1
|
Shahbaz S, Rezaeifar M, Syed H, Redmond D, Terveart JWC, Osman M, Elahi S. Upregulation of olfactory receptors and neuronal-associated genes highlights complex immune and neuronal dysregulation in Long COVID patients. Brain Behav Immun 2025; 124:97-114. [PMID: 39615603 DOI: 10.1016/j.bbi.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025] Open
Abstract
A substantial portion of patients infected with SARS-CoV-2 experience prolonged complications, known as Long COVID (LC). A subset of these patients exhibits the most debilitating symptoms, similar to those defined in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). We performed bulk RNA sequencing (RNAseq) on the whole blood of LC with ME/CFS, at least 12 months post-onset of the acute disease, and compared them with controls. We found that LC patients had a distinct transcriptional profile compared to controls. Key findings include the upregulation of genes involved in immune dysregulation and neuronal development, such as Fezf2, BRINP2, HOXC12, MEIS2, ZFHX3, and RELN. These genes are linked to neuroinflammatory responses, cognitive impairments, and hematopoietic disturbances, suggesting ongoing neurological and immune disturbances in LC patients. RELN, encoding the Reelin protein, was notably elevated in LC patients, potentially serving as a biomarker for LC pathogenesis due to its role in inflammation and neuronal function. Immune cell analysis showed altered profiles in LC patients, with increased activated memory CD4 + T cells and neutrophils, and decreased regulatory T cells and NK cells, reflecting immune dysregulation. Changes in cytokine and chemokine expression further underscore the chronic inflammatory state in LC patients. Notably, a unique upregulation of olfactory receptors (ORs) suggest alternative roles for ORs in non-olfactory tissues. Pathway analysis revealed upregulation in ribosomal RNA processing, amino acid metabolism, protein synthesis, cell proliferation, DNA repair, and mitochondrial pathways, indicating heightened metabolic and immune demands. Conversely, downregulated pathways, such as VEGF signaling and TP53 activity, point to impaired tissue repair and cellular stress responses. Overall, our study underscores the complex interplay between immune and neuronal dysfunction in LC patients, providing insights into potential diagnostic biomarkers and therapeutic targets. Future research is needed to fully understand the roles and interactions of these genes in LC pathophysiology.
Collapse
Affiliation(s)
- Shima Shahbaz
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Maryam Rezaeifar
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Hussein Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Jan Willem Cohen Terveart
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| | - Shokrollah Elahi
- Mike Petryk School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton T6G 2E1, AB, Canada; Women and Children Health Research Institute, University of Alberta, Edmonton T6G 2E1, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton T6G 2E1, AB, Canada; Glycomics Institute of Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2E1, AB, Canada.
| |
Collapse
|
2
|
Ru Y, Ma M, Zhou X, Kriti D, Cohen N, D'Souza S, Schaniel C, Motch Perrine SM, Kuo S, Pichurin O, Pinto D, Housman G, Holmes G, Schadt E, van Bakel H, Zhang B, Jabs EW, Wu M. Integrated transcriptomic analysis of human induced pluripotent stem cell-derived osteogenic differentiation reveals a regulatory role of KLF16. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.11.579844. [PMID: 38405902 PMCID: PMC10888757 DOI: 10.1101/2024.02.11.579844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Osteogenic differentiation is essential for bone development, metabolism, and repair; however, the underlying regulatory relationships among genes remain poorly understood. To elucidate the transcriptomic changes and identify novel regulatory genes involved in osteogenic differentiation, we differentiated mesenchymal stem cells (MSCs) derived from 20 human iPSC lines into preosteoblasts (preOBs) and osteoblasts (OBs). We then performed transcriptome profiling of MSCs, preOBs and OBs. The iPSC-derived MSCs and OBs showed similar transcriptome profiles to those of primary human MSCs and OBs, respectively. Differential gene expression analysis revealed global changes in the transcriptomes from MSCs to preOBs, and then to OBs, including the differential expression of 840 genes encoding transcription factors (TFs). TF regulatory network analysis uncovered a network comprising 451 TFs, organized into five interactive modules. Multiscale embedded gene co-expression network analysis (MEGENA) identified gene co-expression modules and key network regulators (KNRs). From these analyses, KLF16 emerged as an important TF in osteogenic differentiation. We demonstrate that overexpression of Klf16 in vitro inhibited osteogenic differentiation and mineralization, while Klf16 +/- mice exhibited increased bone mineral density, trabecular number, and cortical bone area. Our study underscores the complexity of osteogenic differentiation and identifies novel regulatory genes such as KLF16 , which plays an inhibitory role in osteogenic differentiation both in vitro and in vivo.
Collapse
|
3
|
Shi X, Li Y, Zhou H, Hou X, Yang J, Malik V, Faiola F, Ding J, Bao X, Modic M, Zhang W, Chen L, Mahmood SR, Apostolou E, Yang FC, Xu M, Xie W, Huang X, Chen Y, Wang J. DDX18 coordinates nucleolus phase separation and nuclear organization to control the pluripotency of human embryonic stem cells. Nat Commun 2024; 15:10803. [PMID: 39738032 DOI: 10.1038/s41467-024-55054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs. Loss of DDX18 disrupts nucleolar substructures, impairing centromere clustering and perinucleolar heterochromatin (PNH) formation. To probe this further, we develop NoCasDrop, a tool enabling precise nucleolar targeting and controlled liquid condensation, which restores centromere clustering and PNH integrity while modulating developmental gene expression. This study reveals how nucleolar phase separation dynamics govern chromatin organization and cell fate, offering fresh insights into the molecular regulation of stem cell pluripotency.
Collapse
Affiliation(s)
- Xianle Shi
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yanjing Li
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai, China
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Xiukun Hou
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jihong Yang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Francesco Faiola
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junjun Ding
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xichen Bao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miha Modic
- The Francis Crick Institute and University College London, London, UK
| | - Weiyu Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lingyi Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Syed Raza Mahmood
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Effie Apostolou
- Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Feng-Chun Yang
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine/Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Wei Xie
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA
| | - Yong Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Ganesan S, Awan-Toor S, Guidez F, Maslah N, Rahimy R, Aoun C, Gou P, Guiguen C, Soret J, Ravdan O, Bisio V, Dulphy N, Lobry C, Schlageter MH, Souyri M, Giraudier S, Kiladjian JJ, Chomienne C, Cassinat B. Comprehensive analysis of mesenchymal cells reveals a dysregulated TGF-β/WNT/HOXB7 axis in patients with myelofibrosis. JCI Insight 2024; 9:e173665. [PMID: 39470742 PMCID: PMC11623938 DOI: 10.1172/jci.insight.173665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Despite the advances in the understanding and treatment of myeloproliferative neoplasm (MPN), the disease remains incurable with the risk of evolution to acute myeloid leukemia or myelofibrosis (MF). Unfortunately, the evolution of the disease to MF remains poorly understood, impeding preventive and therapeutic options. Recent studies in solid tumor microenvironment and organ fibrosis have shed instrumental insights on their respective pathogenesis and drug resistance, yet such precise data are lacking in MPN. In this study, through a patient sample-driven transcriptomic and epigenetic description of the MF microenvironment landscape and cell-based analyses, we identify homeobox B7 (HOXB7) overexpression and more precisely a potentially novel TGF-β/WNT/HOXB7 pathway as associated to a pro-fibrotic and pro-osteoblastic biased differentiation of mesenchymal stromal cells (MSCs). Using gene-based and chemical inhibition of this pathway, we reversed the abnormal phenotype of MSCs from patients with MF, providing the MPN field a potentially novel target to prevent and manage evolution to MF.
Collapse
Affiliation(s)
- Saravanan Ganesan
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Sarah Awan-Toor
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Fabien Guidez
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- INSERM U1232/LNC, Team Epi2THM, Université Bourgogne Franche-Comté, Dijon, France
| | - Nabih Maslah
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Rifkath Rahimy
- Laboratoire de recherche en génétique et hématologie translationnelle, Institut Gonçalo Moniz, Salvador, Bahia, Brazil
| | - Céline Aoun
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Panhong Gou
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Chloé Guiguen
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Juliette Soret
- INSERM CIC 1427, Université Paris Cité, Centre d’Investigations Cliniques, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Odonchimeg Ravdan
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Valeria Bisio
- INSERM UMRS 1160, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | - Nicolas Dulphy
- INSERM UMRS 1160, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
- Laboratoire d’Immunologie et d’Histocompatibilite, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint-Louis, Université Paris-Cité, Paris, France
| | | | - Michèle Souyri
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stéphane Giraudier
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Jean-Jacques Kiladjian
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- INSERM CIC 1427, Université Paris Cité, Centre d’Investigations Cliniques, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Christine Chomienne
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Bruno Cassinat
- INSERM UMRS 1131, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
- Service de Biologie Cellulaire, Hôpital Saint-Louis, AP-HP, Paris, France
| |
Collapse
|
5
|
Chen Q, Ren Z, Dang L, Liu Z, Wang S, Chen X, Qiu G, Sun C. Hoxa5 alleviates adipose tissue metabolic distortions in high-fat diet mice associated with a reduction in MERC. BMC Biol 2024; 22:247. [PMID: 39468535 PMCID: PMC11520472 DOI: 10.1186/s12915-024-02047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Mitochondria-endoplasmic reticulum membrane contact (MERC) is an important mode of intercellular organelle communication and plays a crucial role in adipose tissue metabolism. Functionality of Hoxa5 is an important transcription factor involved in adipose tissue fate determination and metabolic regulation, but the relationship between Hoxa5 and MERC is not well understood. RESULTS In our study, we established an obesity model mouse by high-fat diet (HFD), induced the alteration of Hoxa5 expression by adenoviral transfection, and explored the effect of Hoxa5 on MERC dysfunction and metabolic distortions of adipose tissue with the help of transmission electron microscopy, calcium ion probe staining, and other detection means. The results showed Hoxa5 was able to reduce MERC production, alleviate endoplasmic reticulum stress (ERS) and calcium over-transport, and affect cGAS-STING-mediated innate immune response affecting adipose tissue energy metabolism, as well as affect the AKT-IP3R pathway to alleviate insulin resistance and ameliorate metabolic distortions in adipose tissue of mice. CONCLUSIONS Our results suggest that Hoxa5 can ameliorate high-fat diet-induced MERC overproduction and related functional abnormalities, in which finding is expected to provide new ideas for the improvement of obesity-related metabolic distortions.
Collapse
Affiliation(s)
- Qi Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zeyu Ren
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Liping Dang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Zunhai Liu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Simeng Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Xinhao Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Guiping Qiu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xi Nong Roud, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Barham K, Spencer R, Baker NC, Knudsen TB. Engineering a computable epiblast for in silico modeling of developmental toxicity. Reprod Toxicol 2024; 128:108625. [PMID: 38857815 PMCID: PMC11539952 DOI: 10.1016/j.reprotox.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.
Collapse
Affiliation(s)
- Kaitlyn Barham
- Oak Ridge Associated Universities, USA; USEPA, Center for Compuational Toxicology and Exposure.
| | | | | | | |
Collapse
|
7
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
8
|
Khajeh S, Razban V, Naeimzadeh Y, Nadimi E, Asadi-Golshan R, Heidari Z, Talaei-Khozani T, Dehghani F, Mostafavi-Pour Z, Shirali M. Plasticity Comparison of Two Stem Cell Sources with Different Hox Gene Expression Profiles in Response to Cobalt Chloride Treatment during Chondrogenic Differentiation. BIOLOGY 2024; 13:560. [PMID: 39194498 DOI: 10.3390/biology13080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
The limited self-repair capacity of articular cartilage is a challenge for healing injuries. While mesenchymal stem/stromal cells (MSCs) are a promising approach for tissue regeneration, the criteria for selecting a suitable cell source remain undefined. To propose a molecular criterion, dental pulp stem cells (DPSCs) with a Hox-negative expression pattern and bone marrow mesenchymal stromal cells (BMSCs), which actively express Hox genes, were differentiated towards chondrocytes in 3D pellets, employing a two-step protocol. The MSCs' response to preconditioning by cobalt chloride (CoCl2), a hypoxia-mimicking agent, was explored in an assessment of the chondrogenic differentiation's efficiency using morphological, histochemical, immunohistochemical, and biochemical experiments. The preconditioned DPSC pellets exhibited significantly elevated levels of collagen II and glycosaminoglycans (GAGs) and reduced levels of the hypertrophic marker collagen X. No significant effect on GAGs production was observed in the preconditioned BMSC pellets, but collagen II and collagen X levels were elevated. While preconditioning did not modify the ALP specific activity in either cell type, it was notably lower in the DPSCs differentiated pellets compared to their BMSCs counterparts. These results could be interpreted as demonstrating the higher plasticity of DPSCs compared to BMSCs, suggesting the contribution of their unique molecular characteristics, including their negative Hox expression pattern, to promote a chondrogenic differentiation potential. Consequently, DPSCs could be considered compelling candidates for future cartilage cell therapy.
Collapse
Affiliation(s)
- Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elham Nadimi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Reza Asadi-Golshan
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Laboratory, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Farzaneh Dehghani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Masoud Shirali
- School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AJ, UK
- Agri-Food and Biosciences Institute, Hillsborough BT26 6DR, UK
| |
Collapse
|
9
|
Li X, Ma TK, Wang P, Shi H, Hai S, Qin Y, Zou Y, Zhu WT, Li HM, Li YN, Yin L, Xu YY, Yang Q, Zhang S, Ding H. HOXD10 attenuates renal fibrosis by inhibiting NOX4-induced ferroptosis. Cell Death Dis 2024; 15:398. [PMID: 38844470 PMCID: PMC11156659 DOI: 10.1038/s41419-024-06780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
In chronic kidney disease (CKD), renal fibrosis is an unavoidable result of various manifestations. However, its pathogenesis is not yet fully understood. Here, we revealed the novel role of Homeobox D10 (HOXD10) in CKD-related fibrosis. HOXD10 expression was downregulated in CKD-related in vitro and in vivo fibrosis models. UUO model mice were administered adeno-associated virus (AAV) containing HOXD10, and HOXD10 overexpression plasmids were introduced into human proximal tubular epithelial cells induced by TGF-β1. The levels of iron, reactive oxygen species (ROS), lipid ROS, the oxidized glutathione/total glutathione (GSSG/GSH) ratio, malonaldehyde (MDA), and superoxide dismutase (SOD) were determined using respective assay kits. Treatment with AAV-HOXD10 significantly attenuated fibrosis and renal dysfunction in UUO model mice by inhibiting NOX4 transcription, ferroptosis pathway activation, and oxidative stress. High levels of NOX4 transcription, ferroptosis pathway activation and profibrotic gene expression induced by TGF-β1/erastin (a ferroptosis agonist) were abrogated by HOXD10 overexpression in HK-2 cells. Moreover, bisulfite sequencing PCR result determined that HOXD10 showed a hypermethylated level in TGF-β1-treated HK-2 cells. The binding of HOXD10 to the NOX4 promoter was confirmed by chromatin immunoprecipitation (ChIP) analysis and dual-luciferase reporter assays. Targeting HOXD10 may represent an innovative therapeutic strategy for fibrosis treatment in CKD.
Collapse
Affiliation(s)
- Xin Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Tian-Kui Ma
- Biological Therapy Department, First Hospital of China Medical University, Shenyang, China
| | - Pu Wang
- General Practice Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hang Shi
- Intensive Care Unit Department, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Sang Hai
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yu Qin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yun Zou
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Wan-Ting Zhu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hui-Min Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Nong Li
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Li Yin
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Yan-Yan Xu
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Qi Yang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Shuang Zhang
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China
| | - Hong Ding
- Nephrology Department, Fourth Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Branco A, Rayabaram J, Miranda CC, Fernandes-Platzgummer A, Fernandes TG, Sajja S, da Silva CL, Vemuri MC. Advances in ex vivo expansion of hematopoietic stem and progenitor cells for clinical applications. Front Bioeng Biotechnol 2024; 12:1380950. [PMID: 38846805 PMCID: PMC11153805 DOI: 10.3389/fbioe.2024.1380950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
As caretakers of the hematopoietic system, hematopoietic stem cells assure a lifelong supply of differentiated populations that are responsible for critical bodily functions, including oxygen transport, immunological protection and coagulation. Due to the far-reaching influence of the hematopoietic system, hematological disorders typically have a significant impact on the lives of individuals, even becoming fatal. Hematopoietic cell transplantation was the first effective therapeutic avenue to treat such hematological diseases. Since then, key use and manipulation of hematopoietic stem cells for treatments has been aspired to fully take advantage of such an important cell population. Limited knowledge on hematopoietic stem cell behavior has motivated in-depth research into their biology. Efforts were able to uncover their native environment and characteristics during development and adult stages. Several signaling pathways at a cellular level have been mapped, providing insight into their machinery. Important dynamics of hematopoietic stem cell maintenance were begun to be understood with improved comprehension of their metabolism and progressive aging. These advances have provided a solid platform for the development of innovative strategies for the manipulation of hematopoietic stem cells. Specifically, expansion of the hematopoietic stem cell pool has triggered immense interest, gaining momentum. A wide range of approaches have sprouted, leading to a variety of expansion systems, from simpler small molecule-based strategies to complex biomimetic scaffolds. The recent approval of Omisirge, the first expanded hematopoietic stem and progenitor cell product, whose expansion platform is one of the earliest, is predictive of further successes that might arise soon. In order to guarantee the quality of these ex vivo manipulated cells, robust assays that measure cell function or potency need to be developed. Whether targeting hematopoietic engraftment, immunological differentiation potential or malignancy clearance, hematopoietic stem cells and their derivatives need efficient scaling of their therapeutic potency. In this review, we comprehensively view hematopoietic stem cells as therapeutic assets, going from fundamental to translational.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Janakiram Rayabaram
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia C. Miranda
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- AccelBio, Collaborative Laboratory to Foster Translation and Drug Discovery, Cantanhede, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Suchitra Sajja
- Protein and Cell Analysis, Biosciences Division, Invitrogen Bioservices, Thermo Fisher Scientific, Bangalore, India
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | |
Collapse
|
11
|
Zheng S, Li Y, Yin L, Lu M. Identification of sulfur metabolism-related gene signature in osteoarthritis and TM9SF2's sustenance effect on M2 macrophages' phagocytic activity. J Orthop Surg Res 2024; 19:62. [PMID: 38218914 PMCID: PMC10787471 DOI: 10.1186/s13018-023-04384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/18/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and low-grade inflammatory disease associated with metabolism disorder and multiple cell death types in the synovial tissues. Sulfur metabolism has not been studied in OA. METHODS First, we calculated the single sample gene set enrichment analysis score of sulfur metabolism-associated annotations (i.e., cysteine metabolism process, regulation of sulfur metabolism process, and disulfidptosis) between healthy and synovial samples from patients with OA. Sulfur metabolism-related differentially expressed genes (DEGs) were analyzed in OA. Least absolute shrinkage and selection operator COX regression were used to identify the sulfur metabolism-associated gene signature for diagnosing OA. Correlation and immune cell deconvolution analyses were used to explore the correlated functions and cell specificity of the signature gene, TM9SF2. TM9SF2's effect on the phagocytosis of macrophages M2 was analyzed by coculturing macrophages with IgG-coated beads or apoptotic Jurkat cells. RESULTS A diagnostic six gene signature (i.e., MTHFD1, PDK4, TM9SF2, POU4F1, HOXA2, NCKAP1) was identified based on the ten DEGs, validated using GSE12021 and GSE1919 datasets. TM9SF2 was upregulated in the synovial tissues of OA at both mRNA and protein levels. The relationship between TM9SF2 and several functional annotations, such as antigen processing and presentation, lysosome, phagosome, Fcγ-mediated phagocytosis, and tyrosine metabolism, was identified. TM9SF2 and macrophages M2 were significantly correlated. After silencing TM9SF2 in THP-1-derived macrophages M2, a significantly reduced phagocytosis and attenuated activation of PLC-γ1 were observed. CONCLUSION A sulfur metabolism-associated six-gene signature for OA diagnosis was constructed and upregulation of the phagocytosis-associated gene, TM9SF2, was identified. The findings are expected to deepen our understanding of the molecular mechanism underlying OA development and be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China.
| | - Yetian Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Aryal S, Lu R. HOXA9 Regulome and Pharmacological Interventions in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:405-430. [PMID: 39017854 DOI: 10.1007/978-3-031-62731-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
13
|
Juul-Dam KL, Shukla NN, Cooper TM, Cuglievan B, Heidenreich O, Kolb EA, Rasouli M, Hasle H, Zwaan CM. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression. Eur J Med Genet 2023; 66:104869. [PMID: 38174649 PMCID: PMC11195042 DOI: 10.1016/j.ejmg.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 10/22/2023] [Indexed: 01/05/2024]
Abstract
Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.
Collapse
Affiliation(s)
- Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - E Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
15
|
Nour SM, Abbasi N, Sadi S, Ravan N, Alipourian A, Yarizadeh M, Soofi A, Ataei A, Tehrany PM. miRNAs as key modulators between normal cells and tumor microenvironment interactions. Chem Biol Drug Des 2023; 102:939-950. [PMID: 37402595 DOI: 10.1111/cbdd.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The tumor microenvironment (TME) is well-defined target for understanding tumor progression and various cell types. Major elements of the tumor microenvironment are the followings: endothelial cells, fibroblasts, signaling molecules, extracellular matrix, and infiltrating immune cells. MicroRNAs (miRNAs) are a group of small noncoding RNAs with major functions in the gene expression regulation at post-transcriptional level that have also appeared to exerts key functions in the cancer initiation/progression in diverse biological processes and the tumor microenvironment. This study summarized various roles of miRNAs in the complex interactions between the tumor and normal cells in their microenvironment.
Collapse
Affiliation(s)
| | - Nadia Abbasi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Sadi
- Medical Doctor, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ravan
- Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Yarizadeh
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Ali Ataei
- School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Pooya M Tehrany
- Faculty of Medicine, National University of Malaysia, Bani, Malaysia
| |
Collapse
|
16
|
Cui W, Zhang Q, Wang H, Zhang X, Tian M, Liu D, Yang X. Effects of HOXC8 on the Proliferation and Differentiation of Porcine Preadipocytes. Animals (Basel) 2023; 13:2615. [PMID: 37627406 PMCID: PMC10451666 DOI: 10.3390/ani13162615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Transcription factor Homeobox C8 (HOXC8) is identified as a white adipose gene as revealed by expression profile analysis in fat tissues. However, the specific role of HOXC8 in fat accumulation remains to be identified. This study was designed to reveal the effects of HOXC8 on preadipocyte proliferation and differentiation. We first make clear that the expression of HOXC8 is associated with fat contents in muscles, highlighting a role of HOXC8 in fat accumulation. Next, it is demonstrated that HOXC8 promotes the proliferation and differentiation of preadipocytes through gain- and loss-of-function assays in primary cultured porcine preadipocytes. Then, mechanisms underlying the regulation of HOXC8 on preadipocyte proliferation and differentiation are identified with RNA sequencing, and a number of differentially expressed genes (DEGs) in response to HOXC8 knockdown are identified. The top GO (Gene Ontology) terms enriched by DEGs involved in proliferation and differentiation, respectively, are identical. IL-17 signaling pathway is the common one significantly enriched by DEGs involved in preadipocyte proliferation and differentiation, respectively, indicating its importance in mediating fat accumulation regulated by HOXC8. Additionally, we find that the inhibition of proliferation is one of the main processes during preadipocyte differentiation. The results will contribue to further revealing the mechanisms underlying fat accumulation regulated by HOXC8.
Collapse
Affiliation(s)
- Weiguo Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 166319, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hanqiong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Salamanna F, Contartese D, Borsari V, Pagani S, Sartori M, Tschon M, Griffoni C, Giavaresi G, Tedesco G, Barbanti Brodano G, Gasbarrini A, Fini M. Gender-Specific Differences in Human Vertebral Bone Marrow Clot. Int J Mol Sci 2023; 24:11856. [PMID: 37511617 PMCID: PMC10380734 DOI: 10.3390/ijms241411856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recently, our group described the application of vertebral bone marrow (vBMA) clot as a cell therapy strategy for spinal fusion. Its beneficial effects were confirmed in aging-associated processes, but the influence of gender is unknown. In this study, we compared the biological properties of vBMA clots and derived vertebral mesenchymal stem cells (MSCs) from female and male patients undergoing spinal fusion procedures and treated with vBMA clot. We analyzed the expression of growth factors (GFs) in vBMA clots and MSCs as well as morphology, viability, doubling time, markers expression, clonogenicity, differentiation ability, senescence factors, Klotho expression, and HOX and TALE gene profiles from female and male donors. Our findings indicate that vBMA clots and derived MSCs from males had higher expression of GFs and greater osteogenic and chondrogenic potential compared to female patients. Additionally, vBMA-clot-derived MSCs from female and male donors exhibited distinct levels of HOX and TALE gene expression. Specifically, HOXA1, HOXB8, HOXD9, HOXA11, and PBX1 genes were upregulated in MSCs derived from clotted vBMA from male donors. These results demonstrate that vBMA clots can be effectively used for spinal fusion procedures; however, gender-related differences should be taken into consideration when utilizing vBMA-clot-based studies to optimize the design and implementation of this cell therapy strategy in clinical trials.
Collapse
Affiliation(s)
- Francesca Salamanna
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Deyanira Contartese
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Veronica Borsari
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefania Pagani
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Matilde Tschon
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Cristiana Griffoni
- Spine Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Complex Structure Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Tedesco
- Spine Surgery Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | | | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
18
|
Zhang S, Zhang X, Zhang C, Xu S, Wang D, Guo C. Developmental Genetic Basis of Hoxd9 Homeobox Domain Deletion in Pampus argenteus Pelvic Fin Deficiency. Int J Mol Sci 2023; 24:11769. [PMID: 37511526 PMCID: PMC10380636 DOI: 10.3390/ijms241411769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pampus argenteus is important for commercial fishery catch species and is an emerging target for aquaculture production. Notably, P. argenteus has a bizarre morphology and lacks pelvic fins. However, the reason for the lack of pelvic fins remains unclear, ultimately leading to frequent upside-down floating of P. argenteus during breeding and marked consumption of physical energy. Some lineages, including whales, fugu, snakes, and seahorse, independently lost the pelvic appendages over evolutionary time. Do different taxa employ the same molecular genetic pathways when they independently evolve similar developmental morphologies? Through analysis of the gene responsible for appendage localization, Hoxd9, it was discovered that the Hox domain was absent in the Hoxd9 gene of P. argenteus, and the Hoxd9b gene lacked the Hox9 activation region, a feature not observed in the Hoxd9 gene of other fish species. Interestingly, those distinctive characteristics are not observed in the Hoxd9 gene of other fish species. To determine the association between the Hoxd9 gene characteristics and the pelvic fin deletion in P. argenteus, the full-length cDNA of the Hoxd9a gene was cloned, and morphological observations of the species' juveniles were performed using stereomicroscopy and scanning electron microscopy. Thereafter, the tissue localization of Hoxd9a in the species was analyzed at the gene and protein levels. Based on the results, deletion of the Hoxd9a structural domain possibly leads to disruptions in the protein translation and the pelvic fin localization in P. argenteus during its early ontogenetic developmental stage, resulting in the absence of pelvic fins.
Collapse
Affiliation(s)
- Shun Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo 315211, China
| | - Xiaodong Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo 315211, China
| | - Cheng Zhang
- School of Marine Science, Ningbo University, Ningbo 315211, China
- National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo 315211, China
| | - Shanliang Xu
- School of Marine Science, Ningbo University, Ningbo 315211, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo 315211, China
| | - Danli Wang
- School of Marine Science, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| | - Chunyang Guo
- School of Marine Science, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
Tian C, Wang J, Ye X, Chen J, Zheng R, Yu H, Li J, Yin G, Liu L, Zhao N, Feng G, Zhu Z, Wang J, Fan G, Liu L. Culture conditions of mouse ESCs impact the tumor appearance in vivo. Cell Rep 2023; 42:112645. [PMID: 37314926 DOI: 10.1016/j.celrep.2023.112645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023] Open
Abstract
Various culture conditions by small molecules have been explored to extend pluripotency of stem cells, but their impacts on cell fate in vivo remain elusive. We systematically compared the effects of various culture conditions on the pluripotency and cell fate in vivo of mouse embryonic stem cells (ESCs) by tetraploid embryo complementation assay. Conventional ESC cultures in serum/LIF-based condition produced complete ESC mice and also the survival to adulthood at the highest rates of all other chemical-based cultures. Moreover, long-term examination of the survived ESC mice demonstrated that conventional ESC cultures did not lead to visible abnormality for up to 1.5-2 years, whereas the prolonged chemical-based cultures developed retroperitoneal atypical teratomas or leiomyomas. The chemical-based cultures exhibited transcriptomes and epigenomes that typically differed from those of conventional ESC cultures. Our results warrant further refinement of culture conditions in promoting the pluripotency and safety of ESCs in future applications.
Collapse
Affiliation(s)
- Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Wang
- Department of Human Genetics and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rongyan Zheng
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanwen Yu
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoxing Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nannan Zhao
- Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guofeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhengmao Zhu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guoping Fan
- Department of Human Genetics and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China; Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300071, China.
| |
Collapse
|
20
|
Dicks AR, Maksaev GI, Harissa Z, Savadipour A, Tang R, Steward N, Liedtke W, Nichols CG, Wu CL, Guilak F. Skeletal dysplasia-causing TRPV4 mutations suppress the hypertrophic differentiation of human iPSC-derived chondrocytes. eLife 2023; 12:e71154. [PMID: 36810131 PMCID: PMC9949800 DOI: 10.7554/elife.71154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Mutations in the TRPV4 ion channel can lead to a range of skeletal dysplasias. However, the mechanisms by which TRPV4 mutations lead to distinct disease severity remain unknown. Here, we use CRISPR-Cas9-edited human-induced pluripotent stem cells (hiPSCs) harboring either the mild V620I or lethal T89I mutations to elucidate the differential effects on channel function and chondrogenic differentiation. We found that hiPSC-derived chondrocytes with the V620I mutation exhibited increased basal currents through TRPV4. However, both mutations showed more rapid calcium signaling with a reduced overall magnitude in response to TRPV4 agonist GSK1016790A compared to wildtype (WT). There were no differences in overall cartilaginous matrix production, but the V620I mutation resulted in reduced mechanical properties of cartilage matrix later in chondrogenesis. mRNA sequencing revealed that both mutations up-regulated several anterior HOX genes and down-regulated antioxidant genes CAT and GSTA1 throughout chondrogenesis. BMP4 treatment up-regulated several essential hypertrophic genes in WT chondrocytes; however, this hypertrophic maturation response was inhibited in mutant chondrocytes. These results indicate that the TRPV4 mutations alter BMP signaling in chondrocytes and prevent proper chondrocyte hypertrophy, as a potential mechanism for dysfunctional skeletal development. Our findings provide potential therapeutic targets for developing treatments for TRPV4-mediated skeletal dysplasias.
Collapse
Affiliation(s)
- Amanda R Dicks
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Grigory I Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Zainab Harissa
- Department of Biomedical Engineering, Washington University in St. LouisSt LouisUnited States
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Alireza Savadipour
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
- Department of Mechanical Engineering and Material Science, Washington University in St. LouisSt. LouisUnited States
| | - Ruhang Tang
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Nancy Steward
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of MedicineDurhamUnited States
- Department of Molecular Pathobiology - NYU College of DentistryNew YorkUnited States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. LouisSt LouisUnited States
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of RochesterRochesterUnited States
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. LouisSt LouisUnited States
- Shriners Hospitals for Children - St. LouisSt. LouisUnited States
| |
Collapse
|
21
|
Vitamin A: A Key Inhibitor of Adipocyte Differentiation. PPAR Res 2023; 2023:7405954. [PMID: 36776154 PMCID: PMC9908342 DOI: 10.1155/2023/7405954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
Inhibiting adipocyte differentiation, the conversion of preadipocytes to mature functional adipocytes, might represent a new approach to treating obesity and related metabolic disorders. Peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding protein α are two master coregulators controlling adipogenesis both in culture and in vivo. Many recent studies have confirmed the relationship between retinoic acid (RA) and the conversion of embryonic stem cells into adipocytes; however, these studies have shown that RA potently blocks the differentiation of preadipocytes into mature adipocytes. Nevertheless, the functional role of RA in early tissue development and stem cell differentiation, including in adipose tissue, remains unclear. This study highlights transcription factors that block adipocyte differentiation and maintain preadipocyte status, focusing on those controlled by RA. However, some of these novel adipogenesis inhibitors have not been validated in vivo, and their mechanisms of action require further clarification.
Collapse
|
22
|
Jia Y, Reboulet J, Gillet B, Hughes S, Forcet C, Tribollet V, Hajj Sleiman N, Kundlacz C, Vanacker JM, Bleicher F, Merabet S. A Live Cell Protein Complementation Assay for ORFeome-Wide Probing of Human HOX Interactomes. Cells 2023; 12:cells12010200. [PMID: 36611993 PMCID: PMC9818449 DOI: 10.3390/cells12010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
Biological pathways rely on the formation of intricate protein interaction networks called interactomes. Getting a comprehensive map of interactomes implies the development of tools that allow one to capture transient and low-affinity protein-protein interactions (PPIs) in live conditions. Here we presented an experimental strategy: the Cell-PCA (cell-based protein complementation assay), which was based on bimolecular fluorescence complementation (BiFC) for ORFeome-wide screening of proteins that interact with different bait proteins in the same live cell context, by combining high-throughput sequencing method. The specificity and sensitivity of the Cell-PCA was established by using a wild-type and a single-amino-acid-mutated HOXA9 protein, and the approach was subsequently applied to seven additional human HOX proteins. These proof-of-concept experiments revealed novel molecular properties of HOX interactomes and led to the identification of a novel cofactor of HOXB13 that promoted its proliferative activity in a cancer cell context. Taken together, our work demonstrated that the Cell-PCA was pertinent for revealing and, importantly, comparing the interactomes of different or highly related bait proteins in the same cell context.
Collapse
Affiliation(s)
- Yunlong Jia
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Jonathan Reboulet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- LiPiCs, 46 Allée d’Italie, 69007 Lyon, France
| | - Benjamin Gillet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Sandrine Hughes
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Christelle Forcet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Violaine Tribollet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Nawal Hajj Sleiman
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Cindy Kundlacz
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Jean-Marc Vanacker
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
| | - Françoise Bleicher
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| | - Samir Merabet
- IGFL, CNRS UMR5242, ENS-Lyon, UCBL-1, INRA USC1370, 32 Av. Tony Garnier, 69007 Lyon, France
- Correspondence: franç (F.B.); (S.M.)
| |
Collapse
|
23
|
Segal D, Coulombe S, Sim J, Dostie J. A conserved HOTAIRM1-HOXA1 regulatory axis contributes early to neuronal differentiation. RNA Biol 2023; 20:1523-1539. [PMID: 37743644 PMCID: PMC10619521 DOI: 10.1080/15476286.2023.2258028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 09/26/2023] Open
Abstract
HOTAIRM1 is unlike most long non-coding RNAs in that its sequence is highly conserved across mammals. Such evolutionary conservation points to it having a role in key cellular processes. We previously reported that HOTAIRM1 is required to curb premature activation of downstream HOXA genes in a cell model recapitulating their sequential induction during development. We found that it regulates 3' HOXA gene expression by a mechanism involving epigenetic and three-dimensional chromatin changes. Here we show that HOTAIRM1 participates in proper progression through the early stages of neuronal differentiation. We found that it can associate with the HOXA1 transcription factor and contributes to its downstream transcriptional program. Particularly, HOTAIRM1 affects the NANOG/POU5F1/SOX2 core pluripotency network maintaining an undifferentiated cell state. HOXA1 depletion similarly perturbed expression of these pluripotent factors, suggesting that HOTAIRM1 is a modulator of this transcription factor pathway. Also, given that binding of HOTAIRM1 to HOXA1 was observed in different cell types and species, our results point to this ribonucleoprotein complex as an integral part of a conserved HOTAIRM1-HOXA1 regulatory axis modulating the transition from a pluripotent to a differentiated neuronal state.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Samy Coulombe
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- School of Computer Science, and McGill Center for Bioinformatics, McGill University, Montréal, Québec, Canada
| | - Jasper Sim
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Josée Dostie
- Department of Biochemistry, and Rosalind & Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
24
|
Bland VL, Bea JW, Going SB, Yaghootkar H, Arora A, Ramadan F, Funk JL, Chen Z, Klimentidis YC. Metabolically favorable adiposity and bone mineral density: a Mendelian randomization analysis. Obesity (Silver Spring) 2023; 31:267-278. [PMID: 36502291 DOI: 10.1002/oby.23604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This analysis assessed the putative causal association between genetically predicted percent body fat and areal bone mineral density (aBMD) and, more specifically, the association between genetically predicted metabolically "favorable adiposity" (MFA) and aBMD at clinically relevant bone sites. METHODS Mendelian randomization was used to assess the relationship of MFA and percent body fat with whole-body, lumbar spine, femoral neck, and forearm aBMD. Sex-stratified and age-stratified exploratory analyses were conducted. RESULTS In all MR analyses, genetically predicted MFA was inversely associated with aBMD for the whole body (β = -0.053, p = 0.0002), lumbar spine (β = -0.075; p = 0.0001), femoral neck (β = -0.045; p = 0.008), and forearm (β = -0.115; p = 0.001). This negative relationship was strongest in older individuals and did not differ by sex. The relationship between genetically predicted percent body fat and aBMD was nonsignificant across all Mendelian randomization analyses. Several loci that were associated at a genome-wide significance level (p < 5 × 10-8 ) in opposite directions with body fat and aBMD measures were also identified. CONCLUSIONS This study did not support the hypothesis that MFA protects against low aBMD. Instead, it showed that MFA may result in lower aBMD. Further research is needed to understand how MFA affects aBMD and other components of bone health such as bone turnover, bone architecture, and osteoporotic fractures.
Collapse
Affiliation(s)
- Victoria L Bland
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Jennifer W Bea
- Department of Health Promotion Sciences, University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Scott B Going
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
| | - Hanieh Yaghootkar
- Centre for Inflammation Research and Translational Medicine, Department of Life Sciences, Brunel University London, Uxbridge, UK
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Research, Innovation, Royal Devon & Exeter Hospital, Exeter, UK
| | - Amit Arora
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Ferris Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Janet L Funk
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, Arizona, USA
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Zhao Chen
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| | - Yann C Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
25
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
26
|
Sadraei F, Ghollasi M, Khakpai F, Halabian R, Jalali Tehrani H. Osteogenic differentiation of pre-conditioned bone marrow mesenchymal stem cells with Nisin on modified poly-L-lactic-acid nanofibers. Regen Ther 2022; 21:263-270. [PMID: 36092506 PMCID: PMC9440272 DOI: 10.1016/j.reth.2022.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Fariba Sadraei
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Khakpai
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Corresponding author. Applied Microbiology Research Center, Systems Biology Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran, Postal Code 14359-44711.
| | - Hora Jalali Tehrani
- Department of Developmental Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
28
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
29
|
Liu C, Omilusik K, Toma C, Kurd NS, Chang JT, Goldrath AW, Wang W. Systems-level identification of key transcription factors in immune cell specification. PLoS Comput Biol 2022; 18:e1010116. [PMID: 36156073 PMCID: PMC9536753 DOI: 10.1371/journal.pcbi.1010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/06/2022] [Accepted: 08/10/2022] [Indexed: 01/30/2023] Open
Abstract
Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.
Collapse
Affiliation(s)
- Cong Liu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Kyla Omilusik
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Clara Toma
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nadia S. Kurd
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ananda W. Goldrath
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
30
|
Regan JL, Schumacher D, Staudte S, Steffen A, Lesche R, Toedling J, Jourdan T, Haybaeck J, Golob-Schwarzl N, Mumberg D, Henderson D, Győrffy B, Regenbrecht CR, Keilholz U, Schäfer R, Lange M. Identification of a neural development gene expression signature in colon cancer stem cells reveals a role for EGR2 in tumorigenesis. iScience 2022; 25:104498. [PMID: 35720265 PMCID: PMC9204726 DOI: 10.1016/j.isci.2022.104498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
Recent evidence demonstrates that colon cancer stem cells (CSCs) can generate neurons that synapse with tumor innervating fibers required for tumorigenesis and disease progression. Greater understanding of the mechanisms that regulate CSC driven tumor neurogenesis may therefore lead to more effective treatments. RNA-sequencing analyses of ALDHPositive CSCs from colon cancer patient-derived organoids (PDOs) and xenografts (PDXs) showed CSCs to be enriched for neural development genes. Functional analyses of genes differentially expressed in CSCs from PDO and PDX models demonstrated the neural crest stem cell (NCSC) regulator EGR2 to be required for tumor growth and to control expression of homebox superfamily embryonic master transcriptional regulator HOX genes and the neural stem cell and master cell fate regulator SOX2. These data support CSCs as the source of tumor neurogenesis and suggest that targeting EGR2 may provide a therapeutic differentiation strategy to eliminate CSCs and block nervous system driven disease progression.
Collapse
Affiliation(s)
- Joseph L. Regan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Dirk Schumacher
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stephanie Staudte
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
- Department of Radiation Oncology and Radiotherapy, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Steffen
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Ralf Lesche
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Joern Toedling
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| | - Thibaud Jourdan
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Nicole Golob-Schwarzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
| | - David Henderson
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Bayer AG, Business Development and Licensing and Open Innovation, Pharmaceuticals, 13342 Berlin, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
- TTK Cancer Biomarker Research Group, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christian R.A. Regenbrecht
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- CELLphenomics GmbH, 13125 Berlin, Germany
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Reinhold Schäfer
- Charité Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Laboratory of Molecular Tumor Pathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Martin Lange
- Bayer AG, Research and Development, Pharmaceuticals, 13342 Berlin, Germany
- Nuvisan ICB GmbH, 13353 Berlin, Germany
| |
Collapse
|
31
|
Osmond B, Facey COB, Zhang C, Boman BM. HOXA9 Overexpression Contributes to Stem Cell Overpopulation That Drives Development and Growth of Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126799. [PMID: 35743243 PMCID: PMC9224160 DOI: 10.3390/ijms23126799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/22/2023] Open
Abstract
HOX proteins are transcription factors that regulate stem cell (SC) function, but their role in the SC origin of cancer is under-studied. Aberrant expression of HOX genes occurs in many cancer types. Our goal is to ascertain how retinoic acid (RA) signaling and the regulation of HOXA9 expression might play a role in the SC origin of human colorectal cancer (CRC). Previously, we reported that aldehyde dehydrogenase (ALDH) and other RA pathway components are co-expressed in colonic cancer SCs (CSCs) and that overpopulation of ALDH-positive CSCs occurs during colon tumorigenesis. Our hypothesis is RA signaling regulates HOXA9 expression, and dysregulated RA signaling results in HOXA9 overexpression, which contributes to CSC overpopulation in CRC. Immunostaining showed that HOXA9 was selectively expressed in ALDH-positive SCs, and HOXA9 expression was increased in CRCs compared to normal epithelium. Modulating RA signaling in CRC cells (HT29 and SW480) with ATRA and DEAB decreased cell proliferation and reduced HOXA9 expression. Bioinformatics analyses identified a network of proteins that functionally interact with HOXA9, and the genes that encode these proteins, as well as HOXA9, contain RA receptor binding sites. These findings indicate that the expression of HOXA9 and its functional network is regulated by RA signaling in normal colonic SCs, and, when dysregulated, HOXA9 may contribute to CSC overpopulation that drives CRC development and growth. Our study provides a regulatory mechanism that might be useful in developing treatments against CSC overpopulation in CRC.
Collapse
Affiliation(s)
- Brian Osmond
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
| | - Chi Zhang
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
| | - Bruce M. Boman
- Cawley Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA; (B.O.); (C.O.B.F.); (C.Z.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Correspondence: ; Tel.: +1-267-303-9241
| |
Collapse
|
32
|
Kuramoto Y, Takagi T, Takeda Y, Rajbhandari S, Yoshida Y, Nakagomi T, Yoshimura S. Identification of novel multipotent stem cells in mouse spinal cord following traumatic injury. Stem Cells Dev 2022; 31:555-568. [PMID: 35708107 DOI: 10.1089/scd.2021.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We showed that injury-induced multipotent stem cells (iSCs) emerge in the brain after stroke. These brain-derived iSCs (B-iSCs) can differentiate into various lineages, including neurons. This study aimed to determine whether similar stem cells can be induced even after non-ischemic injuries, such as trauma to the spinal cord. We characterized these cells, mainly focusing on their stemness, multipotency, and neuronal differentiation activities. Spinal cord injury was produced using forceps in adult mice. On day 3 after spinal cord injury, samples were obtained from the injured areas. Spinal cord sections were subjected to histological analyses. Cells were isolated and assessed for proliferative activities, immunohistochemistry, RT-PCR, FACS, and microarray analysis. Although nerve cell morphology was disrupted within the injured spinal cord, our histological observations revealed the presence of cells expressing stem cells, such as nestin and Sox2 in these areas. In addition, cells extracted from injured areas exhibited high proliferative abilities. These cells also expressed markers of both neural stem cells (e.g., nestin, Sox2) and multipotent stem cells (e.g., Sox2, c-myc, Klf4). They differentiated into adipocytes, osteocytes and chondrocytes, as well as neuronal cells. Microarray analysis further identified similar properties between spinal cord (SC)-derived iSCs and B-iSCs. However, SC-iSCs revealed specific genes related to the regulation of stemness and neurogenesis. We identified similar features related to multipotency in SC-iSCs compared to B-iSCs, including neuronal differentiation potential. Although the differences between SC-iSCs and B-iSCs remain largely undetermined, the present study shows that iSCs can develop even after non-ischemic injuries such as trauma. This phenomenon can occur outside the brain within the CNS.
Collapse
Affiliation(s)
- Yoji Kuramoto
- Hyogo College of Medicine, 12818, Neurosurgery, 1-1, Mukogawa-cho, Nishinomiya, Japan, 663-8501;
| | - Toshinori Takagi
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Hyogo, Japan;
| | - Yuki Takeda
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan;
| | | | - Yasunori Yoshida
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan;
| | - Takayuki Nakagomi
- Hyogo College of Medicine, 12818, Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan.,Hyogo College of Medicine, 12818, Therapeutic Progress in Brain Diseases, Nishinomiya, Hyogo, Japan;
| | - Shinichi Yoshimura
- Hyogo College of Medicine, 12818, Neurosurgery, Nishinomiya, Japan.,Hyogo College of Medicine, 12818, Institute for Advanced Medical Sciences, Nishinomiya, Hyogo, Japan;
| |
Collapse
|
33
|
Gupta D, Kaushik D, Mohan V. Role of neurotransmitters in the regulation of cutaneous wound healing. Exp Brain Res 2022; 240:1649-1659. [PMID: 35488904 DOI: 10.1007/s00221-022-06372-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/13/2022] [Indexed: 11/04/2022]
Abstract
Wound healing is a highly coordinated and dynamic process of tissue repair after injury. The global burden of disease associated with wounds, both acute and chronic, is a significantly rising health concern. Upon skin wounding, neurons have the ability to sense the disruption to mediate the release of neurotransmitters into the wound microenvironment. Serotonin that has long been recognised as a potential vasoconstrictor is now also being contemplated to play a role in re-epithelialisation of wounds. While the role of neuropeptides in stimulating diabetic wound healing is being increasingly emphasised, on the other hand, dopamine is being widely studied for its dual role in mediating both pro- and antiangiogenic effects at the site of the wounds. Similarly, epinephrine levels that are known to be elevated during stress is now recognised as a contributing factor towards delayed wound closure, thereby serving as an inhibitor of wound healing. Thus, each neurotransmitter regulates wound repair and their active regeneration in a typical way. Strengthening our understanding of the molecular pathways via which the neurotransmitter modulates the immune system to control wound healing can yield potential therapeutic measures. Further investigations regarding the safety, efficacy, and cost-effectiveness of these processes are a prerequisite for their possible translation into clinical trials.
Collapse
Affiliation(s)
- Divya Gupta
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Dhirender Kaushik
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India
| | - Vandana Mohan
- Department of Life Sciences, Neurosciences, Gurugram University, Sector-51, Gurugram, Haryana, India.
| |
Collapse
|
34
|
Taihi I, Pilon C, Cohen J, Berdal A, Gogly B, Nassif A, Fournier BP. Efficient isolation of human gingival stem cells in a new serum-free medium supplemented with platelet lysate and growth hormone for osteogenic differentiation enhancement. Stem Cell Res Ther 2022; 13:125. [PMID: 35337377 PMCID: PMC8951723 DOI: 10.1186/s13287-022-02790-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The use of distant autografts to restore maxillary bone defects is clinically challenging and has unpredictable outcomes. This variation may be explained by the embryonic origin of long bone donor sites, which are derived from mesoderm, whereas maxillary bones derive from neural crest. Gingival stem cells share the same embryonic origin as maxillary bones. Their stemness potential and ease of access have been repeatedly shown. One limitation in human cell therapy is the use of foetal calf serum during cell isolation and culture. To overcome this problem, a new serum-free medium enriched with an alternative to foetal calf serum, i.e., platelet lysate, needs to be adapted to clinical grade protocols. METHODS Different serum-free media enriched with platelet lysate at various concentrations and supplemented with different growth factors were developed and compared to media containing foetal calf serum. Phenotypic markers, spontaneous DNA damage, and stem cell properties of gingival stem cells isolated in platelet lysate or in foetal calf serum were also compared, as were the immunomodulatory properties of the cells by co-culturing them with activated peripheral blood monocellular cells. T-cell proliferation and phenotype were also assessed by flow cytometry using cell proliferation dye and specific surface markers. Data were analysed with t-test for two-group comparisons, one-way ANOVA for multigroup comparisons and two-way ANOVA for repeated measures and multigroup comparisons. RESULTS Serum-free medium enriched with 10% platelet lysate and growth hormone yielded the highest expansion rate. Gingival stem cell isolation and thawing under these conditions were successful, and no significant DNA lesions were detected. Phenotypic markers of mesenchymal stem cells and differentiation capacities were conserved. Gingival stem cells isolated in this new serum-free medium showed higher osteogenic differentiation potential compared to cells isolated in foetal calf serum. The proportion of regulatory T cells obtained by co-culturing gingival stem cells with activated peripheral blood monocellular cells was similar between the two types of media. CONCLUSIONS This new serum-free medium is well suited for gingival stem cell isolation and proliferation, enhances osteogenic capacity and maintains immunomodulatory properties. It may allow the use of gingival stem cells in human cell therapy for bone regeneration in accordance with good manufacturing practice guidelines.
Collapse
Affiliation(s)
- Ihsène Taihi
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, site hospitalier Charles Foix-Pitié Salpêtrière, 94200, Ivry, France.
| | - Caroline Pilon
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - José Cohen
- AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ariane Berdal
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Bruno Gogly
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, site hospitalier Henri Mondor, CIC-BT-504, INSERM UMRS 955, Paris-Est University, Créteil, France
| | - Ali Nassif
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France.,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France
| | - Benjamin Philippe Fournier
- Laboratory of Molecular Oral Pathophysiologie, Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, 75006, Paris, France. .,AP-HP, sites hospitaliers Pitié Salpêtrière et Rothschild, Département d'Orthopédie Dento-Faciale, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), 75013-75019, Paris, France.
| |
Collapse
|
35
|
Zhang H, Ding Y, Zeng Q, Wang D, Liu G, Hussain Z, Xiao B, Liu W, Deng T. Characteristics of mesenteric adipose tissue attached to different intestinal segments and their roles in immune regulation. Am J Physiol Gastrointest Liver Physiol 2022; 322:G310-G326. [PMID: 34984923 DOI: 10.1152/ajpgi.00256.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric adipose tissue (MAT) plays a critical role in the intestinal physiological ecosystems. Small and large intestines have evidently intrinsic and distinct characteristics. However, whether there exist any mesenteric differences adjacent to the small and large intestines (SMAT and LMAT) has not been properly characterized. We studied the important facets of these differences, such as morphology, gene expression, cell components, and immune regulation of MATs, to characterize the mesenteric differences. The SMAT and LMAT of mice were used for comparison of tissue morphology. Paired mesenteric samples were analyzed by RNA-seq to clarify gene expression profiles. MAT partial excision models were constructed to illustrate the immune regulation roles of MATs, and 16S-seq was applied to detect the subsequent effect on microbiota. Our data show that different segments of mesenteries have different morphological structures. SMAT not only has smaller adipocytes but also contains more fat-associated lymphoid clusters than LMAT. The gene expression profile is also discrepant between these two MATs in mice. B-cell markers were abundantly expressed in SMAT, whereas development-related genes were highly expressed in LMAT. Adipose-derived stem cells of LMAT exhibited higher adipogenic potential and lower proliferation rates than those of SMAT. In addition, SMAT and LMAT play different roles in immune regulation and subsequently affect microbiota components. Finally, our data clarified the described differences between SMAT and LMAT in humans. There were significant differences in cell morphology, gene expression profiles, cell components, biological characteristics, and immune and microbiota regulation roles between regional MATs.NEW & NOTEWORTHY Our results change the paradigm of how we regard MAT as a contiguous and homogeneous tissue to an intensely heterogeneous tissue. Appreciation of the differences between regional MATs will guide future research to investigate the specialized roles of different MATs in intestinal health and disease.
Collapse
Affiliation(s)
- Haowei Zhang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Orthopedics, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yujin Ding
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qin Zeng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dandan Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ganglei Liu
- Department of Geriatric Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zain Hussain
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas
| | - Boen Xiao
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Biliopancreatic Surgery and Bariatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
36
|
Roux B, Picou F, Debeissat C, Koubi M, Gallay N, Hirsch P, Ravalet N, Béné MC, Maigre M, Hunault M, Mosser J, Etcheverry A, Gyan E, Delhommeau F, Domenech J, Herault O. Aberrant DNA methylation impacts HOX genes expression in bone marrow mesenchymal stromal cells of myelodysplastic syndromes and de novo acute myeloid leukemia. Cancer Gene Ther 2022; 29:1263-1275. [PMID: 35194200 DOI: 10.1038/s41417-022-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/12/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.
Collapse
Affiliation(s)
- Benjamin Roux
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Frédéric Picou
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Christelle Debeissat
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Myriam Koubi
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France
| | - Nathalie Gallay
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Pierre Hirsch
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France
| | - Noémie Ravalet
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Marie C Béné
- CHU de Nantes, Service d'Hématologie Biologique, CRCINA, Nantes, France.,FHU GOAL, Angers, France
| | | | - Mathilde Hunault
- FHU GOAL, Angers, France.,CHU d'Angers, Service d'Hématologie, Angers, France
| | - Jean Mosser
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Cancéropôle Grand Ouest, Nantes, France
| | - Amandine Etcheverry
- CHU de Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Emmanuel Gyan
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie et Thérapie Cellulaire, Tours, France
| | - François Delhommeau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris, France.,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France.,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Jorge Domenech
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France.,EA 7501 GICC, université de Tours, Tours, France.,CHU de Tours, Service d'Hématologie Biologique, Tours, France
| | - Olivier Herault
- CNRS EMR 7001 LNOx "Leukemic niche & redox metabolism", Tours, France. .,EA 7501 GICC, université de Tours, Tours, France. .,CHU de Tours, Service d'Hématologie Biologique, Tours, France. .,FHU GOAL, Angers, France. .,Cancéropôle Grand Ouest, Nantes, France. .,CNRS GDR 3697 Micronit "Microenvironment of tumor niches", Tours, France. .,OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
37
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
38
|
Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf BJ, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2022; 81:268-277. [PMID: 34750102 PMCID: PMC8758541 DOI: 10.1136/annrheumdis-2021-221050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.
Collapse
Affiliation(s)
- Maya Malaab
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kip D. Zimmerman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Paula S. Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Marc Peters-Golden
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany J. Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas A. Medsger
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Corresponding author: Dr. Carol A. Feghali-Bostwick, Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, MSC637, Charleston, SC 29425.
| |
Collapse
|
39
|
Tonk CH, Shoushrah SH, Babczyk P, El Khaldi-Hansen B, Schulze M, Herten M, Tobiasch E. Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad? Int J Mol Sci 2022; 23:1393. [PMID: 35163315 PMCID: PMC8836178 DOI: 10.3390/ijms23031393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Collapse
Affiliation(s)
- Christian Horst Tonk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Sarah Hani Shoushrah
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Basma El Khaldi-Hansen
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| | - Monika Herten
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Str. 20, 53359 Rheinbach, Germany; (C.H.T.); (S.H.S.); (P.B.); (B.E.K.-H.); (M.S.); (E.T.)
| |
Collapse
|
40
|
Xie G, Peng Z, Liang J, Larabee SM, Drachenberg CB, Yfantis H, Raufman JP. Zinc finger protein 277 is an intestinal transit-amplifying cell marker and colon cancer oncogene. JCI Insight 2022; 7:150894. [PMID: 35015732 PMCID: PMC8876557 DOI: 10.1172/jci.insight.150894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/05/2022] [Indexed: 01/10/2023] Open
Abstract
Sustained proliferative signaling and resisting cell death are hallmarks of cancer. Zinc finger protein 277 (ZNF277; murine Zfp277), a transcription factor regulating cellular senescence, is overexpressed in colon cancer, but its actions in intestinal homeostasis and neoplasia are unclear. Using human and murine intestine, human colon cancer cells, and ApcMin/+ mice with dysregulated β-catenin signaling and exuberant intestinal neoplasia, we explored the actions of ZNF277/Zfp277 and defined the underlying mechanisms. In normal human and murine intestine, ZNF277/Zfp277 was expressed uniquely in early stem cell progenitors, undifferentiated transit-amplifying cells (TACs). Zfp277 was overexpressed in the ApcMin/+ mouse colon, implicating ZNF277/Zfp277 as a transcriptional target of β-catenin signaling. We confirmed this by showing β-catenin knockdown reduced ZNF277 expression and, using chromatin IP, identified 2 β-catenin binding sites in the ZNF277 promoter. Zfp277 deficiency attenuated intestinal epithelial cell proliferation and tumor formation, and it strikingly prolonged ApcMin/+ mouse survival. RNA-Seq and PCR analyses revealed that Zfp277 modulates expression of genes in key cancer pathways, including β-catenin signaling, the HOXD family that regulates development, and p21WAF1, a cell cycle inhibitor and tumor suppressor. In both human colon cancer cells and the murine colon, ZNF277/Zfp277 deficiency induced p21WAF1 expression and promoted senescence. Our findings identify ZNF277/Zfp277 as both a TAC marker and colon cancer oncogene that regulates cellular proliferation and senescence, in part by repressing p21WAF1 expression.
Collapse
Affiliation(s)
- Guofeng Xie
- University of Maryland School of Medicine, Baltimore, United States of America
| | - Zhongsheng Peng
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Jinqing Liang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| | - Shannon M Larabee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, United States of America
| | - Cinthia B Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States of America
| | - Harris Yfantis
- Department of Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, United States of America
| | - Jean-Pierre Raufman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
41
|
Carnesecchi J, Boumpas P, van Nierop Y Sanchez P, Domsch K, Pinto HD, Borges Pinto P, Lohmann I. The Hox transcription factor Ultrabithorax binds RNA and regulates co-transcriptional splicing through an interplay with RNA polymerase II. Nucleic Acids Res 2021; 50:763-783. [PMID: 34931250 PMCID: PMC8789087 DOI: 10.1093/nar/gkab1250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) play a pivotal role in cell fate decision by coordinating gene expression programs. Although most TFs act at the DNA layer, few TFs bind RNA and modulate splicing. Yet, the mechanistic cues underlying TFs activity in splicing remain elusive. Focusing on the Drosophila Hox TF Ultrabithorax (Ubx), our work shed light on a novel layer of Ubx function at the RNA level. Transcriptome and genome-wide binding profiles in embryonic mesoderm and Drosophila cells indicate that Ubx regulates mRNA expression and splicing to promote distinct outcomes in defined cellular contexts. Our results demonstrate a new RNA-binding ability of Ubx. We find that the N51 amino acid of the DNA-binding Homeodomain is non-essential for RNA interaction in vitro, but is required for RNA interaction in vivo and Ubx splicing activity. Moreover, mutation of the N51 amino acid weakens the interaction between Ubx and active RNA Polymerase II (Pol II). Our results reveal that Ubx regulates elongation-coupled splicing, which could be coordinated by a dynamic interplay with active Pol II on chromatin. Overall, our work uncovered a novel role of the Hox TFs at the mRNA regulatory layer. This could be an essential function for other classes of TFs to control cell diversity.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Panagiotis Boumpas
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Patrick van Nierop Y Sanchez
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Department Biology, Division of Developmental Biology, Erlangen, Germany
| | - Hugo Daniel Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pedro Borges Pinto
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany.,Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology, Heidelberg, Germany
| |
Collapse
|
42
|
A Comparative Study of the Effect of Anatomical Site on Multiple Differentiation of Adipose-Derived Stem Cells in Rats. Cells 2021; 10:cells10092469. [PMID: 34572123 PMCID: PMC8465004 DOI: 10.3390/cells10092469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from adipose tissue are evolved into various cell-based regenerative approaches. Adipose-derived stem cells (ASCs) isolated from rats are commonly used in tissue engineering studies. Still, there is a gap in knowledge about how the harvest locations influence and guide cell differentiation. This study aims to investigate how the harvesting site affects stem-cell-specific surface markers expression, pluripotency, and differentiation potential of ASCs in female Sprague Dawley rats. ASCs were extracted from the adipose tissue of the peri-ovarian, peri-renal, and mesenteric depots and were compared in terms of cell morphology. MSCs phenotype was validated by cell surfaces markers using flow cytometry. Moreover, pluripotent gene expression of Oct4, Nanog, Sox2, Rex-1, and Tert was evaluated by reverse transcriptase-polymerase chain reaction (RT-PCR). ASCs multipotency was evaluated by specific histological stains, and the results were confirmed by quantitative polymerase chain reaction (RT-qPCR) expression analysis of specific genes. There was a non-significant difference detected in the cell morphology and immunophenotype between different harvesting sites. ASCs from multiple locations were significantly varied in their capacity to differentiate into adipocytes, osteoblastic cells, and chondrocytes. To conclude, depot selection is a critical element that should be considered when using ASCs in tissue-specific cell-based regenerative therapies research.
Collapse
|
43
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
44
|
Wilmerding A, Bouteille L, Rinaldi L, Caruso N, Graba Y, Delfini MC. HOXB8 Counteracts MAPK/ERK Oncogenic Signaling in a Chicken Embryo Model of Neoplasia. Int J Mol Sci 2021; 22:8911. [PMID: 34445617 PMCID: PMC8396257 DOI: 10.3390/ijms22168911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/18/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
HOX transcription factors are members of an evolutionarily conserved family of proteins required for the establishment of the anteroposterior body axis during bilaterian development. Although they are often deregulated in cancers, the molecular mechanisms by which they act as oncogenes or tumor suppressor genes are only partially understood. Since the MAPK/ERK signaling pathway is deregulated in most cancers, we aimed at apprehending if and how the Hox proteins interact with ERK oncogenicity. Using an in vivo neoplasia model in the chicken embryo consisting in the overactivation of the ERK1/2 kinases in the trunk neural tube, we analyzed the consequences of the HOXB8 gain of function at the morphological and transcriptional levels. We found that HOXB8 acts as a tumor suppressor, counteracting ERK-induced neoplasia. The HOXB8 tumor suppressor function relies on a large reversion of the oncogenic transcriptome induced by ERK. In addition to showing that the HOXB8 protein controls the transcriptional responsiveness to ERK oncogenic signaling, our study identified new downstream targets of ERK oncogenic activation in an in vivo context that could provide clues for therapeutic strategies.
Collapse
Affiliation(s)
- Axelle Wilmerding
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Lauranne Bouteille
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Lucrezia Rinaldi
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
- Beth Israel Deaconess Medical Center, Department of Medicine and the Cancer Center, Division of Hematology, Harvard Initiative of RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Caruso
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Yacine Graba
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| | - Marie-Claire Delfini
- Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), 13288 Marseille, France; (A.W.); (L.B.); (L.R.); (N.C.)
| |
Collapse
|
45
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
46
|
Garcia-Gomez A, Li T, de la Calle-Fabregat C, Rodríguez-Ubreva J, Ciudad L, Català-Moll F, Godoy-Tena G, Martín-Sánchez M, San-Segundo L, Muntión S, Morales X, Ortiz-de-Solórzano C, Oyarzabal J, San José-Enériz E, Esteller M, Agirre X, Prosper F, Garayoa M, Ballestar E. Targeting aberrant DNA methylation in mesenchymal stromal cells as a treatment for myeloma bone disease. Nat Commun 2021; 12:421. [PMID: 33462210 PMCID: PMC7813865 DOI: 10.1038/s41467-020-20715-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD. Mesenchymal stromal cells (MSCs) have been shown to support multiple myeloma (MM) development. Here, MSCs isolated from the bone marrow of MM patients are shown to have altered DNA methylation patterns and a methyltransferase inhibitor reverts MM-associated bone loss and reduces tumour burden in MM murine models.
Collapse
Affiliation(s)
- Antonio Garcia-Gomez
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Català-Moll
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain.,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain
| | - Montserrat Martín-Sánchez
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Laura San-Segundo
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Sandra Muntión
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Xabier Morales
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Carlos Ortiz-de-Solórzano
- Imaging Platform, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, Pamplona, Spain
| | - Edurne San José-Enériz
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.,Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Xabier Agirre
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Felipe Prosper
- Division of Hemato-Oncology, Center for Applied Medical Research (CIMA), University of Navarra, IDISNA, Ciberonc, 31008, Pamplona, Spain
| | - Mercedes Garayoa
- Centro de Investigación del Cáncer, IBMCC (Universidad de Salamanca-CSIC) and Hospital Universitario de Salamanca-IBSAL, 37007, Salamanca, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Badalona, Barcelona, Spain. .,Chromatin and Disease Group, Cancer Epigenetics and Biology Programme (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
47
|
Long X, You G, Wu Q, Zhou Y, Yu F, Xiao Y, Deng S, Song F, Huang J, Tian M. Abnormal expression of homeobox c6 in the atherosclerotic aorta and its effect on proliferation and migration of rat vascular smooth muscle cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:935-943. [PMID: 32785574 DOI: 10.1093/abbs/gmaa080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 11/14/2022] Open
Abstract
Homeobox c6 (Hoxc6) affects the proliferation, migration, and infiltration of malignant tumor cells; however, the effect of Hoxc6 on atherosclerosis (AS) as well as the proliferation and migration of vascular smooth muscle cells (VSMCs), which play a role in promoting AS, has not yet been well clarified. In the present study, we tested the hypothesis that Hoxc6 affects the proliferation and migration of rat VSMCs, and hence is involved in AS. The results showed that the expression of Hoxc6 mRNA and protein was higher in normal rat aortic wall than in the myocardium. Subsequently, a rat model of AS was established by high-fat feeding for 2 months. The expression of Hoxc6 mRNA and protein was increased significantly in AS lesions, while the expression of p53 protein was decreased and that of proliferating cell nuclear antigen (PCNA) was increased. Moreover, not only the proliferation and mobility of cells in normal culture were decreased, but also the proliferation was stimulated by oxidized low-density lipoprotein, which was decreased after downregulation of Hoxc6 expression in VSMCs in rat. Consecutively, the expression of PCNA protein was decreased, while that of p53 was increased. These results indicated that Hoxc6 is probably involved in AS via p53 and PCNA by affecting the proliferation and migration of VSMCs.
Collapse
Affiliation(s)
- Xiangshu Long
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Ganhua You
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yu Zhou
- Medical College, Guizhou University, Guiyang 550025, China
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fuxun Yu
- Department of Research Laboratory Center, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| |
Collapse
|
48
|
Kulebyakina M, Makarevich P. Hox-Positive Adult Mesenchymal Stromal Cells: Beyond Positional Identity. Front Cell Dev Biol 2020; 8:624. [PMID: 32850789 PMCID: PMC7412745 DOI: 10.3389/fcell.2020.00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023] Open
Abstract
Homeotic genes (Hox) are universal regulators of the body patterning process in embryogenesis of metazoans. The Hox gene expression pattern (Hox code) retains in adult tissues and serves as a cellular positional identity marker. Despite previously existing notions that the Hox code is inherent in all stroma mesenchymal cells as a whole, recent studies have shown that the Hox code may be an attribute of a distinct subpopulation of adult resident mesenchymal stromal cells (MSC). Recent evidence allows suggesting a "non-canonical" role for Hox gene expression which is associated with renewal and regeneration in postnatal organs after damage. In tissues with high regenerative capacity, it has been shown that a special cell population is critical for these processes, a distinctive feature of which is the persistent expression of tissue-specific Hox genes. We believe that in the postnatal period Hox-positive subpopulation of resident MSC may serve as a unique regenerative reserve. These cells coordinate creation and maintenance of the correct structure of the stroma through a tissue-specific combination of mechanisms. In this article, we summarize data on the role of resident MSC with a tissue-specific pattern of Hox gene expression as regulators of correct tissue reconstruction after injury.
Collapse
Affiliation(s)
- Maria Kulebyakina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Makarevich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Gene and Cell Therapy, Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
49
|
Squillaro T, Peluso G, Galderisi U, Di Bernardo G. Long non-coding RNAs in regulation of adipogenesis and adipose tissue function. eLife 2020; 9:59053. [PMID: 32730204 PMCID: PMC7392603 DOI: 10.7554/elife.59053] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
50
|
Genome-wide DNA methylation analysis of KRAS mutant cell lines. Sci Rep 2020; 10:10149. [PMID: 32576853 PMCID: PMC7311523 DOI: 10.1038/s41598-020-66797-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 differentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in differentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream effector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer.
Collapse
|