1
|
Rageh MA, Fathi MK, Ibrahim SMA. Efficacy and Safety of Autologous Nanofat Injection in the Treatment of Postburn Scars Using Optical Skin Imaging Analysis. Dermatol Surg 2025; 51:40-45. [PMID: 39018082 DOI: 10.1097/dss.0000000000004322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BACKGROUND Burn scars are considered one of the challenging issues that can affect the quality of life by causing aesthetic and functional problems. Injecting nanofat particles, which are considered a source of stem cells, into the dermis and/or subcutis of the burned area is considered a promising procedure for the treatment of scars and the correction of volume shortage and skin renewal. OBJECTIVE To assess the safety and effectiveness of using autologous nanofat injections to treat burn scars. METHODS Thirty patients with postburn scars participated in the trial. Each patient received one session of liposuction, which was then converted into nanofat and injected back into the scar tissue. Four months after the session, the evaluation was conducted both objectively using the Antera camera 3D imaging and subjectively using the Vancouver scar scale (VSS). RESULTS Because there were statistically significant improvements in the treated scars' height, color, vascularity, and pliability, the total VSS scores differed significantly before and after treatment. Furthermore, the Antera 3D imaging revealed a statistically significant variation in the treated scars' indentations, erythema, and pigmentation scores. CONCLUSION The study findings demonstrated that nanofat is a successful postburn scar treatment option that improves patients' quality of life.
Collapse
Affiliation(s)
- Mahmoud A Rageh
- All authors are affiliated with the Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | | |
Collapse
|
2
|
Fakih-Gomez N, Manay R, Nazari S, Martins L, Muñoz-Gonzalez C. Regenerative Nanofat Membrane Development Process. Aesthetic Plast Surg 2024:10.1007/s00266-024-04562-5. [PMID: 39663222 DOI: 10.1007/s00266-024-04562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Chronic wounds present a significant challenge in clinical practice due to complications like infections and prolonged healing times. Conventional treatments often fall short, necessitating advancements in wound healing strategies. This article introduces a novel approach using a combination of adipose-derived stem cells (ADSCs) from fat and growth factors from platelet-rich fibrin (PRF) to enhance wound healing outcomes. METHODS The Fakih-Manay fat membrane device was utilized to prepare fat membranes. Microfat was harvested and emulsified to produce nanofat, which was then combined with PRF to create a Nanofat-PRF membrane. The resulting membrane was uniform, versatile, and suture-friendly, making it ideal for various medical and surgical applications. RESULTS Between April 2019 and April 2024, 172 patients received treatment using a nanofat membrane. The membrane showed significant improvement in wound healing in various cases including diabetic foot ulcers, cleft palate surgeries, facial dermabrasion, skin necrosis, revision rhinoplasties, and post-cosmetic surgery complications. Postoperative follow-up after healing ranged from 1 to 16 months, showing high patient satisfaction and significant improvements in wound healing and no reported complications. CONCLUSION The nanofat membrane presents a versatile and innovative approach to enhancing healing across a broad range of medical and surgical applications. This study provides the first evidence on the method for creating these membranes, demonstrating their clinical efficacy and safety, with no reported complications over a 5-year period. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Nabil Fakih-Gomez
- Department of Facial Plastic & Cranio-Maxillo-Facial Surgery, Fakih Hospital, Khaizaran, Lebanon.
- Department of Surgery, University of Salamanca, Salamanca, Spain.
| | - Roshini Manay
- Department of Facial Plastic & Cranio-Maxillo-Facial Surgery, Fakih Hospital, Khaizaran, Lebanon
| | - Shahriar Nazari
- Department of Otorhinolaryngology and Head and Neck Surgery, BMI Hospital, Tehran, Iran
| | - Lessandro Martins
- Private Practice, 2653 Orion Business Health and Center, Goiania, Brazil
| | - Cristina Muñoz-Gonzalez
- Department of Facial Plastic & Cranio-Maxillo-Facial Surgery, Fakih Hospital, Khaizaran, Lebanon
- Department of Surgery, University of Salamanca, Salamanca, Spain
| |
Collapse
|
3
|
Buitrago DMC, Díaz MFA, López AMC, Ardila JSA, Acosta JLC. Reconstruction of penile skin defect using negative pressure therapy, spiraling full-thickness skin grafts, and nanofat grafting: a case report. J Surg Case Rep 2024; 2024:rjae663. [PMID: 39606040 PMCID: PMC11602156 DOI: 10.1093/jscr/rjae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
The penis is a structure that requires both anatomical and functional reconstruction. Being a three-dimensional structure that changes in volume, it presents a reconstructive challenge for the plastic surgeon. Currently, various alternatives are available for covering these complex defects, such as grafts, flaps, and dermal matrices. The objective of this study is to present a case report describing a complex post-traumatic penile defect in which three combined strategies were implemented for the first time (spiral full-thickness grafts, nanolipoinjection, and negative pressure therapy). These strategies have been described in the literature for defect coverage, achieving satisfactory anatomical and functional results.
Collapse
Affiliation(s)
| | - Manuel Felipe Aljure Díaz
- Plastic and Reconstructive Surgery Department, Hospital Universitario La Samaritana, Bogotá 110311, Colombia
- Universidad el Bosque, Bogotá, Colombia
| | - Ana María Camargo López
- Plastic and Reconstructive Surgery Department, Hospital Universitario La Samaritana, Bogotá 110311, Colombia
- Universidad el Bosque, Bogotá, Colombia
| | - Juan Sebastián Afanador Ardila
- Plastic and Reconstructive Surgery Department, Hospital Universitario La Samaritana, Bogotá 110311, Colombia
- Universidad el Bosque, Bogotá, Colombia
| | - Jorge Luis Corcho Acosta
- Plastic and Reconstructive Surgery Department, Hospital Universitario La Samaritana, Bogotá 110311, Colombia
- Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
4
|
Jeong W, Son J, Choi J, Han J, Jeon S, Kim MK, Ha W, Kang HW. Clinically Relevant and Precisely Printable Live Adipose Tissue-Based Bio-Ink for Volumetric Soft Tissue Reconstruction. Adv Healthc Mater 2024:e2402680. [PMID: 39466900 DOI: 10.1002/adhm.202402680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/12/2024] [Indexed: 10/30/2024]
Abstract
Autologous fat is widely used in soft tissue reconstruction; however, significant volume reduction owing to necrosis and degradation of the transplanted adipose tissue (AT) remains a major challenge. To address this issue, a novel live AT micro-fragment-based bio-ink (ATmf bio-ink) compatible with precision 3D printing, is developed. Live AT micro-fragments of ≈280 µm in size are prepared using a custom tissue micronizer and they are incorporated into a fibrinogen/gelatin mixture to create the ATmf bio-ink. AT micro-fragments exhibit high viability and preserve the heterogeneous cell population and extracellular matrix of the native AT. The developed bio-ink enables precise micropatterning and provides an excellent adipo-inductive microenvironment. AT grafts produced by co-printing the bio-ink with polycaprolactone demonstrate a 500% improvement in volume retention and a 300% increase in blood vessel infiltration in vivo compared with conventional microfat grafts. In vivo engraftment of AT grafts is further enhanced by using a stem cell-laden ATmf bio-ink. Last, it is successfully demonstrated that the bio-ink is enabled for the creation of clinically relevant and patient-specific AT grafts for patients undergoing partial mastectomy. This novel ATmf bio-ink for volumetric soft tissue reconstruction offers a pioneering solution for addressing the limitations of existing clinical techniques.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Jeonghyun Son
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jeonghan Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Jonghyeuk Han
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seunggyu Jeon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Won Ha
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| |
Collapse
|
5
|
Bonomi F, Limido E, Weinzierl A, Ampofo E, Harder Y, Menger MD, Laschke MW. Nanofat Improves Vascularization and Tissue Integration of Dermal Substitutes without Affecting Their Biocompatibility. J Funct Biomater 2024; 15:294. [PMID: 39452592 PMCID: PMC11508499 DOI: 10.3390/jfb15100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Dermal substitutes require sufficient tissue integration and vascularization to be successfully covered with split-thickness skin grafts. To rapidly achieve this, we provide the proof of principle for a novel vascularization strategy with high translational potential. Nanofat was generated from subcutaneous adipose tissue of green fluorescence protein (GFP)+ C57BL/6J donor mice and seeded onto small samples (4 mm in diameter) of the clinically approved dermal substitute Integra®. These samples and non-seeded controls were then implanted into full-thickness skin defects in the dorsal skinfold chamber of C57BL/6J wild-type mice and analyzed by intravital fluorescence microscopy, histology and immunohistochemistry over a 14-day period. Nanofat-seeded dermal substitutes exhibited an accelerated vascularization, as indicated by a significantly higher functional microvessel density on days 10 and 14 when compared to controls. This was primarily caused by the reassembly of GFP+ microvascular fragments inside the nanofat into microvascular networks. The improved vascularization promoted integration of the implants into the surrounding host tissue, which finally exhibited an increased formation of a collagen-rich granulation tissue. There were no marked differences in the inflammatory host tissue reaction to nanofat-seeded and control implants. These findings demonstrate that nanofat significantly improves the in vivo performance of dermal substitutes without affecting their biocompatibility.
Collapse
Affiliation(s)
- Francesca Bonomi
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Surgery, Ospedale Beata Vergine Mendrisio, Ente Ospedaliero Cantonale (EOC), 6850 Mendrisio, Switzerland
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), 1005 Lausanne, Switzerland;
- Faculty of Biology and Medicine, University of Lausanne (UNIL), 1005 Lausanne, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (F.B.); (E.L.); (A.W.); (E.A.); (M.D.M.)
| |
Collapse
|
6
|
D'Souza RS, Her YF, Hussain N, Karri J, Schatman ME, Calodney AK, Lam C, Buchheit T, Boettcher BJ, Chang Chien GC, Pritzlaff SG, Centeno C, Shapiro SA, Klasova J, Grider JS, Hubbard R, Ege E, Johnson S, Epstein MH, Kubrova E, Ramadan ME, Moreira AM, Vardhan S, Eshraghi Y, Javed S, Abdullah NM, Christo PJ, Diwan S, Hassett LC, Sayed D, Deer TR. Evidence-Based Clinical Practice Guidelines on Regenerative Medicine Treatment for Chronic Pain: A Consensus Report from a Multispecialty Working Group. J Pain Res 2024; 17:2951-3001. [PMID: 39282657 PMCID: PMC11402349 DOI: 10.2147/jpr.s480559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Injectable biologics have not only been described and developed to treat dermal wounds, cardiovascular disease, and cancer, but have also been reported to treat chronic pain conditions. Despite emerging evidence supporting regenerative medicine therapy for pain, many aspects remain controversial. Methods The American Society of Pain and Neuroscience (ASPN) identified the educational need for an evidence-based guideline on regenerative medicine therapy for chronic pain. The executive board nominated experts spanning multiple specialties including anesthesiology, physical medicine and rehabilitation, and sports medicine based on expertise, publications, research, and clinical practice. A steering committee selected preliminary questions, which were reviewed and refined. Evidence was appraised using the United States Preventive Services Task Force (USPSTF) criteria for evidence level and degree of recommendation. Using a modified Delphi approach, consensus points were distributed to all collaborators and each collaborator voted on each point. If collaborators provided a decision of "disagree" or "abstain", they were invited to provide a rationale in a non-blinded fashion to the committee chair, who incorporated the respective comments and distributed revised versions to the committee until consensus was achieved. Results Sixteen questions were selected for guideline development. Questions that were addressed included type of injectable biologics and mechanism, evidence in treating chronic pain indications (eg, tendinopathy, muscular pathology, osteoarthritis, intervertebral disc disease, neuropathic pain), role in surgical augmentation, dosing, comparative efficacy between injectable biologics, peri-procedural practices to optimize therapeutic response and quality of injectate, federal regulations, and complications with mitigating strategies. Conclusion In well-selected individuals with certain chronic pain indications, use of injectable biologics may provide superior analgesia, functionality, and/or quality of life compared to conventional medical management or placebo. Future high-quality randomized clinical trials are warranted with implementation of minimum reporting standards, standardization of preparation protocols, investigation of dose-response associations, and comparative analysis between different injectable biologics.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yeng F Her
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nasir Hussain
- Department of Anesthesiology, The Ohio State Wexner Medical Center, Columbus, OH, USA
| | - Jay Karri
- Departments of Orthopedic Surgery and Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, & Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Christopher Lam
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas Buchheit
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Brennan J Boettcher
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | - Scott G Pritzlaff
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Shane A Shapiro
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Johana Klasova
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay S Grider
- Department of Anesthesiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ryan Hubbard
- Department of Sports Medicine, Anderson Orthopedic Clinic, Arlington, VA, USA
| | - Eliana Ege
- Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Shelby Johnson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Max H Epstein
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Mohamed Ehab Ramadan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Alexandra Michelle Moreira
- Department of Physical Medicine & Rehabilitation, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Swarnima Vardhan
- Department of Internal Medicine, Yale New Haven Health - Bridgeport Hospital, Bridgeport, CT, USA
| | - Yashar Eshraghi
- Department of Anesthesiology & Critical Care Medicine, Ochsner Health System, New Orleans, LA, USA
| | - Saba Javed
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Newaj M Abdullah
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sudhir Diwan
- Department of Pain Medicine, Advanced Spine on Park Avenue, New York City, NY, USA
| | | | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Timothy R Deer
- Department of Anesthesiology and Pain Medicine, West Virginia University School of Medicine, Charleston, WV, USA
| |
Collapse
|
7
|
Tonnard PL, Verpaele AM. Discussion: Effects of Nanofat in Plastic and Reconstructive Surgery: A Systematic Review. Plast Reconstr Surg 2024; 154:465e-469e. [PMID: 39196864 DOI: 10.1097/prs.0000000000011443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
|
8
|
Tran VVT, Jin X, Hong KY, Chang H. Effects of Nanofat in Plastic and Reconstructive Surgery: A Systematic Review. Plast Reconstr Surg 2024; 154:451e-464e. [PMID: 37400953 DOI: 10.1097/prs.0000000000010905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
BACKGROUND Since nanofat was first introduced by Tonnard in 2013, numerous studies have reported positive findings with its use; however, concerns exist regarding its effects and mechanisms, and the various methods used to generate nanofat also remain unclear. The authors conducted a systematic review to evaluate the efficacy of nanofat grafting alone in plastic and reconstructive surgery. METHODS The MEDLINE, Embase, Cochrane Central, Web of Science, and Scopus databases were searched for studies related to the use of nanofat grafting alone in plastic and reconstructive surgery. Outcomes of interest were all clinical results in humans or animals. RESULTS Twelve studies were included. No meta-analysis was conducted due to the clinical heterogeneity of the studies. In general, included studies had a low level of evidence. Six studies ( n = 253 patients) showed significant improvements in scar characteristics based on Patient and Observer Scar Assessment Scale, FACE-Q scale, physician assessment, patient satisfaction, and Vancouver Scar Scale scores. Four studies described the benefits of nanofat in skin rejuvenation (wrinkles, fine rhytides, pigmentation, and discoloration) through photographs, questionnaires, and indentation indices. Histologic evaluation illustrated overall increases in skin thickness, collagen, and elastic fibers. Three experimental studies showed the beneficial effects of nanofat on fat grafting, diabetic wound healing, and hair growth, with compelling histological evidence. No severe complication was reported. CONCLUSIONS Nanofat grafting shows potential benefits in scar and antiaging treatments, with conclusive histological evidence. Clinical studies of fat grafting, wound healing, and hair growth should be conducted, based on the results of this systematic review. Nanofat grafting could be a practical and safe procedure.
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- From the Hi-Tech Center, Vinmec Healthcare System
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Xian Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine
| |
Collapse
|
9
|
Jeyaraman N, Shrivastava S, Ravi VR, Nallakumarasamy A, Pundkar A, Jeyaraman M. Understanding and controlling the variables for stromal vascular fraction therapy. World J Stem Cells 2024; 16:784-798. [PMID: 39219728 PMCID: PMC11362852 DOI: 10.4252/wjsc.v16.i8.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/13/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024] Open
Abstract
In regenerative medicine, the isolation of mesenchymal stromal cells (MSCs) from the adipose tissue's stromal vascular fraction (SVF) is a critical area of study. Our review meticulously examines the isolation process of MSCs, starting with the extraction of adipose tissue. The choice of liposuction technique, anatomical site, and immediate processing are essential to maintain cell functionality. We delve into the intricacies of enzymatic digestion, emphasizing the fine-tuning of enzyme concentrations to maximize cell yield while preventing harm. The review then outlines the filtration and centrifugation techniques necessary for isolating a purified SVF, alongside cell viability assessments like flow cytometry, which are vital for confirming the efficacy of the isolated MSCs. We discuss the advantages and drawbacks of using autologous vs allogeneic SVF sources, touching upon immunocompatibility and logistical considerations, as well as the variability inherent in donor-derived cells. Anesthesia choices, the selection between hypodermic needles vs liposuction cannulas, and the role of adipose tissue lysers in achieving cellular dissociation are evaluated for their impact on SVF isolation. Centrifugation protocols are also analyzed for their part in ensuring the integrity of the SVF. The necessity for standardized MSC isolation protocols is highlighted, promoting reproducibility and successful clinical application. We encourage ongoing research to deepen the understanding of MSC biology and therapeutic action, aiming to further the field of regenerative medicine. The review concludes with a call for rigorous research, interdisciplinary collaboration, and strict adherence to ethical and regulatory standards to safeguard patient safety and optimize treatment outcomes with MSCs.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - V R Ravi
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Aditya Pundkar
- Department of Orthopaedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
10
|
Tiryaki KT, Canikyan S, Woods J, Sterodimas A, Gentile P, Cohen S, Andjelkov K, Schlaudraff KU, Siolo E, Kul Y, Duyan C. AI-enhanced "Two-thirds Guidelines" for Lipolifting: Addressing Multiple Hallmarks of Facial Aging. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e6060. [PMID: 39171244 PMCID: PMC11338263 DOI: 10.1097/gox.0000000000006060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 08/23/2024]
Abstract
Background Facial aging involves complex changes such as volume loss, ligament weakening, and skin quality alterations. The "two-thirds guidelines" emerge as a novel strategy to combat these aging signs, drawing from an extensive analysis of 2800 facial fat grafting procedures conducted over two decades. Methods Guided by facial lipolifting data, including patient age, fat type (microfat and nanofat), and injection depth, this study devises a systematic framework for multilayer fat rejuvenation and ligament restoration. The two-thirds guidelines advocate injecting two-thirds of the patient's age for microfat and one-third for nanofat, with specific injection codes for lower, middle, and upper facial regions. Results A prospective study involving 400 patients confirms the efficacy of the two-thirds guidelines. However, applicability may vary for patients outside SD ranges, particularly concerning facial proportions and body mass index. Patients within the golden ratio range (1.4-1.9) report high satisfaction rates and a 50% fat graft uptake, with minimal complications. For patients outside this range, an artificial intelligence (AI) program was implemented. Conclusions The two-thirds guidelines offer a comprehensive approach to facial rejuvenation, addressing volume loss, ligament weakening, and skin quality. They are applicable in early aging stages, promising enduring and natural outcomes while mitigating effects of weight fluctuations. These guidelines provide a safe, replicable, and adaptable approach to facial fat grafting, either standalone or in combination with facelift techniques, with minimized overfilling risks. A dataset obtained from 2800 patients serves as the foundation for developing an AI program tailored to aid doctors in diagnosing and treating similar cases.
Collapse
Affiliation(s)
- Kemal Tunç Tiryaki
- From the Department of Plastic and Reconstructive Surgery, Cadogan Clinic, London, United Kingdom
| | - Serli Canikyan
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Jack Woods
- From the Department of Plastic and Reconstructive Surgery, Cadogan Clinic, London, United Kingdom
| | - Aris Sterodimas
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Pietro Gentile
- Department of Plastic and Reconstructive Surgery, University “Tor Vergata,” Rome, Italy
| | - Steven Cohen
- Department of Plastic Surgery, University of California, San Diego, Calif
| | - Katarina Andjelkov
- Faculty of Medicine, University of Belgrade and BelPrime Clinic, Belgrade Serbia
| | - Kai-Uwe Schlaudraff
- Department of Plastic and Reconstructive Surgery, Concept-Clinic, Geneva, Switzerland
| | - Eva Siolo
- Private Wellness Practice, Johannesburg, South Africa
| | - Yaren Kul
- Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Ceren Duyan
- Department of Research and Development, Lipocube Biotechnology, Istanbul, Turkey
| |
Collapse
|
11
|
Jin SE, Sung JH. Delivery Strategies of siRNA Therapeutics for Hair Loss Therapy. Int J Mol Sci 2024; 25:7612. [PMID: 39062852 PMCID: PMC11277092 DOI: 10.3390/ijms25147612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic needs for hair loss are intended to find small interfering ribonucleic acid (siRNA) therapeutics for breakthrough. Since naked siRNA is restricted to meet a druggable target in clinic,, delivery systems are indispensable to overcome intrinsic and pathophysiological barriers, enhancing targetability and persistency to ensure safety, efficacy, and effectiveness. Diverse carriers repurposed from small molecules to siRNA can be systematically or locally employed in hair loss therapy, followed by the adoption of new compositions associated with structural and environmental modification. The siRNA delivery systems have been extensively studied via conjugation or nanoparticle formulation to improve their fate in vitro and in vivo. In this review, we introduce clinically tunable siRNA delivery systems for hair loss based on design principles, after analyzing clinical trials in hair loss and currently approved siRNA therapeutics. We further discuss a strategic research framework for optimized siRNA delivery in hair loss from the scientific perspective of clinical translation.
Collapse
Affiliation(s)
- Su-Eon Jin
- Epi Biotech Co., Ltd., Incheon 21984, Republic of Korea
| | | |
Collapse
|
12
|
Limido E, Weinzierl A, Ampofo E, Harder Y, Menger MD, Laschke MW. Short-term cryoprotectant-free cryopreservation at -20°C does not affect the viability and regenerative capacity of nanofat. Front Bioeng Biotechnol 2024; 12:1427232. [PMID: 39011155 PMCID: PMC11246958 DOI: 10.3389/fbioe.2024.1427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Nanofat is an autologous fat derivative with high regenerative activity, which is usually administered immediately after its generation by mechanical emulsification of adipose tissue. For its potential repeated use over longer time, we herein tested whether cryopreservation of nanofat is feasible. For this purpose, the inguinal fat pads of donor mice were processed to nanofat, which was i) frozen and stored in a freezer at -20°C, ii) shock frozen in liquid nitrogen with subsequent storage at -80°C or iii) gradually frozen and stored at -80°C. After 7 days, the cryopreserved nanofat samples were thawed and immunohistochemically compared with freshly generated nanofat (control). Nanofat frozen and stored at -20°C exhibited the lowest apoptotic rate and highest densities of blood and lymph vessels, which were comparable to those of control. Accordingly, nanofat cryopreserved at -20°C or control nanofat were subsequently fixed with platelet-rich plasma in full-thickness skin defects within dorsal skinfold chambers of recipient mice to assess vascularization, formation of granulation tissue and wound closure by means of stereomicroscopy, intravital fluorescence microscopy, histology and immunohistochemistry over 14 days. These analyses revealed no marked differences between the healing capacity of wounds filled with cryopreserved or control nanofat. Therefore, it can be concluded that cryopreservation of nanofat is simply feasible without affecting its viability and regenerative potential. This may broaden the range of future nanofat applications, which would particularly benefit from repeated administration of this autologous biological product.
Collapse
Affiliation(s)
- Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
13
|
Roohaninasab M, Ahmadi M, Dehghani A, Zare S, Goodarzi A, Nouri M, Ebrahimi Z, Behrangi E, Nilforoushzadeh MA. The investigation and comparison of the efficacy and safety of stromal vascular fraction (SVF), platelet rich plasma (PRP), and 1064-nm Q-switched Nd:YAG laser in reducing nanofat treated infraorbital dark circles and wrinkles: A controlled blinded randomized clinical trial. Skin Res Technol 2024; 30:e13793. [PMID: 38899793 PMCID: PMC11187812 DOI: 10.1111/srt.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND To evaluate the efficacy and safety of stromal vascular fraction (SVF), platelet rich plasma (PRP), and 1064-nm Q-switched Nd:YAG laser in reducing nanofat treated dark circles and wrinkles under the eyes. METHOD This study was a single-blinded randomized clinical trial conducted on patients with suborbital darkening under the eyes that randomly divided into control and case groups. In the control group, 15 patients were treated with one session of nanofat injection only, and five patients of each intervention groups received one session of nanofat+SVF injection, nanofat+PRP injection, and nanofat injection+Nd:YAG laser, respectively. Assessments methods were (1) evaluation of the degree of darkness and repair under the eyes by a blinded dermatologist based on clinical photographs, (2) investigating patient satisfaction, (3) using biometric variables for color, thickness, and density of the skin (only 3 months after the treatment), and (4) recording the possible adverse effects. CONCLUSION In terms of the extent of reduction in the intensity of darkness under the eyes, the combined treatment of nanofat injection together with SVF, PRP, and Nd:YAG laser had a much greater therapeutic effect than nanofat injection alone. In all three groups of combined treatments, patients were 100% satisfied. In terms of biometric variables, amount of changes in colorimeter, complete and dermal thickness, complete and dermal density, between the different groups was statistically significant. The use of combined treatments including nanofat with SVF injection, PRP, and 1064 Q-switched Nd:YAG laser may be more effective than nanofat alone, in reducing infraorbital dark circles and wrinkles.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Marzieh Ahmadi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Abbas Dehghani
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Sona Zare
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Laser Application in Medical Sciences Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Stem Cell and Regenerative Medicine InstituteSharif University of TechnologyTehranIran
- Department of Mechanical EngineeringSharif University of TechnologyTehranIran
| | - Azadeh Goodarzi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Maryam Nouri
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Zahra Ebrahimi
- Department of General MedicineIran University of Medical SciencesTehranIran
| | - Elham Behrangi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC)School of MedicineIran University of Medical Sciences (IUMS)TehranIran
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research CenterTehran University of Medical SciencesTehranIran
- Skin Repair Research CenterJordan Dermatology and Hair Transplantation CenterTehranIran
| |
Collapse
|
14
|
Jeyaraman M, Jeyaraman N, Jayakumar T, Ramasubramanian S, Ranjan R, Jha SK, Gupta A. Efficacy of stromal vascular fraction for knee osteoarthritis: A prospective, single-centre, non-randomized study with 2 years follow-up. World J Orthop 2024; 15:457-468. [PMID: 38835682 PMCID: PMC11145973 DOI: 10.5312/wjo.v15.i5.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024] Open
Abstract
BACKGROUND Current osteoarthritis (OA) treatments focus on symptom relief without addressing the underlying disease process. In regenerative medicine, current treatments have limitations. In regenerative medicine, more research is needed for intra-articular stromal vascular fraction (SVF) injections in OA, including dosage optimization, long-term efficacy, safety, comparisons with other treatments, and mechanism exploration. AIM To compare the efficacy of intra-articular SVF with corticosteroid (ICS) injections in patients with primary knee OA. METHODS The study included 50 patients with Kellgren-Lawrence grades II and III OA. Patients were randomly assigned (1:1) to receive either a single intra-articular SVF injection (group A) or a single intra-articular ICS (triamcinolone) (group B) injection. Patients were followed up at 1, 3, 6, 12, and 24 months. Visual analog score (VAS) and International Knee Documentation Committee (IKDC) scores were administered before the procedure and at all follow-ups. The safety of SVF in terms of adverse and severe adverse events was recorded. Statistical analysis was performed with SPSS Version 26.0, IBM Corp, Chicago, IL, United States. RESULTS Both groups had similar demographics and baseline clinical characteristics. Follow-up showed minor patient loss, resulting in 23 and 24 in groups A and B respectively. Group A experienced a notable reduction in pain, with VAS scores decreasing from 7.7 to 2.4 over 24 months, compared to a minor reduction from 7.8 to 6.2 in Group B. This difference in pain reduction in group A was statistically significant from the third month onwards. Additionally, Group A showed significant improvements in knee functionality, with IKDC scores rising from 33.4 to 83.10, whereas Group B saw a modest increase from 36.7 to 45.16. The improvement in Group A was statistically significant from 6 months and maintained through 24 months. CONCLUSION Our study demonstrated that intra-articular administration of SVF can lead to reduced pain and improved knee function in patients with primary knee OA. More adequately powered, multi-center, double-blinded, randomised clinical trials with longer follow-ups are needed to further establish safety and justify its clinical use.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department of Orthopaedics and Regenerative Medicine, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077, India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, Telangana 500032, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu 600002, India
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
- Department of Zoology, Kalindi College, University of Delhi, New Delhi 110008, India
| | - Ashim Gupta
- Department of Orthopaedics and Regenerative Medicine, South Texas Orthopaedic Research Institute, Laredo, TX 78045, United States
- Department of Orthopaedics and Regenerative Medicine, Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Department of Orthopaedics and Regenerative Medicine, Future Biologics, Lawrenceville, GA 30043, United States
- Department of Orthopaedics and Regenerative Medicine, BioIntegrate, Lawrenceville, GA 30043, United States
| |
Collapse
|
15
|
Rageh MA, Ibrahim SMA, Abdallah N, Tawfik AA. Autologous Nanofat Injection Combined with Fractional CO2 Laser in the Treatment of Atrophic Acne Scars. Clin Cosmet Investig Dermatol 2024; 17:697-705. [PMID: 38524394 PMCID: PMC10961075 DOI: 10.2147/ccid.s454514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
Background Atrophic acne scarring is a widely prevalent condition and one of the most distressing complications of acne vulgaris. Numerous options with variable outcomes are available for the treatment of acne scarring. Laser is considered a first-line therapy for acne scars, and recently there has been a growing interest in using stem cells and their derivatives for treating acne scars. In addition, combined therapeutic modalities often achieve more satisfactory results than a single treatment. Objective We tried to evaluate the role of nanofat and fractional CO2 laser as a combined treatment approach for atrophic acne scarring. Methods Twenty-five patients with atrophic acne scarring were enrolled. They received a single session of intradermal nanofat injection, at different points 1 cm apart, for acne scars. Two weeks later, they were treated with three sessions of fractional CO2 laser at monthly intervals. Patients were evaluated three months after the last session using the quantitative Goodman and Baron scoring system. Pain, side effects, and patients' satisfaction were also evaluated. Results There were two males and 23 females with a mean age of 25.96 years. Their skin type ranged between Fitzpatrick skin type III, IV, and V. Boxcar scars were the most common scar type in 13 patients (52%). After treatment, there was a significant reduction (p <0.05) in the quantitative Goodman and Baron scores. The improvement was more evident in rolling scars. Seven patients reported significant improvement, and 12 reported marked improvement. Conclusion This study showed that combining nanofat and fractional CO2 laser is a safe and effective treatment modality for atrophic acne scars.
Collapse
Affiliation(s)
- Mahmoud A Rageh
- Department of Dermatology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Noha Abdallah
- Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| | - Abeer Attia Tawfik
- Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
16
|
Ali HA, Hadi HA. Can the Autogenous Nanofat Injection Improve the Symptoms of Patients With Temporomandibular Joint Internal Derangement? A Prospective Observational Clinical Study. J Craniofac Surg 2024; 35:519-523. [PMID: 37955518 DOI: 10.1097/scs.0000000000009820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 11/14/2023] Open
Abstract
Since nanofat is considered one of the richest sources of adipose-derived stem cells with an increased need for new biological approaches for managing temporomandibular joint internal derangement (TMJ-ID) symptoms that impair a patient's lifestyle, this study evaluated the effectiveness of autogenous nanofat intra-articular injection in managing ID symptoms regarding pain, mouth opening, and joint sound. Furthermore, to assess the consequences and complications of this procedure, 20 patients with 38 TMJs with varying stages of Wilkes classification were included in the study. All involved patients were previously diagnosed with ID depending on a clinical and radiographical basis and had no previous response to conservative management for at least 4 to 6 months. Evaluation of the ID in the preoperative phase, as well as 2 weeks, 1 month, 3 months, and 6 months postoperatively. An evaluation was done depending on pain assessment using a visual analog scale (VAS), measuring maximum mouth opening (MMO) and joint noise if it was present or absent preoperatively and postoperatively. The results show improvement in the symptoms in all follow-up appointments since the VAS of pain decreased significantly with increased MMO and the absence of clicking in most cases during follow-up appointments. We conclude from this study that nanofat intra-articular injection was influential in managing ID symptoms and was safe without significant side effects.
Collapse
Affiliation(s)
- Huda Akram Ali
- Department of Oral and Maxillofacial Surgery, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
17
|
Tran VVT, Hong KY, Jin X, Chang H. Histological Comparison of Nanofat and Lipoconcentrate: Enhanced Effects of Lipoconcentrate on Adipogenesis and Angiogenesis. Aesthetic Plast Surg 2024; 48:752-763. [PMID: 37648930 DOI: 10.1007/s00266-023-03583-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Nanofat and lipoconcentrate contain adipose-derived stem cells and growth factors, and have wide clinical applications in the regenerative field. This study aimed to investigate the microenvironmental changes associated with nanofat and lipoconcentrate. METHODS Conventional fat, nanofat, or lipoconcentrate (0.2 mL each, n = 5 per group) were injected subcutaneously into the dorsal flanks of athymic nude mice. The graft weights were measured at postoperative week 4; the grafts and their overlying skin were used for histological analyses. RESULTS Weights of the lipoconcentrate grafts were significantly greater than those of the conventional fat (p < 0.05) and nanofat (p < 0.01) grafts. There was no significant difference in inflammation, oil cysts, and fibrosis between the conventional fat and nanofat groups. Histological examination of the lipoconcentrate grafts showed less macrophage infiltration and the formation of fibrosis and oil cysts. Additionally, adipogenesis and angiogenesis were induced more in the lipoconcentrate grafts than in the nanofat grafts (p < 0.01). Lipoconcentrate and nanofat improved dermal thickness (p < 0.001 and p < 0.01, respectively, versus the baseline). CONCLUSION Lipoconcentrate grafts had greater volume and shape retention than conventional fat and nanofat grafts. They had better histological structure and acted as scaffolds for adipogenesis and angiogenesis. Both products showed regenerative effects on dermal thickness; however, only lipoconcentrate grafts had the required volume and regenerative effects, allowing it to serve as a novel adipose-free grafting method for facial rejuvenation and contouring. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Vinh Vuong The Tran
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Yong Hong
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Xian Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Chang
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
18
|
Limido E, Weinzierl A, Ampofo E, Harder Y, Menger MD, Laschke MW. Nanofat Accelerates and Improves the Vascularization, Lymphatic Drainage and Healing of Full-Thickness Murine Skin Wounds. Int J Mol Sci 2024; 25:851. [PMID: 38255932 PMCID: PMC10815416 DOI: 10.3390/ijms25020851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The treatment of wounds using the body's own resources is a promising approach to support the physiological regenerative process. To advance this concept, we evaluated the effect of nanofat (NF) on wound healing. For this purpose, full-thickness skin defects were created in dorsal skinfold chambers of wild-type mice. These defects were filled with NF generated from the inguinal subcutaneous adipose tissue of green fluorescent protein (GFP)+ donor mice, which was stabilized using platelet-rich plasma (PRP). Empty wounds and wounds solely filled with PRP served as controls. Wound closure, vascularization and formation of granulation tissue were repeatedly analyzed using stereomicroscopy, intravital fluorescence microscopy, histology and immunohistochemistry over an observation period of 14 days. PRP + NF-treated wounds exhibited accelerated vascularization and wound closure when compared to controls. This was primarily due to the fact that the grafted NF contained a substantial fraction of viable GFP+ vascular and lymph vessel fragments, which interconnected with the GFP- vessels of the host tissue. Moreover, the switch from inflammatory M1- to regenerative M2-polarized macrophages was promoted in PRP + NF-treated wounds. These findings indicate that NF markedly accelerates and improves the wound healing process and, thus, represents a promising autologous product for future wound management.
Collapse
Affiliation(s)
- Ettore Limido
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Andrea Weinzierl
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Yves Harder
- Department of Plastic, Reconstructive and Aesthetic Surgery, Ospedale Regionale di Lugano, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany; (E.L.); (A.W.); (E.A.); (M.D.M.)
| |
Collapse
|
19
|
Sun Y, Wu G, Dai T, Li S, Cao W, Dai T. Stromal Vascular Fraction Gel (SVF-Gel) Combined with Nanofat for Tear Trough Deformity. Aesthetic Plast Surg 2024; 48:213-220. [PMID: 37957391 DOI: 10.1007/s00266-023-03698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/20/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Tear trough deformity makes patients appear tired. Patients with less severe tear trough deformity prefer a less invasive method to correct the deformity. The infraorbital area is a multilayered tissue, and the aging of various components leads to tear trough deformity. To this end, we utilized the different characteristics of different fat derivatives to correct tear trough deformity. METHODS Thirty-two patients with Barton Grade I/II tear trough deformity were enrolled in this study between September 2020 and March 2021. We injected Stromal Vascular Fraction Gel (SVF-Gel) into the suborbicularis oculi fat layer and Nanofat into the subcutaneous. After 12 months of follow-up, we evaluated the changes using standardized clinical photogrammetric techniques, volume, global aesthetic improvement scale, and patient self-evaluation. RESULTS There were no major complications in any of the 32 patients. The measured data points demonstrated improvements in all aesthetic parameters. The width of the tear trough and the distance from the pupil to the tear trough improved. The Global Aesthetic Improvement Scale (GAIS) showed a high score (2.45±0.64 points), with patient self-assessment showing satisfactory results. CONCLUSION SVF-Gel combined with Nanofat injection can effectively correct tear trough deformities. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yiyu Sun
- Department of Wound Reconstructive Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Gaoyang Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, China
| | - Tao Dai
- Department of Wound Reconstructive Surgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Shengli Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, China
| | - Weigang Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, China.
| | - Tingting Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, China.
| |
Collapse
|
20
|
Talei B, Ziai H. PHAT Lips and PHAT Face: Platelet Hybridized Adipose Therapy for Superficial Musculoaponeurotic System and Dermal Rejuvenation. Facial Plast Surg 2023. [PMID: 37816491 DOI: 10.1055/a-2188-8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Platelet-rich plasma has been increasingly used for facial rejuvenation in conjunction with other modalities such as microneedling or on its own. Nanofat grafting to the face has also been utilized for skin quality improvements. Our group previously described the novel combined Platelet Hybridized Adipose Transplant (PHAT) technique for hair restoration. In this series, we describe our experience with the PHAT technique for lip and facial rejuvenation to improve the quality of facial skin and superficial musculoaponeurotic system, and enhancing surgical results.
Collapse
Affiliation(s)
- Benjamin Talei
- Beverly Hills Center for Facial Plastic Surgery, Beverly Hills, California
| | - Hedyeh Ziai
- Beverly Hills Center for Facial Plastic Surgery, Beverly Hills, California
| |
Collapse
|
21
|
Tantuway V, Thomas W, Parikh MB, Sharma R, Jeyaraman N, Jeyaraman M. Clinical Outcome of Minimally Manipulated, Mechanically Isolated Autologous Adipose Tissue-Derived Stromal Vascular Fraction (Sahaj Therapy®) in Knee Osteoarthritis-Randomized Controlled Trial. Indian J Orthop 2023; 57:1646-1658. [PMID: 37766954 PMCID: PMC10519910 DOI: 10.1007/s43465-023-00981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Introduction Regenerative therapy has shown promising results in the treatment of osteoarthritis (OA) knee with Kellgren-Lawrence (KL) Grades I-III. We compared the safety, efficacy, functional, and clinical outcomes of intra-articular implantation of autologous adipose tissue-derived stromal vascular fraction (SVF) isolated using direct ultrasonic cavitation (Sahaj therapy-Cell Innovation Patented Technology) and saline injection in knee osteoarthritis. Materials and Methods The present prospective observational study was conducted over 3 years. We enrolled 120 patients in our study, where four patients got excluded as they did not meet the inclusion criteria. The remaining 116 patients were randomized into two groups, one with autologous adipose tissue-derived SVF and the other group with saline injection. A comparison of mean KOOS and VAS scores at different follow-ups was done using Paired 't' test. A p value of < 0.05 was considered significant. Results The results show that the SVF group had significantly higher KOOS scores (78.49 ± 6.54 in the SVF group vs 59.19 ± 5.14 in the saline group), respectively (p < 0.001). Similarly, the SVF group had significantly lesser VAS scores (3.17 ± 0.94 in the SVF group vs 3.89 ± 1.04 in the saline group), respectively (p < 0.001). Conclusions Autologous adipose tissue-derived SVF is a better choice for treating knee osteoarthritis. For individuals with degenerative osteoarthritis, autologous SVF grafting in the same surgical procedure is an innovative and promising treatment modality. Even after 3 years of follow-up, the study participants with OA knee have shown a good clinical and functional outcome.
Collapse
Affiliation(s)
- Vinay Tantuway
- Department of Orthopaedics & Traumatology, Index Medical College Hospital and Research Centre, Indore, Madhya Pradesh India
| | - Wayne Thomas
- Department of Tumor Immunology, The University of Newcastle, Callaghan, Australia
| | - Mittal B. Parikh
- Department of Orthopaedics, Navjivan Hospital, Ahmedabad, Gujarat India
| | - Raj Sharma
- Sahaj Regenerative Cell Therapeutics, Indore, Madhya Pradesh India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu India
| |
Collapse
|
22
|
La Padula S, Ponzo M, Lombardi M, Iazzetta V, Errico C, Polverino G, Russo F, D'Andrea L, Hersant B, Meningaud JP, Salzano G, Pensato R. Nanofat in Plastic Reconstructive, Regenerative, and Aesthetic Surgery: A Review of Advancements in Face-Focused Applications. J Clin Med 2023; 12:4351. [PMID: 37445386 DOI: 10.3390/jcm12134351] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nanofat is a relatively novel technique in fat grafting that has gained significant interest in the fields of regenerative medicine, aesthetic and translational research. It involves the extraction of autologous fat from a patient, which is then transformed into "nanofat", consisting of small fat particles with a diameter of less than 0.1 mm and containing high concentrations of stem cells and growth factors. This article focuses on the use of nanofat in facial rejuvenation and its potential for lipomodelling. Fat tissue is a "stem cell depot" and nanofat contains many stem cells that can differentiate into various cell types. The Lipogem technology, developed in 2013, enables the isolation of nanofat with an intact perivascular structure, utilizing the high concentration of mesenchymal stromal cells near the pericytes of the adipose vascular system. Nowadays nanofat is used primarily for cosmetic purposes particularly in rejuvenating and improving the appearance of the skin, especially the face. Indeed, it has wide applicability; it can be used to treat fine lines, wrinkles, acne scars, sun-damaged skin, scar repair, and as an alopecia treatment. However, further studies are needed to assess the long-term efficacy and safety of this technique. In conclusion, nanofat is a safe and minimally invasive option for tissue regeneration with considerable therapeutic potential. This study reviews the application and effects of nanofat in regenerative medicine and facial cosmetic surgery.
Collapse
Affiliation(s)
- Simone La Padula
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, Henri Mondor Hospital, University Paris, XII, 51 Avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Martina Ponzo
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Mariagiovanna Lombardi
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Vincenzo Iazzetta
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Concetta Errico
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Gianmarco Polverino
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Francesca Russo
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Luca D'Andrea
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| | - Barbara Hersant
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, Henri Mondor Hospital, University Paris, XII, 51 Avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Jean Paul Meningaud
- Department of Plastic, Reconstructive and Maxillo-Facial Surgery, Henri Mondor Hospital, University Paris, XII, 51 Avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Giovanni Salzano
- Maxillofacial Surgery Unit, Federico II University of Naples, 80131 Naples, Italy
| | - Rosita Pensato
- Department of Plastic and Reconstructive Surgery, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
23
|
Ambrosio L, Russo F, Catapano S, Papalia GF, Vadalà G, Papalia R, Denaro V. An Innovative Surgical Technique to Obtain an Adipose-Derived Stromal Cell-Rich Graft for the Treatment of Osteoarthritis: Technical Note. SURGICAL TECHNIQUES DEVELOPMENT 2023. [DOI: 10.3390/std12020005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Osteoarthritis (OA) is one of the main causes of disability worldwide and is caused by the progressive degeneration of joint tissues, ultimately leading to chronic pain and loss of function. Intraarticular delivery of mesenchymal stromal cells, such as adipose-derived stromal cells (ASCs), is being actively investigated due to their trophic properties observed in both preclinical and clinical studies. However, cell expansion and handling involve costly and time-consuming processes that limit their application. Recently, several devices and kits have been developed to isolate and process the stromal vascular fraction (SVF), a high biologically active compound of the adipose tissue, right at the patient’s bedside. In this study, we introduce a novel technique to obtain an SVF graft with a high content of ASCs for intraarticular injection directly from liposuction and with minimal equipment. In this technical note, we describe in detail the steps of the surgical technique as well as strategies to avoid common pitfalls and complications.
Collapse
|
24
|
Efficacy of Platelet-Rich Plasma Versus Autologous Fat Transfer With Nanofat in the Treatment of Infraorbital Dark Circles: A Single-Blinded Randomized Comparative Clinical Trial. Dermatol Surg 2023; 49:247-252. [PMID: 36735798 DOI: 10.1097/dss.0000000000003697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Treating infraorbital dark circles is one of the commonest aesthetic demands worldwide. Autologous fat transfer is commonly used to treat dark circles by filling the grooves, without effect on skin quality. Platelet-rich plasma has been reported to improve skin quality. Autologous fat can be emulsified and filtered to produce nanofat, which is then injected superficially in the dark circles to improve skin quality and discoloration. OBJECTIVE To compare the efficacy of platelet-rich plasma versus combined fat transfer and nanofat in treating infraorbital dark circles. MATERIALS AND METHODS 30 patients with infraorbital dark circles of combined etiological factors were randomized into 2 equal groups: Group A treated with platelet-rich plasma and Group B treated with autologous fat transfer with emulsified fat injection. RESULTS Excellent and moderate responses were observed in 3 (20%) and 2 (13%) patients in group A versus 7 (46.7%) and 4 (27%) in group B, respectively. Nonresponders were 8 (53.3%) in group A and only 1 patient (6.7%) in group B. The difference was statistically significant regarding improvement ( p = .048) and patient satisfaction ( p = .032). CONCLUSION Autologous fat transfer with nanofat is significantly superior to platelet-rich plasma in improvement and satisfaction.
Collapse
|
25
|
Balaji SM. Adipocyte-derived Stem Cells in Facial Surgery. Ann Maxillofac Surg 2022; 12:121-122. [PMID: 36874782 PMCID: PMC9976860 DOI: 10.4103/ams.ams_220_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- S M Balaji
- Department of Oral and Maxillofacial Surgery, Balaji Dental and Craniofacial Hospital, Chennai, Tamil Nadu, India. E-mail:
| |
Collapse
|
26
|
Li YT, Chang WH, Wang PH. New strategies accelerate the path to overcome refractory interstitial cystitis. J Chin Med Assoc 2022; 85:665-666. [PMID: 35687138 DOI: 10.1097/jcma.0000000000000733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yiu-Tai Li
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan, ROC
| | - Wen-Hsun Chang
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University
- Female Cancer Foundation, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
27
|
Hung MJ, Tsai CP, Ying TH, Chen GD, Su HL, Tseng CJ. Improved symptoms and signs of refractory interstitial cystitis in women after intravesical Nanofat plus platelet-rich plasma grafting: A pilot study. J Chin Med Assoc 2022; 85:730-735. [PMID: 35507021 DOI: 10.1097/jcma.0000000000000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by bladder pain accompanied by irritative urinary symptoms, and typical cystoscopic and histological features. In this pilot study, we assessed the impact of lesion-targeted bladder injection therapy using a biocellular regenerative medicine on patients with refractory IC/BPS. The medicine, which was an autologous emulsified fat (Nanofat) and platelet-rich plasma (PRP) combination, was prepared intraoperatively. Six patients (aged 40-54 years), who completed a standard protocol of four consecutive treatments at 3-month intervals, were followed up at 6 months postoperatively. All patients (100%) reported marked (+3; +3 ~ -3) improvement of their overall bladder conditions. Mean bladder pain (from 8.2 to 1.7; range: 0 ~ 10), IC-related symptoms (from 18.5 to 5.7; range: 0 ~ 20), and bother (from 14.8 to 3.8; range: 0 ~ 16) improved significantly (p < 0.01). The normalization of bladder mucosal morphology with treatments was remarkable under cystoscopic examination, and no significant adverse events were found. The cultured mesenchymal stem cells from Nanofat samples of the six patients were verified in vitro. Our preliminary results suggest novel intravesical therapy with autologous Nanofat plus PRP grafting is safe and effective for refractory IC/BPS. Surgical efficacy might be attributed to an in vivo tissue engineering process.
Collapse
Affiliation(s)
- Man-Jung Hung
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Department of Obstetrics and Gynecology, School of Medicine, Colleague of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Ching-Pei Tsai
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Department of Obstetrics and Gynecology, School of Medicine, Colleague of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Department of Obstetrics and Gynecology, School of Medicine, Colleague of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chih-Jen Tseng
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Department of Obstetrics and Gynecology, School of Medicine, Colleague of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| |
Collapse
|