1
|
Chang J, Li Y, Shan X, Chen X, Yan X, Liu J, Zhao L. Neural stem cells promote neuroplasticity: a promising therapeutic strategy for the treatment of Alzheimer's disease. Neural Regen Res 2024; 19:619-628. [PMID: 37721293 PMCID: PMC10581561 DOI: 10.4103/1673-5374.380874] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 09/19/2023] Open
Abstract
Recent studies have demonstrated that neuroplasticity, such as synaptic plasticity and neurogenesis, exists throughout the normal lifespan but declines with age and is significantly impaired in individuals with Alzheimer's disease. Hence, promoting neuroplasticity may represent an effective strategy with which Alzheimer's disease can be alleviated. Due to their significant ability to self-renew, differentiate, and migrate, neural stem cells play an essential role in reversing synaptic and neuronal damage, reducing the pathology of Alzheimer's disease, including amyloid-β, tau protein, and neuroinflammation, and secreting neurotrophic factors and growth factors that are related to plasticity. These events can promote synaptic plasticity and neurogenesis to repair the microenvironment of the mammalian brain. Consequently, neural stem cells are considered to represent a potential regenerative therapy with which to improve Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss how neural stem cells regulate neuroplasticity and optimize their effects to enhance their potential for treating Alzheimer's disease in the clinic.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xi Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuhe Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Li H, Xiang Q, Ren R, Wang G. Acupuncture as a Complementary Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S503-S520. [PMID: 39422942 DOI: 10.3233/jad-231250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a significant global medical concern due to the aging population. AD is featured by gradual cognitive impairment, impacting daily functioning and causing behavioral and personality changes, causing disruptive psychiatric symptoms. While pharmacological interventions are the primary clinical approach, their efficacy is variable and limited. Acupuncture, with its distinctive theoretical framework and treatment approach, has garnered attention as a non-pharmacological intervention for AD through extensive preclinical and clinical research. Neurobiological investigations into the machinery of acupuncture in AD have provided compelling evidence of its therapeutic efficacy and unique advantages. This review commences with an in-depth exploration of acupuncture's clinical applications, emphasizing its various parameters and its potential combination with first-line drugs and other therapies in the context of AD. Subsequently, we delve into the underlying therapeutic mechanisms of acupuncture in AD. Finally, we summarize these aspects, highlight current study limitations, and offer recommendations for future research. Taken together, in a rapidly aging society, both clinical application and mechanistic exploration of acupuncture in AD treatment have gained momentum. This trajectory suggests that acupuncture will continue to make significant strides in AD therapeutics as research progresses.
Collapse
Affiliation(s)
- Haixia Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyao Xiang
- Department of Acupuncture, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rujing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Gao H, Ding W. Effect and mechanism of acupuncture on endogenous and exogenous stem cells in disease treatment: A therapeutic review. Life Sci 2023; 331:122031. [PMID: 37598978 DOI: 10.1016/j.lfs.2023.122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Acupuncture is effective intervention, particularly in nerve, endocrine diseases and immune diseases. The potential mechanisms mediating the effects of acupuncture include anti-inflammatory and oxidative stress, inhibition of cell apoptosis, and stimulation of the proliferation and differentiation of endogenous stem cells. Traditional Chinese medicine combined with stem cell transplantation have a synergistic effect in the treatment of diseases. Increasing studies have found that acupuncture can promote the proliferation, differentiation, homing and survival of exogenous stem cells. This article reviews the mechanism of acupuncture and Chinese herbs on endogenous stem cells and exogenous stem cells in the combined intervention of diverse disorders and the major problems in past 15 years, which will provide a reference for future clinical research.
Collapse
Affiliation(s)
- Hongyan Gao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
4
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
5
|
Xie Y, Liu L, Zheng J, Shi K, Ai W, Zhang X, Wang P, Lan Z, Chen L. Polygoni Multiflori Radix Praeparata and Acori Tatarinowii Rhizoma ameliorate scopolamine-induced cognitive impairment by regulating the cholinergic and synaptic associated proteins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116400. [PMID: 37003402 DOI: 10.1016/j.jep.2023.116400] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Polygoni Multiflori Radix Praeparata (PMRP) and Acori Tatarinowii Rhizoma (ATR) is often used in traditional Chinese medicine to prevent and treat Alzheimer's disease (AD). However, it is not clear whether the effects and mechanisms of the decoction prepared by traditional decocting method (PA) is different from that prepared by modern decocting method (P + A). AIM OF THE STUDY The present study aimed to investigate the differences in the protective effects of PA and P + A on scopolamine induced cognitive impairment, and to explore its potential mechanism. MATERIALS AND METHODS To assess the protective effect of PA and P + A on cognitive dysfunction, the mice were orally administrated with PA (1.56, 6.24 g kg-1•day-1) and P + A (1.56, 6.24 g kg-1•day-1) for 26 days before co-treatment with scopolamine (4 mg kg-1•day-1, i.p.). The learning and memory abilities of mice were examined by Morris water maze test, and the expressions of proteins related to cholinergic system and synaptic function were detected by the methods of ELISA, real-time PCR and Western blotting. Then, molecular docking technique was used to verify the effect of active compounds in plasma after PA administration on Acetylcholinesterase (AChE) protein. Finally, the Ellman method was used to evaluate the effects of different concentrations of PA, P + A (1 μg/mL-100 mg/mL) and the compounds (1-100 μM) on AChE activity in vitro. RESULTS On one hand, in the scopolamine-induced cognitive impairment mouse model, both of PA and P + A could improve the cognitive impairment, while the effect of PA on cognitive amelioration was better than that of P + A. Moreover, PA regulated the cholinergic and synaptic functions by enhancing the concentration of acetylcholine (ACh), the mRNA levels of CHT1, Syn, GAP-43 and PSD-95, and the related proteins (CHT1, VACHT, Syn, GAP-43 and PSD-95), and significantly inhibiting the expression of AChE protein. Meanwhile, P + A only up-regulated the mRNA levels of GAP-43 and PSD-95, increased the expressions of CHT1, VACHT, Syn, GAP-43 and PSD-95 proteins, and inhibited the expression of AChE protein. On the other hand, the in vitro study showed that some compounds including emodin-8-o-β-d-Glucopyranoside, THSG and α-Asarone inhibited AChE protein activity with the IC50 values 3.65 μM, 5.42 μM and 9.43 μM, respectively. CONCLUSIONS These findings demonstrate that both of PA and P + A can ameliorate the cognitive deficits by enhancing cholinergic and synaptic related proteins, while PA has the stronger improvement effect on the cholinergic function, which may be attributed to the compounds including THSG, emodin, emodin-8-O-β-D-glucopyranoside and α-asarone. The present study indicated that PA has more therapeutic potential in the treatment of neurodegenerative diseases such as AD. The results provide the experimental basis for the clinical use of PA.
Collapse
Affiliation(s)
- Yuman Xie
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Li Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Junzuo Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Kun Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Wenqi Ai
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Xuesong Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, PR China.
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| |
Collapse
|
6
|
Liu S, Li H, Shen Y, Zhu W, Wang Y, Wang J, Zhang N, Li C, Xie L, Wu Q. Moxibustion improves hypothalamus Aqp4 polarization in APP/PS1 mice: Evidence from spatial transcriptomics. Front Aging Neurosci 2023; 15:1069155. [PMID: 36819717 PMCID: PMC9931733 DOI: 10.3389/fnagi.2023.1069155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Aquaporin-4 (AQP4) is highly polarized to perivascular astrocytic endfeet. Loss of AQP4 polarization is associated with many diseases. In Alzheimer's disease (AD), AQP4 loses its normal location and thus reduces the clearance of amyloid-β plaques and tau protein. Clinical and experimental studies showed that moxibustion can improve the learning and memory abilities of AD. To explore whether moxibustion can affect the polarization of AQP4 around the blood-brain barrier (BBB), we used spatial transcriptomics (ST) to analyze the expression and polarization of Aqp4 in wild-type mice, APP/PS1 mice, and APP/PS1 mice intervened by moxibustion. The results showed that moxibustion improved the loss of abnormal polarization of AQP4 in APP/PS1 mice, especially in the hypothalamic BBB. Besides, the other 31 genes with Aqp4 as the core have similar depolarization in APP/PS1 mice, most of which are also membrane proteins. The majority of them have been reversed by moxibustion. At the same time, we employed the cerebrospinal fluid circulation gene set, which was found to be at a higher level in the group of APP/PS1 mice with moxibustion treatment. Finally, to further explore its mechanism, we analyzed the mitochondrial respiratory chain complex enzymes closely related to energy metabolism and found that moxibustion can significantly increase the expression of mitochondrial respiratory chain enzymes such as Cox6a2 in the hypothalamus, which could provide energy for mRNA transport. Our research shows that increasing the polarization of hypothalamic Aqp4 through mitochondrial energy supply may be an important target for moxibustion to improve cognitive impairment in APP/PS1 mice.
Collapse
Affiliation(s)
- Shuqing Liu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongying Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuan Shen
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Weikang Zhu
- National Center for Mathematics and Interdisciplinary Sciences, CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- National Center for Mathematics and Interdisciplinary Sciences, CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Junmeng Wang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ning Zhang
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chenyu Li
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lushuang Xie
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaofeng Wu
- Acupuncture and Moxibustion School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Qiaofeng Wu,
| |
Collapse
|
7
|
Zhang Z, Chen L, Guo Y, Li D, Zhang J, Liu L, Fan W, Guo T, Qin S, Zhao Y, Xu Z, Chen Z. The neuroprotective and neural circuit mechanisms of acupoint stimulation for cognitive impairment. Chin Med 2023; 18:8. [PMID: 36670425 PMCID: PMC9863122 DOI: 10.1186/s13020-023-00707-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Cognitive impairment is a prevalent neurological disorder that burdens families and the healthcare system. Current conventional therapies for cognitive impairment, such as cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, are unable to completely stop or reverse the progression of the disease. Also, these medicines may cause serious problems with the digestive system, cardiovascular system, and sleep. Clinically, stimulation of acupoints has the potential to ameliorate the common symptoms of a variety of cognitive disorders, such as memory deficit, language dysfunction, executive dysfunction, reduced ability to live independently, etc. There are common acupoint stimulation mechanisms for treating various types of cognitive impairment, but few systematic analyses of the underlying mechanisms in this domain have been performed. This study comprehensively reviewed the basic research from the last 20 years and found that acupoint stimulation can effectively improve the spatial learning and memory of animals. The common mechanism may be that acupoint stimulation protects hippocampal neurons by preventing apoptosis and scavenging toxic proteins. Additionally, acupoint stimulation has antioxidant and anti-inflammatory effects, promoting neural regeneration, regulating synaptic plasticity, and normalizing neural circuits by restoring brain functional activity and connectivity. Acupoint stimulation also inhibits the production of amyloid β-peptide and the phosphorylation of Tau protein, suggesting that it may protect neurons by promoting correct protein folding and regulating the degradation of toxic proteins via the autophagy-lysosomal pathway. However, the benefits of acupoint stimulation still need to be further explored in more high-quality studies in the future.
Collapse
Affiliation(s)
- Zichen Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Liuyi Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Yi Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Dan Li
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Jingyu Zhang
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Ling Liu
- grid.257143.60000 0004 1772 1285First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065 People’s Republic of China
| | - Wen Fan
- grid.412879.10000 0004 0374 1074Department of Rehabilitation Physical Therapy Course, Faculty of Health Science, Suzuka University of Medical Science, Suzuka City, 5100293 Japan
| | - Tao Guo
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Siru Qin
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Yadan Zhao
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China
| | - Zhifang Xu
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| | - Zelin Chen
- grid.410648.f0000 0001 1816 6218Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 People’s Republic of China ,grid.410648.f0000 0001 1816 6218National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381 People’s Republic of China
| |
Collapse
|
8
|
Guo Y, Wang YY, Sun TT, Xu JJ, Yang P, Ma CY, Guan WJ, Wang CJ, Liu GF, Liu CQ. Neural progenitor cells derived from fibroblasts induced by small molecule compounds under hypoxia for treatment of Parkinson's disease in rats. Neural Regen Res 2022; 18:1090-1098. [PMID: 36254998 PMCID: PMC9827776 DOI: 10.4103/1673-5374.355820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Neural progenitor cells (NPCs) capable of self-renewal and differentiation into neural cell lineages offer broad prospects for cell therapy for neurodegenerative diseases. However, cell therapy based on NPC transplantation is limited by the inability to acquire sufficient quantities of NPCs. Previous studies have found that a chemical cocktail of valproic acid, CHIR99021, and Repsox (VCR) promotes mouse fibroblasts to differentiate into NPCs under hypoxic conditions. Therefore, we used VCR (0.5 mM valproic acid, 3 μM CHIR99021, and 1 μM Repsox) to induce the reprogramming of rat embryonic fibroblasts into NPCs under a hypoxic condition (5%). These NPCs exhibited typical neurosphere-like structures that can express NPC markers, such as Nestin, SRY-box transcription factor 2, and paired box 6 (Pax6), and could also differentiate into multiple types of functional neurons and astrocytes in vitro. They had similar gene expression profiles to those of rat brain-derived neural stem cells. Subsequently, the chemically-induced NPCs (ciNPCs) were stereotactically transplanted into the substantia nigra of 6-hydroxydopamine-lesioned parkinsonian rats. We found that the ciNPCs exhibited long-term survival, migrated long distances, and differentiated into multiple types of functional neurons and glial cells in vivo. Moreover, the parkinsonian behavioral defects of the parkinsonian model rats grafted with ciNPCs showed remarkable functional recovery. These findings suggest that rat fibroblasts can be directly transformed into NPCs using a chemical cocktail of VCR without introducing exogenous factors, which may be an attractive donor material for transplantation therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Yu Guo
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yuan-Yuan Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ting-Ting Sun
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jia-Jia Xu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Pan Yang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Cai-Yun Ma
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China,National Germplasm Resource Center for Domestic Animals, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Wei-Jun Guan
- National Germplasm Resource Center for Domestic Animals, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Chun-Jing Wang
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Gao-Feng Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China,Correspondence to: Chang-Qing Liu, ; Gao-Feng Liu, .
| | - Chang-Qing Liu
- School of Laboratory Medicine, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui Province, China,Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA,Correspondence to: Chang-Qing Liu, ; Gao-Feng Liu, .
| |
Collapse
|
9
|
Kim JT, Kim K, Ang L, Lee HW, Choi JY, Lee MS. Acupuncture for treating attention deficit hyperactivity disorder in children: A protocol for systematic review and meta-analysis. PLoS One 2022; 17:e0275504. [PMID: 36215241 PMCID: PMC9550064 DOI: 10.1371/journal.pone.0275504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) patients often use complementary and alternative medicine to treat symptoms, and acupuncture is one option. This systematic review aims to assess whether acupuncture is an effective treatment for attention deficit hyperactivity disorder (ADHD). METHODS We will search nine databases from their inception: PubMed, AMED, CINAHL, EMBASE, the Cochrane Central Register of Controlled Trials, RISS, KoreaMed, KISS, and the China National Knowledge Infrastructure database. Two investigators will independently review the selected studies, extract the data, and analyze them. The Cochrane Risk of Bias Assessment Tool will be used to assess the risk of bias. DISCUSSION Because this is a systematic review, no ethical approval is needed. The systematic review will be published in a peer-reviewed journal and disseminated both electronically and in print. The review will be updated to support health policy and practice. TRIAL REGISTRATION NUMBER Reviewregistry1345.
Collapse
Affiliation(s)
- Jung Tae Kim
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- IMOM Korean Medicine Clinic, Jeju, Republic of Korea
| | - Kibong Kim
- Department of Korean Pediatrics, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Korean Pediatrics, School of Korean Medicine & Korean Medicine Hospital, Pusan National University, Yangsan, Republic of Korea
| | - Lin Ang
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jun-Yong Choi
- Department of Korean Internal Medicine, School of Korean Medicine & Korean Medicine Hospital, Pusan National University, Yangsan, Republic of Korea
| | - Myeong Soo Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Yue J, Li XL, Gao RX, Zhang Q, Li A, Zhao WW, Li Y, Li SL. Research status, hotspots and trends of acupuncture and moxibustion in the treatment of Alzheimer's disease: A bibliometric analysis. Medicine (Baltimore) 2022; 101:e30858. [PMID: 36181105 PMCID: PMC9524865 DOI: 10.1097/md.0000000000030858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acupuncture and moxibustion (AM) are utilized to treat Alzheimer's disease (AD). However, no bibliometric analysis has explored this issue. Thus, this study investigated the status, hotspots and trends of AM in the treatment of AD. METHODS CiteSpace and VOSviewer softwares were used to analyze the literature on the AM for AD in the Web of Science Core Collection database. We analyzed the data of countries/regions, institutions, journals, authors, keywords, and cited references. RESULTS After removing duplicates, 193 articles were retrieved. The number of publications on this topic has increased gradually. The most productive and collaborative country was China (143 documents), followed by South Korea (19). The top 3 active academic institutions were Beijing University of Chinese Medicine, Capital Medicine University, and Guangzhou University of Chinese Medicine. The most productive journal was Evidence-based Complementary and Alternative Medicine (13 documents), followed by the Frontiers in Aging Neuroscience (10), Medicine (10), and Neural Regeneration Research (10). The top 3 co-cited journals were Evidence-based Complementary and Alternative Medicine (156 citations), Acupuncture Electro-therapeutics Research (152), and Acupuncture in Medicine (146). The research hotspots in this domain are dementia, memory, hippocampus, mouse models, and Parkinson's disease. Major frontiers are comparing the therapeutic effects of acupuncture and donepezil and electroacupuncture at different frequencies in this field. CONCLUSION This bibliometric study identified relevant hotspots and trends in research on AM in the treatment of AD, which can provide researchers with key information in this domain and help further explore new research directions.
Collapse
Affiliation(s)
- Jinhuan Yue
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui-Xue Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd, Beijing, China
| | | | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shu-Lin Li
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Shu-Lin Li, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No. 26 Heping Road, Xiangfang District, Harbin 150040, China (e-mail: )
| |
Collapse
|
11
|
Acupuncture Interventions for Alzheimer’s Disease and Vascular Cognitive Disorders: A Review of Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6080282. [PMID: 36211826 PMCID: PMC9534683 DOI: 10.1155/2022/6080282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Cognitive impairment (CI) related to Alzheimer's disease (AD) and vascular cognitive disorders (VCDs) has become a key problem worldwide. Importantly, CI is a neuropsychiatric abnormality mainly characterized by learning and memory impairments. The hippocampus is an important brain region controlling learning and memory. Recent studies have highlighted the effects of acupuncture on memory deficits in AD and VCDs. By reviewing the literature published on this topic in the past five years, the present study intends to summarize the effects of acupuncture on memory impairment in AD and VCDs. Focusing on hippocampal synaptic plasticity, we reviewed the mechanisms underlying the effects of acupuncture on memory impairments through regulation of synaptic proteins, AD characteristic proteins, intestinal microbiota, neuroinflammation, microRNA expression, orexin system, energy metabolism, etc., suggesting that hippocampal synaptic plasticity may be the common as well as the core link underlying the above mechanisms. We also discussed the potential strategies to improve the effect of acupuncture. Additionally, the effects of acupuncture on synaptic plasticity through the regulation of vascular–glia–neuron unit were further discussed.
Collapse
|
12
|
Zhou R, Xiao L, Xiao W, Yi Y, Wen H, Wang H. Bibliometric review of 1992–2022 publications on acupuncture for cognitive impairment. Front Neurol 2022; 13:1006830. [PMID: 36226080 PMCID: PMC9549373 DOI: 10.3389/fneur.2022.1006830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the development context, research hotspots, and frontiers of acupuncture therapy for cognitive impairment (CI) from 1992 to 2022 by visualization analysis. Methods Articles about acupuncture therapy for cognitive impairment were retrieved from the Web of Science Core Collection (WoSCC) until 1 March 2022. Basic information was collected by Excel 2007, and VOSviewer 1.6.17 was used to analyze the co-occurrence of countries, institutes, and authors. Co-citation maps of authors and references were analyzed by CiteSpace V.5.8.R3. In addition, CiteSpace was used to analyze keyword clusters and forecast research frontiers. Results A total of 279 articles were retrieved, including articles from 19 countries, 334 research institutes, and 101 academic journals. The most published country and institutes were the People's Republic of China (217) and the Fujian University of Traditional Chinese Medicine (40). Ronald C Petersen owned the highest co-citations (56). Keywords and co-cited references cluster showed the main research directions in this area, including “ischemic stroke,” “cerebral ischemia/reperfusion,” “mild cognitive impairment,” “Alzheimer's disease,” “vascular dementia,” “vascular cognitive impairment with no dementia,” “multi-infarct dementia,” “synaptic injury,” “functional MRI,” “glucose metabolism,” “NMDA,” “nuclear factor-kappa b pathway,” “neurotrophic factor,” “matrix metalloproteinase-2 (MMP-2),” “tumor necrosis factor-alpha,” “Bax,” “Caspase-3,” and “Noxa”. Trending keywords may indicate frontier topics, such as “randomized controlled trial,” “rat model,” and “meta-analysis.” Conclusion This research provides valuable information for the study of acupuncture. Diseases focus on mild cognitive impairment (MCI), Alzheimer's disease (AD), and vascular dementia (VaD). Tauopathies with hyperphosphorylation of Tau protein as the main lesions also need to be paid attention to. The development of functional magnetic resonance imaging (fMRI) will better explain the therapeutic effect of acupuncture treatment. The effect of acupuncture on a single point is more convincing, and acupuncture on Baihui (GV20) may be needed in the future. Finally, the implementation of high-quality multicenter randomized controlled trials (RCTs) requires increased collaboration among experts from multiple fields and countries.
Collapse
Affiliation(s)
- Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
- *Correspondence: Lu Xiao
| | - Wei Xiao
- Ganzhou Cancer Hospital, Ganzhou, China
| | - Yanfei Yi
- Ganzhou Cancer Hospital, Ganzhou, China
| | | | | |
Collapse
|
13
|
Electroacupuncture Increases the Hippocampal Synaptic Transmission Efficiency and Long-Term Plasticity to Improve Vascular Cognitive Impairment. Mediators Inflamm 2022; 2022:5985143. [PMID: 35784174 PMCID: PMC9246579 DOI: 10.1155/2022/5985143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Studies have shown that electroacupuncture (EA) can effectively improve vascular cognitive impairment (VCI), but its mechanisms have not been clearly elucidated. This study is aimed at investigating the mechanisms underlying the effects of EA treatment on hippocampal synaptic transmission efficiency and plasticity in rats with VCI. Methods. Sprague–Dawley rats were subjected to VCI with bilateral common carotid occlusion (2VO). EA stimulation was applied to Baihui (GV20) and Shenting (GV24) acupoints for 30 min once a day, five times a week, for four weeks. Our study also included nonacupoint groups to confirm the specificity of EA therapy. The Morris water maze (MWM) was used to assess cognitive function. Electrophysiological techniques were used to detect the field characteristics of the hippocampal CA3–CA1 circuit in each group of rats, including input-output (I/O), paired-pulse facilitation ratios (PPR), field excitatory postsynaptic potential (fEPSP), and excitatory postsynaptic current (EPSC). The expression of synapse- and calcium-mediated signal transduction associated proteins was detected through western blotting. Results. The MWM behavioural results showed that EA significantly improved cognitive function in VCI model rats. EA increased the I/O curve of VCI model rats from 20 to 90 μA. No significant differences were observed in hippocampal PPR. The fEPSP of the hippocampal CA3–CA1 circuit was significantly increased after EA treatment compared with that after nonacupuncture treatment. We found that EA led to an increase in the EPSC amplitude and frequency, especially in the decay and rise times. In addition, the protein expression and phosphorylation levels of N-methyl-D-aspartate receptor 2B, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 1, and Ca2+-calmodulin-dependent protein kinase II increased to varying degrees in the hippocampus of VCI model rats. Conclusion. EA at GV20 and GV24 acupoints increased the basic synaptic transmission efficiency and synaptic plasticity of the hippocampal CA3–CA1 circuit, thereby improving learning and memory ability in rats with VCI.
Collapse
|
14
|
Jiang K, Sun Y, Chen X. Mechanism Underlying Acupuncture Therapy in Spinal Cord Injury: A Narrative Overview of Preclinical Studies. Front Pharmacol 2022; 13:875103. [PMID: 35462893 PMCID: PMC9021644 DOI: 10.3389/fphar.2022.875103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results from various pathogenic factors that destroy the normal structure and function of the spinal cord, subsequently causing sensory, motor, and autonomic nerve dysfunction. SCI is one of the most common causes of disability and death globally. It leads to severe physical and mental injury to patients and causes a substantial economic burden on families and the society. The pathological changes and underlying mechanisms within SCI involve oxidative stress, apoptosis, inflammation, etc. As a traditional therapy, acupuncture has a positive effect promoting the recovery of SCI. Acupuncture-induced neuroprotection includes several mechanisms such as reducing oxidative stress, inhibiting the inflammatory response and neuronal apoptosis, alleviating glial scar formation, promoting neural stem cell differentiation, and improving microcirculation within the injured area. Therefore, the recent studies exploring the mechanism of acupuncture therapy in SCI will help provide a theoretical basis for applying acupuncture and seeking a better treatment target and acupuncture approach for SCI patients.
Collapse
Affiliation(s)
- Kunpeng Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
- *Correspondence: Xinle Chen,
| |
Collapse
|
15
|
Occupational therapy with or without combined acupuncture on upper limb pain and hand functions in children with spastic hemiplegic cerebral palsy: A three-arm randomized, placebo-controlled trial. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2022. [DOI: 10.1016/j.wjam.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|