1
|
Wang Y, Zong Y, Chen W, Diao N, Zhao Q, Li C, Jia B, Zhang M, Li J, Zhao Y, Du R, He Z. Decellularized Antler Cancellous Bone Matrix Material Can Serve as Potential Bone Tissue Scaffold. Biomolecules 2024; 14:907. [PMID: 39199295 PMCID: PMC11353137 DOI: 10.3390/biom14080907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Due to the limited supply of autologous bone grafts, there is a need to develop more bone matrix materials to repair bone defects. Xenograft bone is expected to be used for clinical treatment due to its exact structural similarity to natural bone and its high biocompatibility. In this study, decellularized antler cancellous bone matrix (DACB) was first prepared, and then the extent of decellularization of DACB was verified by histological staining, which demonstrated that it retained the extracellular matrix (ECM). The bioactivity of DACB was assessed using C3H10T1/2 cells, revealing that DACB enhanced cell proliferation and facilitated cell adhesion and osteogenic differentiation. When evaluated by implanting DACB into nude mice, there were no signs of necrosis or inflammation in the epidermal tissues. The bone repair effect of DACB was verified in vivo using sika deer during the antler growth period as an animal model, and the molecular mechanisms of bone repair were further evaluated by transcriptomic analysis of the regenerated tissues. Our findings suggest that the low immunogenicity of DACB enhances the production of bone extracellular matrix components, leading to effective osseointegration between bone and DACB. This study provides a new reference for solving bone defects.
Collapse
Affiliation(s)
- Yusu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Naichao Diao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Quanmin Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Chunyi Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun 130112, China
| | - Boyin Jia
- College of Animal Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Miao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (Y.Z.); (W.C.); (N.D.); (Q.Z.); (C.L.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
2
|
Cavallini C, Olivi E, Tassinari R, Zannini C, Ragazzini G, Marcuzzi M, Taglioli V, Ventura C. Deer antler stem cell niche: An interesting perspective. World J Stem Cells 2024; 16:479-485. [PMID: 38817324 PMCID: PMC11135255 DOI: 10.4252/wjsc.v16.i5.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
In recent years, there has been considerable exploration into methods aimed at enhancing the regenerative capacity of transplanted and/or tissue-resident cells. Biomaterials, in particular, have garnered significant interest for their potential to serve as natural scaffolds for cells. In this editorial, we provide commentary on the study by Wang et al, in a recently published issue of World J Stem Cells, which investigates the use of a decellularized xenogeneic extracellular matrix (ECM) derived from antler stem cells for repairing osteochondral defects in rat knee joints. Our focus lies specifically on the crucial role of biological scaffolds as a strategy for augmenting stem cell potential and regenerative capabilities, thanks to the establishment of a favorable microenvironment (niche). Stem cell differentiation heavily depends on exposure to intrinsic properties of the ECM, including its chemical and protein composition, as well as the mechanical forces it can generate. Collectively, these physicochemical cues contribute to a bio-instructive signaling environment that offers tissue-specific guidance for achieving effective repair and regeneration. The interest in mechanobiology, often conceptualized as a form of "structural memory", is steadily gaining more validation and momentum, especially in light of findings such as these.
Collapse
Affiliation(s)
- Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Bologna 40128, Italy
- Eldor Lab, Bologna 40128, Italy
| | | | | | | | | | - Martina Marcuzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna 40138, Italy
| | | | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Bologna 40128, Italy.
| |
Collapse
|
3
|
Sulakhiya K, Soni P, Tembhre MK, Kungumaraj HJ, Paliwal R, Kumar S. Physiology and pharmacology of wounds. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:21-54. [DOI: 10.1016/b978-0-323-99165-0.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Liu Q, Li J, Chang J, Guo Y, Wen D. The characteristics and medical applications of antler stem cells. Stem Cell Res Ther 2023; 14:225. [PMID: 37649124 PMCID: PMC10468909 DOI: 10.1186/s13287-023-03456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Antlers are the only fully regenerable mammalian appendages whose annual renewal is initiated by antler stem cells (ASCs), defined as a specialized type of mesenchymal stem cells (MSCs) with embryonic stem cell properties. ASCs possess the same biological features as MSCs, including the capacity for self-renewal and multidirectional differentiation, immunomodulatory functions, and the maintenance of stem cell characteristics after multiple passages. Several preclinical studies have shown that ASCs exhibit promising potential in wound healing, bone repair, osteoarthritis, anti-tissue fibrosis, anti-aging, and hair regeneration. Medical applications based on ASCs and ASC-derived molecules provide a new source of stem cells and therapeutic modalities for regenerative medicine. This review begins with a brief description of antler regeneration and the role of ASCs. Then, the properties and advantages of ASCs are described. Finally, medical research advances regarding ASCs are summarized, and the prospects and challenges of ASCs are highlighted.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Chang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Kim HR, Lee SH, Noh EM, Choi B, Seo HY, Jang H, Kim SY, Park MH. Therapeutic Effect of Enzymatically Hydrolyzed Cervi Cornu Collagen NP-2007 and Potential for Application in Osteoarthritis Treatment. Int J Mol Sci 2023; 24:11667. [PMID: 37511425 PMCID: PMC10380990 DOI: 10.3390/ijms241411667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Cervi cornu extracts have been used in traditional medicine for the treatment of various disorders, including osteoporosis. However, since it is not easy to separate the active ingredients, limited research has been conducted on their functional properties. In this study, we extracted the low-molecular-weight (843 Da) collagen NP-2007 from cervi cornu by enzyme hydrolyzation to enhance absorption and evaluated the therapeutic effect in monosodium iodoacetate-induced rat osteoarthritis (OA) model. NP-2007 was orally administered at 50, 100, and 200 mg/kg for 21 days. We showed that the production of matrix metalloproteinase-2, -3, and -9, decreased after NP-2007 treatment. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and prostaglandin E2 were also reduced after treatment of NP-2007. Furthermore, the administration of NP-2007 resulted in effective preservation of both the synovial membrane and knee cartilage and significantly decreased the transformation of fibrous tissue. We verified that the treatment of NP-2007 significantly reduced the production of nitric oxide and pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6 in lipopolysaccharides-stimulated RAW 264.7 cells by regulation of the NF-kB and MAPK signaling pathways. This study indicates that NP-2007 can alleviate symptoms of osteoarthritis and can be applied as a novel treatment for OA treatment.
Collapse
Affiliation(s)
- Ha-Rim Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Seung-Hyeon Lee
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Eun-Mi Noh
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Bongsuk Choi
- Hanpoong Nature Pharm Co., Ltd., 91, Techno Valley 2-ro Bongdong-eup, Wanju-gun 55314, Jeollabuk-do, Republic of Korea
| | - Hyang-Yim Seo
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Hansu Jang
- Jeonbuk Institute for Food-Bioindustry, Wonjangdong-gil 111-18, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Seon-Young Kim
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| | - Mi Hee Park
- Jeonju AgroBio-Materials Institute, Wonjangdong-gil 111-27, Deokjin-gu, Jeonju-si 54810, Jeollabuk-do, Republic of Korea
| |
Collapse
|
6
|
Wang M, Lin C, Jia X, Fang D, Gao Q, Han C. HGF/c-Met signaling promotes the migration and proliferation of deer antler MSCs. Sci Rep 2023; 13:11121. [PMID: 37429874 DOI: 10.1038/s41598-023-38116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
The complete regeneration of deer antlers is based on the proliferation and differentiation of stem cells. Mesenchymal stem cells (MSCs) of antlers have an important role in antler regeneration and rapid growth and development. HGF is mainly synthesized and secreted by mesenchymal cells. After binding to its receptor c-Met, which transduces signals into cells to stimulate cell proliferation and migration in various organs to promote tissue morphogenesis and angiogenesis. However, the role and mechanism of the HGF/c-Met signaling pathway on antler MSCs are still unclear. In this study, we established antler MSCs with overexpression and interference of HGF gene by lentivirus and small interference RNA, observed the effect of HGF/c-Met signal pathway on the proliferation and migration of antler MSCs, and detected the expression of downstream related signal pathway genes, to explore the mechanism of HGF/c-MET signal pathway on the proliferation and migration of antler MSCs. The results showed that the HGF/c-Met signal affects the expression of RAS, ERK and MEK genes, regulates the proliferation of pilose antler MSCs through Ras/Raf, MEK/ERK pathway, affects the expression of Gab1, Grb2, AKT and PI3K genes, and regulates the migration of MSCs of pilose antler through Gab1/Grb2 and PI3K/AKT pathway.
Collapse
Affiliation(s)
- Miao Wang
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Chuan Lin
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Xiaodong Jia
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Di Fang
- College of Life Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Qinhua Gao
- College of Animal Science and Technology, Tarim University, Alar, 843300, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China
| | - Chunmei Han
- College of Animal Science and Technology, Tarim University, Alar, 843300, China.
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Alar, 843300, China.
| |
Collapse
|
7
|
Li L, Ma Y, He G, Ma S, Wang Y, Sun Y. Pilose antler extract restores type I and III collagen to accelerate wound healing. Biomed Pharmacother 2023; 161:114510. [PMID: 36931024 DOI: 10.1016/j.biopha.2023.114510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Granulation tissue has supporting and filling functions in wound healing. The collagen produced by fibroblast acts as a cell scaffold in the granulation tissue to facilitate the formation of new blood vessels and epithelial coverage. Previously, we extracted protein components from the pilose antler that was involved in the biological process of collagen fibril organization. They were also found to contain abundant extracellular matrix(ECM) components. Therefore, in this experiment, we used a rat model of full-thickness skin excision and fibroblasts to perform an experiment for determination of the effects of pilose antler protein extract (PAE) on collagen content and fiber synthesis during wound healing. Additionally, we further analyzed its pharmacological effects on wound healing and the possible regulatory mechanisms. We found that PAE accelerated synthesis of type I and III collagen, promoted the formation of type III collagen fibers, and reduced collagen degradation by recruiting fibroblasts. Furthermore, the extract upregulated the expression of TGF β R1 and Smad2, and initiated the entry of Smad2/Smad3 into the nucleus. After adding SB431542 to inhibit TGF-β type I receptor activity, PAE's ability to promote Smad2/Smad3 nuclear localization was weakened. These data indicate that local PAE therapy can promote the proliferation of fibroblasts, dynamically regulate the expression of TGF-β, and increase the amount of collagen and the synthesis of type III collagen fibers by promoting smad2 activity in the proliferation period, thus accelerating the regenerative healing of wounds.
Collapse
Affiliation(s)
- Lishuang Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuman Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022; 14:nu14194183. [PMID: 36235835 PMCID: PMC9572057 DOI: 10.3390/nu14194183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Deer antler is widely used as a nutraceutical in Asian countries. In the past decades, deer antler peptides (DAPs) have received considerable attention because of their various biological properties such as antioxidant, anti-inflammatory, anti-bone damage, anti-neurological disease, anti-tumor and immunomodulatory properties. This review describes the production methods of DAPs and the recent progress of research on DAPs, focusing on the physiological functions and their regulatory mechanisms.
Collapse
|
9
|
Broggini C, Abril N, Carranza J, Membrillo A. Evaluation of candidate reference genes for quantitative real-time PCR normalization in blood from red deer developing antlers. Sci Rep 2022; 12:16264. [PMID: 36171416 PMCID: PMC9519901 DOI: 10.1038/s41598-022-20676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Sexual selection favors male traits that increase their ability to monopolize the breeding access to several females. Deer antlers are cranial appendages that regenerate annually in males. Throughout life, the phenology of antler growth advances and antler mass increases until the stag reaches, between 8 and 10 years old, maximum body mass and highest reproductive success. The molecular mechanisms of antler development are of great interest in both evolutionary and regenerative medicine studies. To minimize errors in the assessment of gene expression levels by qRT-PCR, we analyzed the stability of a panel of eight candidate reference genes and concluded that qRT-PCR normalization to three stable genes is strongly convenient in experiments performed in red deer antler blood. To validate our proposal, we compared the expression level of three genes linked to red deer antler growth (ANXA2, APOD and TPM1) in fifteen male red deer classified as young (up to 4 years old) and adults (4–6 years old). Our data confirms that B2M, ACTB and RPLP0 are valuable reference genes for future gene expression studies in red deer antler blood, which would provide increased insight into the effects of intrinsic factors that determine antler development in red deer.
Collapse
Affiliation(s)
- Camilla Broggini
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain.
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP-UCO), University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
10
|
MIC-1 Antlerogenic Stem Cells Homogenate from Cervus elaphus Accelerate Corneal Burn Reepithelization in Rabbits. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deer antler is the only mammalian organ that can fully grow back once lost from its pedicle. Antler regeneration is a stem cell-based process. Therefore, antlers probably offer the most pertinent model for studying organ regeneration in mammals. Evaluation of the effect of deer antler stem cells on the healing of superficial and deep rabbit corneal wounds was performed. Thirty-six New Zealeand White rabbits were used in this study in superficial and deep denaturation models, and corneal erosion was performed with n-heptanol placed on the cornea for 30 and NaOH for 90 s. Antler stem cells in drop formulation with hyaluronate was used. As a control, sodium hyaluronate in the superficial model and protein-free calf blood dialysate (Solcoseryl) in the deep model were administered. In superficial corneal damage, a reduction in the area of the damaged cornea was observed from day 3 of the experiment to an adequate level: 45% in the test group and 52% in the control group relative to the baseline damage (100%). Between days 3 and 7, on average, a smaller lesion area was observed in the group receiving antler stem cells. The use of antler stem cells has resulted in a marked improvement in cornea clarity. According to the 5-point scale of corneal opacity evaluation, where 1 is completely clear and 5 is completely opaque, the first statistically significant changes were observed after 4 weeks of treatment: 3.0 in the study group, 4.1 in the control with Solcoseryl, and 4.4 in the control group. After 9 weeks, these values were, 2.5, 3.8, and 4.1, respectively. The present preliminary study shows the promising results of antlerogenic stem cells of Cervus elaphus topically applied for the treatment of corneal injury. A deeper understanding of the developmental mechanisms involved in antler renewal can be useful for controlling regeneration cornea processes.
Collapse
|