensus in the literature, as well as detail their differentiation capacity. In the second part of this review, we will present and discuss the main applications of USCs. These include use as a substrate to generate human induced pluripotent stem cells, but we will deeply focus on the use of USCs for cell therapy approaches with a detailed analysis depending on the targeted organ or system. Importantly, we will also focus on the applications that rely on the use of USC-derived products such as microvesicles including exosomes, which is a strategy being increasingly employed. In the last section, we will discuss the remaining barriers and challenges in the field of USC-based regenerative medicine.
Collapse
Affiliation(s)
- Perrine Burdeyron
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
| | - Sébastien Giraud
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Thierry Hauet
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France
- Service de Biochimie, CHU de Poitiers, Poitiers 86021, France
| | - Clara Steichen
- INSERM U1082 IRTOMIT, CHU de Poitiers, Poitiers 86021, France
- Faculté de Médecine et Pharmacie, Université de Poitiers, Poitiers 86021, France.
| |
Collapse
|
18
|
Halliwell J, Barbaric I, Andrews PW. Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nat Rev Mol Cell Biol 2020; 21:715-728. [DOI: 10.1038/s41580-020-00292-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
|
19
|
Messina A, Luce E, Hussein M, Dubart-Kupperschmitt A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020; 9:cells9020420. [PMID: 32059501 PMCID: PMC7072243 DOI: 10.3390/cells9020420] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
The liver is a very complex organ that ensures numerous functions; it is thus susceptible to multiple types of damage and dysfunction. Since 1983, orthotopic liver transplantation (OLT) has been considered the only medical solution available to patients when most of their liver function is lost. Unfortunately, the number of patients waiting for OLT is worryingly increasing, and extracorporeal liver support devices are not yet able to counteract the problem. In this review, the current and expected methodologies in liver regeneration are briefly analyzed. In particular, human pluripotent stem cells (hPSCs) as a source of hepatic cells for liver therapy and regeneration are discussed. Principles of hPSC differentiation into hepatocytes are explored, along with the current limitations that have led to the development of 3D culture systems and organoid production. Expected applications of these organoids are discussed with particular attention paid to bio artificial liver (BAL) devices and liver bio-fabrication.
Collapse
Affiliation(s)
- Antonietta Messina
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Eléanor Luce
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Marwa Hussein
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
| | - Anne Dubart-Kupperschmitt
- INSERM unité mixte de recherche (UMR_S) 1193, F-94800 Villejuif, France; (A.M.)
- UMR_S 1193, Université Paris-Sud/Paris-Saclay, F-94800 Villejuif, France
- Département Hospitalo-Universitaire (DHU) Hépatinov, F-94800 Villejuif, France
- Correspondence: ; Tel.: +33-145595138
| |
Collapse
|