1
|
Okamura D, Kohara A, Chigi Y, Katayama T, Sharif J, Wu J, Ito-Matsuoka Y, Matsui Y. p38 MAPK as a gatekeeper of reprogramming in mouse migratory primordial germ cells. Front Cell Dev Biol 2024; 12:1410177. [PMID: 38911025 PMCID: PMC11191381 DOI: 10.3389/fcell.2024.1410177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.
Collapse
Affiliation(s)
- Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
3
|
Seki S, Ohura K, Miyazaki T, Naser AA, Takabayashi S, Tsutsumi E, Tokumoto T. The Mc4r gene is responsible for the development of experimentally induced testicular teratomas. Sci Rep 2023; 13:6756. [PMID: 37127675 PMCID: PMC10151343 DOI: 10.1038/s41598-023-32784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/02/2023] [Indexed: 05/03/2023] Open
Abstract
Teratomas in mice, composed of different tissue types, are derived from primordial germ cells in the fetal gonads. Previously, we identified a locus responsible for experimental testicular teratoma (ETT) formation on chromosome 18, referred to as ett1. The strongest candidate sequence in the ett1 locus was found to be a missense mutation in the melanocortin 4 receptor (Mc4r), Mc4rG25S. We established a strain with a point mutation in the Mc4r gene in the ETT-nonsusceptible LT strain, called LT- Mc4rG25S, by genome editing. Surprisingly, highly developed ovarian teratomas (OTs), rather than testicular teratomas, appeared in the LT-Mc4rG25S strain. The results demonstrated that Mc4r is also one of the genes responsible for OT formation and suggested that missense mutations in Mc4r promote teratoma formation in both sexes. In this study, we performed ETT experiments in different host-graft combinations of the LT-Mc4rG25S and LT strains. Furthermore, the expression of MC4R in germ cells in the testis was demonstrated. Expression of Mc4r in testis was also confirmed by RT-PCR. The results demonstrated that MC4R is expressed in germ cells in the testis and that a point mutation in the Mc4r gene is responsible for ETT formation.
Collapse
Affiliation(s)
- Syunsuke Seki
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Kaoru Ohura
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Takehiro Miyazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Abdullah An Naser
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-Ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Eisei Tsutsumi
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan.
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
- Biological Science Course, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
4
|
Sun Y, Li Y, Zong Y, Mehaisen GMK, Chen J. Poultry genetic heritage cryopreservation and reconstruction: advancement and future challenges. J Anim Sci Biotechnol 2022; 13:115. [PMID: 36210477 PMCID: PMC9549680 DOI: 10.1186/s40104-022-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Poultry genetics resources, including commercial selected lines, indigenous breeds, and experimental lines, are now being irreversibly lost at an alarming rate due to multiple reasons, which further threats the future livelihood and academic purpose. Collections of germplasm may reduce the risk of catastrophic loss of genetic diversity by guaranteeing that a pool of genetic variability is available to ensure the reintroduction and replenishment of the genetic stocks. The setting up of biobanks for poultry is challenging because the high sensitiveness of spermatozoa to freezing–thawing process, inability to cryopreserve the egg or embryo, coupled with the females being heterogametic sex. The progress in cryobiology and biotechnologies have made possible the extension of the range of germplasm for poultry species available in cryobanks, including semen, primordial germ cells, somatic cells and gonads. In this review, we introduce the state-of-the-art technologies for avian genetic resource conservation and breed reconstruction, and discuss the potential challenges for future study and further extending of these technologies to ongoing and future conservation efforts.
Collapse
|
5
|
Chakraborty AR, Vassilev A, Jaiswal SK, O'Connell CE, Ahrens JF, Mallon BS, Pera MF, DePamphilis ML. Selective elimination of pluripotent stem cells by PIKfyve specific inhibitors. Stem Cell Reports 2022; 17:397-412. [PMID: 35063131 PMCID: PMC8828683 DOI: 10.1016/j.stemcr.2021.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 01/05/2023] Open
Abstract
Inhibition of PIKfyve phosphoinositide kinase selectively kills autophagy-dependent cancer cells by disrupting lysosome homeostasis. Here, we show that PIKfyve inhibitors can also selectively eliminate pluripotent embryonal carcinoma cells (ECCs), embryonic stem cells, and induced pluripotent stem cells under conditions where differentiated cells remain viable. PIKfyve inhibitors prevented lysosome fission, induced autophagosome accumulation, and reduced cell proliferation in both pluripotent and differentiated cells, but they induced death only in pluripotent cells. The ability of PIKfyve inhibitors to distinguish between pluripotent and differentiated cells was confirmed with xenografts derived from ECCs. Pretreatment of ECCs with the PIKfyve specific inhibitor WX8 suppressed their ability to form teratocarcinomas in mice, and intraperitoneal injections of WX8 into mice harboring teratocarcinoma xenografts selectively eliminated pluripotent cells. Differentiated cells continued to proliferate, but at a reduced rate. These results provide a proof of principle that PIKfyve specific inhibitors can selectively eliminate pluripotent stem cells in vivo as well as in vitro.
Collapse
Affiliation(s)
- Arup R Chakraborty
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Alex Vassilev
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Sushil K Jaiswal
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Constandina E O'Connell
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - John F Ahrens
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA
| | - Barbara S Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Melvin L DePamphilis
- National Institute of Child Health & Human Development, National Institutes of Health, Bldg. 6A/3A15, 6 Center Drive, Bethesda, MD 20892-2790, USA.
| |
Collapse
|
6
|
Sekita Y, Sugiura Y, Matsumoto A, Kawasaki Y, Akasaka K, Konno R, Shimizu M, Ito T, Sugiyama E, Yamazaki T, Kanai E, Nakamura T, Suematsu M, Ishino F, Kodera Y, Kohda T, Kimura T. AKT signaling is associated with epigenetic reprogramming via the upregulation of TET and its cofactor, alpha-ketoglutarate during iPSC generation. Stem Cell Res Ther 2021; 12:510. [PMID: 34563253 PMCID: PMC8467031 DOI: 10.1186/s13287-021-02578-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background Phosphoinositide-3 kinase (PI3K)/AKT signaling participates in cellular proliferation, survival and tumorigenesis. The activation of AKT signaling promotes the cellular reprogramming including generation of induced pluripotent stem cells (iPSCs) and dedifferentiation of primordial germ cells (PGCs). Previous studies suggested that AKT promotes reprogramming by activating proliferation and glycolysis. Here we report a line of evidence that supports the notion that AKT signaling is involved in TET-mediated DNA demethylation during iPSC induction. Methods AKT signaling was activated in mouse embryonic fibroblasts (MEFs) that were transduced with OCT4, SOX2 and KLF4. Multiomics analyses were conducted in this system to examine the effects of AKT activation on cells undergoing reprogramming. Results We revealed that cells undergoing reprogramming with artificially activated AKT exhibit enhanced anabolic glucose metabolism and accordingly increased level of cytosolic α-ketoglutarate (αKG), which is an essential cofactor for the enzymatic activity of the 5-methylcytosine (5mC) dioxygenase TET. Additionally, the level of TET is upregulated. Consistent with the upregulation of αKG production and TET, we observed a genome-wide increase in 5-hydroxymethylcytosine (5hmC), which is an intermediate in DNA demethylation. Moreover, the DNA methylation level of ES-cell super-enhancers of pluripotency-related genes is significantly decreased, leading to the upregulation of associated genes. Finally, the transduction of TET and the administration of cell-permeable αKG to somatic cells synergistically enhance cell reprogramming by Yamanaka factors. Conclusion These results suggest the possibility that the activation of AKT during somatic cell reprogramming promotes epigenetic reprogramming through the hyperactivation of TET at the transcriptional and catalytic levels. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02578-1.
Collapse
Affiliation(s)
- Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Yuki Sugiura
- Department of Biochemistry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akari Matsumoto
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Yuki Kawasaki
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazuya Akasaka
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Ryo Konno
- Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Momoka Shimizu
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Eiji Sugiyama
- Department of Biochemistry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Terushi Yamazaki
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Eriko Kanai
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Toshinobu Nakamura
- Laboratory for Epigenetic Regulation, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga, 526-0829, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshio Kodera
- Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan.,Center for Disease Proteomics, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Laboratory of Embryology and Genomics, Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-shi, Yamanashi, 400-8510, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara-shi, Kanagawa, 252-0373, Japan.
| |
Collapse
|
7
|
Moratilla A, Sainz de la Maza D, Cadenas Martin M, López-Iglesias P, González-Peramato P, De Miguel MP. Inhibition of PKCε induces primordial germ cell reprogramming into pluripotency by HIF1&2 upregulation and histone acetylation. AMERICAN JOURNAL OF STEM CELLS 2021; 10:1-17. [PMID: 33815934 PMCID: PMC8012778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Historically, primordial germ cells (PGCs) have been a good model to study pluripotency. Despite their low numbers and limited accessibility in the mouse embryo, they can be easily and rapidly reprogrammed at high efficiency with external physicochemical factors and do not require transcription factor transfection. Employing this model to deepen our understanding of cell reprogramming, we specifically aimed to determine the relevance of Ca2+ signal transduction pathway components in the reprogramming process. Our results showed that PGC reprogramming requires a normal extracellular [Ca2+] range, in contrast to neoplastic or transformed cells, which can continue to proliferate in Ca2+-deficient media, differentiating normal reprogramming from neoplastic transformation. Our results also showed that a spike in extracellular [Ca2+] of 1-3 mM can directly reprogram PGC. Intracellular manipulation of Ca2+ signal transduction pathway components revealed that inhibition of classical Ca2+ and diacylglycerol (DAG)-dependent PKCs, or intriguingly, of only the novel DAG-dependent PKC, PKCε, were able to induce reprogramming. PKCε inhibition changed the metabolism of PGCs toward glycolysis, increasing the proportion of inactive mitochondria. This metabolic switch from oxidative phosphorylation to glycolysis is mediated by hypoxia-inducible factors (HIFs), given we found upregulation of both HIF1α and HIF2α in the first 48 hours of culturing. PKCε inhibition did not change the classical pluripotency gene expression of PGCs, Oct4, or Nanog. PKCε inhibition changed the histone acetylation of PGCs, with histones H2B, H3, and H4 becoming acetylated in PKCε-inhibited cultures (markers were H2BacK20, H3acK9, and H4acK5K8, K12, K16), suggesting that reprogramming by PKCε inhibition is mediated by histone acetylation.
Collapse
Affiliation(s)
- Adrian Moratilla
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| | - Diego Sainz de la Maza
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| | - Marta Cadenas Martin
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| | - Pilar López-Iglesias
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| | - Pilar González-Peramato
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| | - Maria P De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute IDiPAZ, Madrid, Spain
| |
Collapse
|
8
|
Naser AA, Miyazaki T, Wang J, Takabayashi S, Pachoensuk T, Tokumoto T. MC4R mutant mice develop ovarian teratomas. Sci Rep 2021; 11:3483. [PMID: 33568756 PMCID: PMC7876032 DOI: 10.1038/s41598-021-83001-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Teratomas in mice, composed of different tissue types, are derived from primordial germ cells (PGCs) in the foetal gonads. The strongest candidate gene in the testicular teratoma locus (Ter) responsible for testicular teratoma formation was identified as mutation in Dnd1, Dnd1R178*. However, the phenotype of mice with a mutated Dnd1 gene was germ cell loss. This suggests that other genes are involved in teratoma formation. Testicular teratomas can also be induced experimentally (experimentally testicular teratomas: ETTs) in 129/Sv mice by transplanting E12.5 foetal testes into adult testes. Previously, we mapped the ett1 locus, which is the locus responsible for ETT formation on chromosome 18. By exome sequence analysis of the 129 and LTXBJ (LT) strains, we identified a missense mutation in the melanocortin 4 receptor (MC4R) gene among 8 genes in the ett1 region. The missense mutation causes a substitution of glycine 25 by serine. Thus, this gene is a candidate for ETT formation. We established the LT-ett1 congenic strain, which introduced the locus responsible for ETT formation genetically into the genomes of a testicular teratoma non-susceptible strain. In this study, we crossed LT-ett1 and a previously established LT-Ter strain to establish the double congenic strain LT-Ter-ett1. Also, we established a strain with a point mutation in the MC4R gene of the LT strain by genome editing, LT-MC4RG25S. Furthermore, double genetically modified strain LT-Ter-MC4RG25S was established to address the relation between Ter and MC4R. Surprisingly, highly developed ovarian teratomas (OTs), instead of testicular teratomas, appeared not only in the LT-Ter-MC4RG25S and LT-MC4RG25S strains but also in the LT-ett1 and LT-Ter-ett1 strains. The incidence of OT formation was high in double genetically modified strains. The results demonstrated that MC4R is one of the genes responsible for OT formation. It was suggested that the effect of the missense mutation in MC4R on teratoma formation was promoted by abnormal germ cell formation by the mutation in DND1.
Collapse
Affiliation(s)
- Abdullah An Naser
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Takehiro Miyazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Jun Wang
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Theeranukul Pachoensuk
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Bioscience, Faculty of Science, Shizuoka University, Shizuoka, 422, Japan.
| |
Collapse
|
9
|
Mall EM, Rotte N, Yoon J, Sandhowe-Klaverkamp R, Röpke A, Wistuba J, Hübner K, Schöler HR, Schlatt S. A novel xeno-organoid approach: exploring the crosstalk between human iPSC-derived PGC-like and rat testicular cells. Mol Hum Reprod 2020; 26:879-893. [PMID: 33049038 DOI: 10.1093/molehr/gaaa067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Specification of germ cell-like cells from induced pluripotent stem cells has become a clinically relevant tool for research. Research on initial embryonic processes is often limited by the access to foetal tissue, and in humans, the molecular events resulting in primordial germ cell (PGC) specification and sex determination remain to be elucidated. A deeper understanding of the underlying processes is crucial to describe pathomechanisms leading to impaired reproductive function. Several protocols have been established for the specification of human pluripotent stem cell towards early PGC-like cells (PGCLC), currently representing the best model to mimic early human germline developmental processes in vitro. Further sex determination towards the male lineage depends on somatic gonadal cells providing the necessary molecular cues. By establishing a culture system characterized by the re-organization of somatic cells from postnatal rat testes into cord-like structures and optimizing efficient PGCLC specification protocols, we facilitated the co-culture of human germ cell-like cells within a surrogate testicular microenvironment. Specified conditions allowed the survival of rat somatic testicular and human PGCLCs for 14 days. Human cells maintained the characteristic expression of octamer-binding transcription factor 4, SRY-box transcription factor 17, and transcription factor AP-2 gamma and were recovered from the xeno-organoids by cell sorting. This novel xeno-organoid approach will allow the in vitro exploration of early sex determination of human PGCLCs.
Collapse
Affiliation(s)
- E M Mall
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - N Rotte
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany.,Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - R Sandhowe-Klaverkamp
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - A Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - J Wistuba
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - K Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - H R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Medical Faculty, University of Münster, Münster, Germany
| | - S Schlatt
- Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
10
|
Miller, Jr WB, Torday JS. Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 2019; 12:38-54. [PMID: 31143362 PMCID: PMC6527184 DOI: 10.1080/19420889.2019.1586047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
A number of theories have been proposed to explain the exteriorization of the testicles in most mammalian species. None of these provide a consistent account for the wide variety of testicular locations found across the animal kingdom. It is proposed that testicular location is the result of coordinate action of testicular tissue ecologies to sustain preferential states of homeostatic equipoise throughout evolutionary development in response to the advent of endothermy.
Collapse
Affiliation(s)
| | - John S. Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| |
Collapse
|
11
|
Thélie A, Bailliard A, Seigneurin F, Zerjal T, Tixier-Boichard M, Blesbois E. Chicken semen cryopreservation and use for the restoration of rare genetic resources. Poult Sci 2019; 98:447-455. [DOI: 10.3382/ps/pey360] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023] Open
|
12
|
Links between DNA Replication, Stem Cells and Cancer. Genes (Basel) 2017; 8:genes8020045. [PMID: 28125050 PMCID: PMC5333035 DOI: 10.3390/genes8020045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/31/2022] Open
Abstract
Cancers can be categorized into two groups: those whose frequency increases with age, and those resulting from errors during mammalian development. The first group is linked to DNA replication through the accumulation of genetic mutations that occur during proliferation of developmentally acquired stem cells that give rise to and maintain tissues and organs. These mutations, which result from DNA replication errors as well as environmental insults, fall into two categories; cancer driver mutations that initiate carcinogenesis and genome destabilizing mutations that promote aneuploidy through excess genome duplication and chromatid missegregation. Increased genome instability results in accelerated clonal evolution leading to the appearance of more aggressive clones with increased drug resistance. The second group of cancers, termed germ cell neoplasia, results from the mislocation of pluripotent stem cells during early development. During normal development, pluripotent stem cells that originate in early embryos give rise to all of the cell lineages in the embryo and adult, but when they mislocate to ectopic sites, they produce tumors. Remarkably, pluripotent stem cells, like many cancer cells, depend on the Geminin protein to prevent excess DNA replication from triggering DNA damage-dependent apoptosis. This link between the control of DNA replication during early development and germ cell neoplasia reveals Geminin as a potential chemotherapeutic target in the eradication of cancer progenitor cells.
Collapse
|