1
|
Niharika, Garg M. Understanding the autophagic functions in cancer stem cell maintenance and therapy resistance. Expert Rev Mol Med 2024; 26:e23. [PMID: 39375840 PMCID: PMC11488345 DOI: 10.1017/erm.2024.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/25/2023] [Accepted: 06/25/2024] [Indexed: 10/09/2024]
Abstract
Complex tumour ecosystem comprising tumour cells and its associated tumour microenvironment (TME) constantly influence the tumoural behaviour and ultimately impact therapy failure, disease progression, recurrence and poor overall survival of patients. Crosstalk between tumour cells and TME amplifies the complexity by creating metabolic changes such as hypoxic environment and nutrient fluctuations. These changes in TME initiate stem cell-like programmes in cancer cells, contribute to tumoural heterogeneity and increase tumour robustness. Recent studies demonstrate the multifaceted role of autophagy in promoting fibroblast production, stemness, cancer cell survival during longer periods of dormancy, eventual growth of metastatic disease and disease resistance. Recent ongoing studies examine autophagy/mitophagy as a powerful survival strategy in response to environmental stress including nutrient deprivation, hypoxia and environmental stress in TME. It prevents irreversible senescence, promotes dormant stem-like state, induces epithelial-mesenchymal transition and increases migratory and invasive potential of tumour cells. The present review discusses various theories and mechanisms behind the autophagy-dependent induction of cancer stem cell (CSC) phenotype. Given the role of autophagic functions in CSC aggressiveness and therapeutic resistance, various mechanisms and studies based on suppressing cellular plasticity by blocking autophagy as a powerful therapeutic strategy to kill tumour cells are discussed.
Collapse
Affiliation(s)
- Niharika
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| |
Collapse
|
2
|
Qin L, Wu J. Targeting anticancer immunity in oral cancer: Drugs, products, and nanoparticles. ENVIRONMENTAL RESEARCH 2023; 239:116751. [PMID: 37507044 DOI: 10.1016/j.envres.2023.116751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Oral cavity carcinomas are the most frequent malignancies among head and neck malignancies. Oral tumors include not only oral cancer cells with different potency and stemness but also consist of diverse cells, containing anticancer immune cells, stromal and also immunosuppressive cells that influence the immune system reactions. The infiltrated T and natural killer (NK) cells are the substantial tumor-suppressive immune compartments in the tumor. The infiltration of these cells has substantial impacts on the response of tumors to immunotherapy, chemotherapy, and radiotherapy. Nevertheless, cancer cells, stromal cells, and some other compartments like regulatory T cells (Tregs), macrophages, and myeloid-derived suppressor cells (MDSCs) can repress the immune responses against malignant cells. Boosting anticancer immunity by inducing the immune system or repressing the tumor-promoting cells is one of the intriguing approaches for the eradication of malignant cells such as oral cancers. This review aims to concentrate on the secretions and interactions in the oral tumor immune microenvironment. We review targeting tumor stroma, immune system and immunosuppressive interactions in oral tumors. This review will also focus on therapeutic targets and therapeutic agents such as nanoparticles and products with anti-tumor potency that can boost anticancer immunity in oral tumors. We also explain possible future perspectives including delivery of various cells, natural products and drugs by nanoparticles for boosting anticancer immunity in oral tumors.
Collapse
Affiliation(s)
- Liling Qin
- Gezhouba Central Hospital of the Third Clinical Medical College of Three Gorges University, Yichang, Hubei, 443002, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei, 434000, China.
| |
Collapse
|
3
|
Mir C, Garcia-Mayea Y, Garcia L, Herrero P, Canela N, Tabernero R, Lorente J, Castellvi J, Allonca E, García-Pedrero J, Rodrigo JP, Carracedo Á, LLeonart ME. SDCBP Modulates Stemness and Chemoresistance in Head and Neck Squamous Cell Carcinoma through Src Activation. Cancers (Basel) 2021; 13:cancers13194952. [PMID: 34638436 PMCID: PMC8508472 DOI: 10.3390/cancers13194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Drug resistance is the principal limiting factor to achieving good survival rates in patients with cancer. The identification of potential biomarkers for diagnosis and prognostic prediction, as well as the design of new molecular-targeted treatments, will be essential to improving head and neck squamous cell carcinoma (HNSCC) patient outcomes. In this sense, the sensitization of resistant cells and cancer stem cells (CSCs) represents a major challenge in cancer therapy. We conducted a proteomic study involving cisplatin-resistance and CSCs with the aim to unravel the molecular and cellular mechanisms by which tumor cells acquire resistance to chemotherapy. Syntenin-1 (SDCBP) was identified as an important protein involved in the chemoresistance and stemness of HNSCC tumors. Abstract To characterize the mechanisms that govern chemoresistance, we performed a comparative proteomic study analyzing head and neck squamous cell carcinoma (HNSCC) cells: CCL-138 (parental), CCL-138-R (cisplatin-resistant), and cancer stem cells (CSCs). Syntenin-1 (SDCBP) was upregulated in CCL-138-R cells and CSCs over parental cells. SDCBP depletion sensitized biopsy-derived and established HNSCC cell lines to cisplatin (CDDP) and reduced CSC markers, Src activation being the main SDCBP downstream target. In mice, SDCBP-depleted cells formed tumors with decreased mitosis, Ki-67 positivity, and metastasis over controls. Moreover, the fusocellular pattern of CCL-138-R cell-derived tumors reverted to a more epithelial morphology upon SDCBP silencing. Importantly, SDCBP expression was associated with Src activation, poor differentiated tumor grade, advanced tumor stage, and shorter survival rates in a series of 382 HNSCC patients. Our results reveal that SDCBP might be a promising therapeutic target for effectively eliminating CSCs and CDDP resistance.
Collapse
Affiliation(s)
- Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Laia Garcia
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Nuria Canela
- Eurecat, Centre Tecnològic de Catalunya–Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain; (P.H.); (N.C.)
| | - Rocío Tabernero
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Juan Lorente
- Otorhinolaryngology Department, Hospital Vall d’Hebron (HUVH), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain; (R.T.); (J.L.)
| | - Josep Castellvi
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
| | - Eva Allonca
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
| | - Juana García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Juan Pablo Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Principado de Asturias, IUOPA, University of Oviedo, 33011 Oviedo, Spain or (E.A.); (J.G.-P.); (J.P.R.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, 15706 Santiago de Compostela, Spain;
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (C.M.); (Y.G.-M.); (L.G.); (J.C.)
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4894169
| |
Collapse
|
4
|
Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma-Treatment Modalities. BALKAN JOURNAL OF DENTAL MEDICINE 2021. [DOI: 10.2478/bjdm-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Head and neck squamous cell carcinoma (HNSCC) belongs to the most frequent cancer subtypes in the world. Mutations due to genetic and chromosomal instability, syndromes such as Fanconi anemia and the Bloom syndrome, environmental risk factors such as tobacco smoking, alcohol and human papillomavirus infection (HPV) subtypes 16,18,31,33,35,52,58 are implicated in its pathogenesis. The HNSCC belongs to the solid tumors of epithelial origin and consists of stromal, inflammatory, cancer cells and most importantly a fraction of them, the cancer stem cells (CSCs). The identification of the CSCs through their biomarkers such as CD44, CD10, CD166, CD133, CD271, ALDH, Oct4, Nanog, Sox2 and Bmi1, the maintenance of their subpopulation through epithelial to mesenchymal transition, the role of HPV infection regarding their prognosis and of their microenvironment regarding their resistance to therapy, all constitute key elements that must be taken thoroughly into consideration in order to develop an effective targeted therapy. There are already therapies in place targeting specific related biomarkers, important biochemical pathways and growth factors. The aim of this literature review is to illustrate the treatment modalities available against the cancer stem cells of head and neck squamous cell carcinoma.
Collapse
|
5
|
Lim JR, Mouawad J, Gorton OK, Bubb WA, Kwan AH. Cancer stem cell characteristics and their potential as therapeutic targets. Med Oncol 2021; 38:76. [PMID: 34050825 DOI: 10.1007/s12032-021-01524-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a tumour subpopulation whose capacity for self-renewal, differentiation and proliferation generates unfavourable patient outcomes, including therapeutic resistance and metastasis. Much research has focused on the generation, biomarkers and therapeutic resistance of CSCs, as well as the development of CSC-targeted therapies. Reviews to date have either addressed general CSC characteristics or focused on CSCs from a well-studied cancer. Increasingly, specific treatment plans based on identification of molecular features and biomarkers of a patient's cancer, rather than classification according to tissue origin or bulk tumour properties, are leading to better patient outcomes. Here, we compare CSC characteristics, specifically their biomarkers and molecular features, and identify those that are common to a number of cancers. Identification of CSC markers that suggest therapeutic strategies has led to several successful in vitro and animal tests, recommending clinical trials of treatments with potentially enhanced therapeutic benefits, especially for recurring cancers.
Collapse
Affiliation(s)
| | | | | | | | - Ann H Kwan
- The University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Mallery SR, Wang D, Santiago B, Pei P, Bissonnette C, Jayawardena JA, Schwendeman SP, Spinney R, Lang J. Fenretinide, Tocilizumab, and Reparixin Provide Multifaceted Disruption of Oral Squamous Cell Carcinoma Stem Cell Properties: Implications for Tertiary Chemoprevention. Mol Cancer Ther 2019; 18:2308-2320. [PMID: 31515297 PMCID: PMC6891199 DOI: 10.1158/1535-7163.mct-19-0361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022]
Abstract
Locoregional recurrence of oral squamous cell carcinoma (OSCC) dramatically reduces patient survival. Further, as many OSCC recurrences are inoperable, radiotherapy and chemotherapy with or without biological adjuncts are the remaining treatment options. Although the tumors may initially respond, radiotherapy- and chemotherapy-resistant cancer stem cells (CSC) can readily repopulate OSCC tumors. Currently, following the initial OSCC treatment, patients are closely monitored until a recurrence or a second primary is detected. Identification of agents with complementary mechanisms to suppress CSC tumorigenic functions could change this passive approach. The goals of this study were twofold: (1) develop and validate CSC-enriched (CSCE) OSCC cell lines and (2) identify chemopreventive agents that obstruct multiple CSCE protumorigenic pathways. CSCE cultures, which were created by paclitaxel treatment followed by three tumorsphere passes, demonstrated CSC characteristics, including increased expression of stem cell and inflammatory genes, increased aldehyde dehydrogenase (ALDH) activity, and enhanced in vitro/in vivo proliferation and invasion. Three chemopreventives, fenretinide, tocilizumab, and reparixin, were selected due to their distinct and complementary CSC-disruptive mechanisms. The CSCE selection process modulated the cells' intermediate filaments resulting in an epithelial-predominant (enhanced cytokeratin, proliferation, IL6 release) line and a mesenchymal-predominant (upregulated vimentin, invasive, IL8 release) line. Our results confirm that 4HPR binds with appreciably higher affinity than Wnt at the Frizzled binding site and significantly inhibits CSC-enabling Wnt-β-catenin downstream signaling. Notably, combination fenretinide-tocilizumab-reparixin treatment significantly suppressed IL6 and IL8 release, stem cell gene expression, and invasion in these diverse CSCE populations. These promising multiagent in vitro data provide the basis for our upcoming in vivo CSCE tertiary chemoprevention studies.
Collapse
Affiliation(s)
- Susan R Mallery
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio.
- The Ohio State University Comprehensive Cancer, Columbus, Ohio
| | - Daren Wang
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Brian Santiago
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Ping Pei
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Caroline Bissonnette
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Jayanetti Asiri Jayawardena
- Division of Oral Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, Ohio
| | | | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - James Lang
- The Ohio State University Comprehensive Cancer, Columbus, Ohio
- Department of Otolaryngology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:89-102. [PMID: 29139089 DOI: 10.1007/5584_2017_116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.
Collapse
|
8
|
Silva Galbiatti-Dias AL, Fernandes GMM, Castanhole-Nunes MMU, Hidalgo LF, Nascimento Filho CHV, Kawasaki-Oyama RS, Ferreira LAM, Biselli-Chicote PM, Pavarino ÉC, Goloni-Bertollo EM. Relationship between CD44 high/CD133 high/CD117 high cancer stem cells phenotype and Cetuximab and Paclitaxel treatment response in head and neck cancer cell lines. Am J Cancer Res 2018; 8:1633-1641. [PMID: 30210931 PMCID: PMC6129494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023] Open
Abstract
Recent evidence suggests that cancer stem cells (CSCs), a small population of cancer cells that are highly tumourigenic, capable of self-renewal and have the ability to differentiate into cells that constitute the tumor, are the "drivers" of local recurrence and metastatic spread and may be associated with resistant to conventional therapy. The objectives of the study are to identify and characterize two head and neck cancer cell lines with regard CD44high/CD133high/CD117high profile (CSCs) and CD44low/CD133low/CD117low profile (Non-CSCs); to investigate the influence of chemotherapy treatment in CSCs and compare with Non-CSCs; to evaluate CD44 and EGFR gene expression in CSCs. Fluorescent-activated cell sorting (FACS) using specific cell surface marker combination (CD44, CD117 and CD133) was performed to isolate CSCs of Non-CSCs from cell lines. The Wound Healing assay was performed to confirm the presence of CSCs. After, the CSCs subpopulation and Non-CSCs were cultured and exposed for 24 h to Cetuximab and Paclitaxel treatment, separately. Cell proliferation was determined by MTS assay. CD44 and EGFR gene expression was quantified by quantitative real time PCR (qPCR) using TaqMan® Assay in both subpopulations. CSCs subpopulation untreated were considered as relative expression control. We firstly characterized CSCs in HN13 and HEP-2 cell lines with CD44, CD133 and CD117 biomarkers. We treated CSCs and Non-CSCs subpopulations with Cetuximab and Paclitaxel treatment and found that CSCs subpopulations demonstrated more resistance to Paclitaxel chemoterapy, when compared with Non-CSCs subpopulations of oral cancer cell line. These CSCs subpopulations presented up-regulation of CD44 gene and down-regulation of EGFR gene in oral cancer cell line, and down-regulation of CD44 gene and up-regulation of EGFR gene in laryngeal cancer cell line when compared with Non-CSCs subpopulations. We conclude that the combination of CD44, CD133 and CD117 biomarkers have stem cell properties in both cell lines. CSCs has ability to resist to Paclitaxel treatment in oral cancer cell line. CSCs present high expression of CD44 gene and down expression of EGFR gene in oral cancer cell line. CSCs in laryngeal cell line present down expression of CD44 gene and high expression of EGFR gene when compared with cells without characteristics of cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Luiza Fernandes Hidalgo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP) SP, Brazil
| | | | - Rosa Sayoko Kawasaki-Oyama
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP) SP, Brazil
| | | | | | - Érika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP) SP, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP) SP, Brazil
| |
Collapse
|
9
|
Nikitakis NG, Gkouveris I, Aseervatham J, Barahona K, Ogbureke KUE. DSPP-MMP20 gene silencing downregulates cancer stem cell markers in human oral cancer cells. Cell Mol Biol Lett 2018; 23:30. [PMID: 30002682 PMCID: PMC6040065 DOI: 10.1186/s11658-018-0096-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recent findings indicate that dentin sialophosphoprotein (DSPP) and matrix metalloproteinase (MMP) 20 interact in oral squamous cell carcinoma (OSCC). The objective of this study was to determine the effects of DSPP/MMP20 gene silencing on oral cancer stem cell (OCSC) markers. METHODS The expression of well-established OCSC markers: ABCG2; ALDH1; CD133; CD44; BMI1; LGR4, and Podoplanin in DSPP/MMP20-silenced OSCC cell line, OSC2, and controls were assayed by western blot (WB), and flow cytometry techniques. The sensitivity of OSC2 cells to cisplatin following DSPP/MMP20 silencing was also determined. RESULTS DSPP/MMP20 silencing resulted in downregulation of OCSC markers, more profoundly ABCG2 (84%) and CD44 (81%), following double silencing. Furthermore, while treatment of parent (pre-silenced) OSC2 cells with cisplatin resulted in upregulation of OCSC markers, DSPP/MMP20-silenced OSC2 cells similarly treated resulted in profound downregulation of OCSC markers (72 to 94% at 50 μM of cisplatin), and a marked reduction in the proportion of ABCG2 and ALDH1 positive cells (~ 1%). CONCLUSIONS We conclude that the downregulation of OCSC markers may signal a reduction in OCSC population following MMP20/DSPP silencing in OSCC cells, while also increasing their sensitivity to cisplatin. Thus, our findings suggest a potential role for DSPP and MMP20 in sustaining OCSC population in OSCCs, possibly, through mechanism(s) that alter OCSC sensitivity to treatment with chemotherapeutic agents such as cisplatin.
Collapse
Affiliation(s)
- Nikolaos G. Nikitakis
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
- Department of Oral Pathology and Medicine, School of Dentistry, University of Athens, Athens, Greece
| | - Ioannis Gkouveris
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Jaya Aseervatham
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kelvin Barahona
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| | - Kalu U. E. Ogbureke
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Sciences Center at Houston School of Dentistry, 7500 Cambridge Street, Houston, TX 77054 USA
| |
Collapse
|
10
|
Nikitakis NG, Pentenero M, Georgaki M, Poh CF, Peterson DE, Edwards P, Lingen M, Sauk JJ. Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:650-669. [DOI: 10.1016/j.oooo.2018.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
|
11
|
Acid sphingomyelinase activity as an indicator of the cell stress in HPV-positive and HPV-negative head and neck squamous cell carcinoma. Med Oncol 2018; 35:58. [PMID: 29564578 DOI: 10.1007/s12032-018-1117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) infection, especially HPV-16 and HPV-18, has been increasingly associated with head and neck squamous cell carcinoma. The treatment of HPV-positive squamous cell carcinoma has a better response to both radiotherapy and chemotherapy and presents a better prognosis for the patient. Defining the underlying mechanism of the difference might help in developing future treatment options and could be an important factor in personal therapy planning. Endogenously secreted acid sphingomyelinase (ASMase) levels in the cellular stress caused by irradiation and cisplatin were investigated. MTT assay was performed to evaluate the viability of the treated cells. Keratinocytes were used to evaluate the effects of radiation on normal tissues. Irradiation caused a dose-dependent increase in ASMase activity in both SCC9 HPV-negative, and UDSCC2 HPV-positive cells. ASMase activity in UDSCC2 cells was significantly higher than that in SCC9 cells. UDSCC cells were more sensitive to cisplatin treatment than SCC cells, and the dose-response in the activity was observed in long-time treatments when high doses of cisplatin were used. The results of the current study have clearly showed that HPV positivity should be considered as one of the determinative factors which should be considered when tumor treatments are planned. However, further studies are needed to determine the differences in cellular responses and pathways among HPV-negative and HPV-positive cells.
Collapse
|
12
|
Kim YS, Lee HJ, Park JM, Han YM, Kangwan N, Oh JY, Lee DY, Hahm KB. Targeted molecular ablation of cancer stem cells for curing gastrointestinal cancers. Expert Rev Gastroenterol Hepatol 2017; 11:1059-1070. [PMID: 28707966 DOI: 10.1080/17474124.2017.1356224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundance of the ATPase-binding cassette (ABC) transporters and deranged self-renewal pathways characterize the presence of cancer stem cells (CSCs) in gastrointestinal cancers (GI cancers), which play crucial roles in tumorigenesis, chemotherapy resistance, tumor recurrence, and cancer metastasis. Therefore, in order to ensure high cure rates, chemoquiescence, CSCs should be ablated. Recent advances in either understanding CSCs or biomarker identification enable scientists to develop techniques for ablating CSCs and clinicians to provide cancer cure, especially in GI cancers characterized by inflammation-driven carcinogenesis. Areas covered: A novel approach to ablate CSCs in GI cancers, including esophageal, gastric, and colon cancers, is introduced along with explored underlying molecular mechanisms. Expert commentary: Though CSC ablation is still in the empirical stages and not in clinical practice, several strategies for ablating CSCs in GI cancers had been published, proton-pump inhibitors (PPIs) that regulate the membrane-bound ABC transporters, which underlie drug resistance; chloroquine (CQ) that inhibits autophagy, which is responsible for tumor survival; Hedgehog/Wnt/Notch inhibitors that influence the underlying stem-cell growth, and some natural products including Korean red ginseng, cancer-preventive kimchi, Artemisia extract, EGCG from green tea, and walnut extracts.
Collapse
Affiliation(s)
- Yong Seok Kim
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea
| | - Ho Jae Lee
- b Department of Biochemistry , Gachon University College of Medicine , Incheon , Korea
| | - Jong-Min Park
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Young-Min Han
- c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea
| | - Napapan Kangwan
- d Division of Physiology, School of Medical Sciences , University of Phayao , Phayao , Thailand
| | | | | | - Ki Baik Hahm
- a Department of Biochemistry and Molecular Biology , Hanyang University College of Medicine , Seoul , Korea.,c CHA Cancer Prevention Research Center , CHA University , Seongnam , Korea.,f Digestive Disease Center , CHA University Bundang Medical Center , Seongnam , Korea
| |
Collapse
|
13
|
Ma H, Jin S, Yang W, Tian Z, Liu S, Wang Y, Zhou G, Zhao M, Gvetadze S, Zhang Z, Hu J. Interferon-α Promotes the Expression of Cancer Stem Cell Markers in Oral Squamous Cell Carcinoma. J Cancer 2017; 8:2384-2393. [PMID: 28819442 PMCID: PMC5560157 DOI: 10.7150/jca.19486] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Objectives: IFNα can stimulate an antitumor immune response and has a direct inhibition on cancer cells. This study is to test whether IFNα can activate dormant cancer stem cell (CSC) in oral squamous cell carcinoma (OSCC) to facilitate their elimination by chemotherapy. Materials and methods: Nude mouse transplantation tumor model was established and administrated with IFNα and saline. The influence on CD44 and ALDH1A1 expression under IFNα treatment was detected by in vivo experiments. Flow cytometry, western blot, and immunofluorescence were used to detect the expression of CD44 and ALDH1A1 after INFa treatment in OSCC cell lines. Tumorsphere formation assay was conducted under incubation with IFNα for 2 weeks. Chromatin immunoprecipitation (ChIP) assays was used to examine the IFNα-induced transcriptional regulation of CD44 and ALDH1A1 expression. That IFNα-primed enhanced killing effect of chemotherapy was evaluated by MTT and western blot. Results: IFNα transcriptionally activated the expression of CD44 and ALDH1A1 expression both in vivo and in vitro. IFNα-primed enhanced the cytotoxic inhibition effect of CDDP, erlotinib and nimotuzumab on OSCC cells. Conclusion: These results suggest that IFNα could be administrated to patients prior to chemotherapeutic drugs, which will facilitate the killing of cancer stem cells in OSCC.
Collapse
Affiliation(s)
- Hailong Ma
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shufang Jin
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenyi Yang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zhuowei Tian
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Shuli Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yang Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shalva Gvetadze
- Central Research Institute of Dentistry and Maxillofacial Surgery, Congenital Maxillofacial Defects and Deformations, Timura Frunze 16, Moscow 119034, Russia
| | - Zhiyuan Zhang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jingzhou Hu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| |
Collapse
|
14
|
Adeola HA, Soyele OO, Adefuye AO, Jimoh SA, Butali A. Omics-based molecular techniques in oral pathology centred cancer: prospect and challenges in Africa. Cancer Cell Int 2017; 17:61. [PMID: 28592923 PMCID: PMC5460491 DOI: 10.1186/s12935-017-0432-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The completion of the human genome project and the accomplished milestones in the human proteome project; as well as the progress made so far in computational bioinformatics and "big data" processing have contributed immensely to individualized/personalized medicine in the developed world. MAIN BODY At the dawn of precision medicine, various omics-based therapies and bioengineering can now be applied accurately for the diagnosis, prognosis, treatment, and risk stratification of cancer in a manner that was hitherto not thought possible. The widespread introduction of genomics and other omics-based approaches into the postgraduate training curriculum of diverse medical and dental specialties, including pathology has improved the proficiency of practitioners in the use of novel molecular signatures in patient management. In addition, intricate details about disease disparity among different human populations are beginning to emerge. This would facilitate the use of tailor-made novel theranostic methods based on emerging molecular evidences. CONCLUSION In this review, we examined the challenges and prospects of using currently available omics-based technologies vis-à-vis oral pathology as well as prompt cancer diagnosis and treatment in a resource limited setting.
Collapse
Affiliation(s)
- Henry A. Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape and Tygerberg Hospital, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Olujide O. Soyele
- Department of Oral Maxillo-facial Surgery and Oral Pathology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Anthonio O. Adefuye
- Division of Health Sciences Education, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Sikiru A. Jimoh
- Department of Anatomical Sciences, Faculty of Health Sciences, Walter Sisulu University, Mthatha, Eastern Cape South Africa
| | - Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, University of Iowa, Iowa City, IA USA
| |
Collapse
|
15
|
Real-life efficacy of volumetric modulated arc therapy in head and neck squamous cell carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis 2017; 134:165-169. [DOI: 10.1016/j.anorl.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Lee J, Park M, Ko Y, Kim B, Kim O, Hyun H, Kim D, Sohn H, Moon YL, Lim W. Ectopic overexpression of CD133 in HNSCC makes it resistant to commonly used chemotherapeutics. Tumour Biol 2017; 39:1010428317695534. [PMID: 28381190 DOI: 10.1177/1010428317695534] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. Resistance to cytotoxic chemotherapy is a major cause of mortality in patients with HNSCC. A small subset of cancer cells called cancer stem cells (CSCs) may be key contributors to drug resistance and tumor recurrence in HNSCC. The aim of this study was to determine whether CD133, which maintains properties of CSCs, promotes chemoresistance by arresting cell cycle transition and reducing apoptosis in HNSCC cells. CD133 overexpression was examined in KB cells, and colony forming and aldehyde dehydrogenase activity assays were performed. To investigate the role of CD133 in chemoresistance, cell death was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Diff-Quick, flow cytometry, and western blot of apoptosis-related protein expression in fluorouracil (5-FU)- or cisplatin-treated cells. In addition, microarray and related protein expression assessments were performed to investigate the mechanism of chemoresistance against 5-FU and cisplatin in KB cells. Moreover, chemoresistance against 5-FU or cisplatin in a KB-inoculated mouse model was analyzed by hematoxylin and eosin staining, immunohistochemical study of CD133, and immunofluorescence of tumor tissue. In this study, we demonstrate that ectopic overexpression of CD133 significantly promotes properties of stemness in KB cell lines. Furthermore, CD133 promotes chemoresistance by arresting transition of the cell cycle and reducing apoptosis, which results in inhibition of tumor growth in 5-FU- or cisplatin-injected mouse tumor model. Taken together, our findings show that elevated levels of CD133 lead to HNSCC chemoresistance through increased stemness and cell cycle arrest.
Collapse
Affiliation(s)
- Junyoung Lee
- 1 Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, Korea
| | - Mineon Park
- 2 Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Korea
| | - Youngjong Ko
- 2 Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Korea
| | - Bora Kim
- 2 Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Korea
| | - Okjoon Kim
- 3 Department of Oral Pathology, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hoon Hyun
- 4 Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - DongHwi Kim
- 1 Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, Korea
| | - HongMoon Sohn
- 1 Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, Korea
| | - Young Lae Moon
- 1 Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, Korea
| | - Wonbong Lim
- 1 Department of Orthopaedic Surgery, Chosun University Hospital, Gwangju, Korea.,2 Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
17
|
Rancoule C, Vallard A, Espenel S, Guy JB, Xia Y, El Meddeb Hamrouni A, Rodriguez-Lafrasse C, Chargari C, Deutsch E, Magné N. Immunotherapy in head and neck cancer: Harnessing profit on a system disruption. Oral Oncol 2016; 62:153-162. [DOI: 10.1016/j.oraloncology.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 09/04/2016] [Indexed: 12/25/2022]
|
18
|
Vallard A, Espenel S, Guy JB, Diao P, Xia Y, El Meddeb Hamrouni A, Ben Mrad M, Falk AT, Rodriguez-Lafrasse C, Rancoule C, Magné N. Targeting stem cells by radiation: From the biological angle to clinical aspects. World J Stem Cells 2016; 8:243-250. [PMID: 27621758 PMCID: PMC4999651 DOI: 10.4252/wjsc.v8.i8.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/18/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is a cornerstone of anticancer treatment. However in spite of technical evolutions, important rates of failure and of toxicity are still reported. Although numerous pre-clinical data have been published, we address the subject of radiotherapy-stem cells interaction from the clinical efficacy and toxicity perspective. On one side, cancer stem cells (CSCs) have been recently evidenced in most of solid tumor primary locations and are thought to drive radio-resistance phenomena. It is particularly suggested in glioblastoma, where CSCs were showed to be housed in the subventricular zone (SVZ). In recent retrospective studies, the radiation dose to SVZ was identified as an independent factor significantly influencing overall survival. On the other side, healthy tissue stem cells radio-destruction has been recently suggested to cause two of the most quality of life-impacting side effects of radiotherapy, namely memory disorders after brain radiotherapy, and xerostomia after head and neck radiotherapy. Recent publications studying the impact of a radiation dose decrease on healthy brain and salivary stem cells niches suggested significantly reduced long term toxicities. Stem cells comprehension should be a high priority for radiation oncologists, as this particular cell population seems able to widely modulate the efficacy/toxicity ratio of radiotherapy in real life patients.
Collapse
|
19
|
Addeo R, Caraglia M, Iuliano G. Pembrolizumab: the value of PDL1 biomarker in head and neck cancer. Expert Opin Biol Ther 2016; 16:1075-8. [PMID: 27408990 DOI: 10.1080/14712598.2016.1211635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Raffaele Addeo
- a U.O. Oncologia, ASL NA2 NORD , Department of Oncology , Frattamaggiore , Italy
| | - Michele Caraglia
- b Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Giada Iuliano
- c Merck Sharp Dohme , Department of Oncology , Milan , Italy
| |
Collapse
|