1
|
Zhu J, Li W. Role of metabolites in mediating the effect of triacylglycerol on aplastic anemia. Hematology 2024; 29:2379178. [PMID: 39017035 DOI: 10.1080/16078454.2024.2379178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Observational studies have found a link between lipid metabolism disorders and aplastic anemia (AA). However, due to confounding variables and reverse causation, it is difficult to conclude such a causal link. The precise mechanism and potential implications of lipid metabolism disorder in AA remain unclear, necessitating further studies in this area. METHOD This study aimed to examine the causal relationship between 38 different subtypes of triacylglycerols and AA using two-sample Mendelian randomization (MR). Additionally, two-step MR analyses were conducted to investigate the mediating effects of vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio. RESULTS MR analysis showed that triacylglycerol (53:3) levels were positively associated with the risk of AA [inverse variance weighting (IVW): odds ratio (OR) = 1.131,95% confidence interval (CI):1.029-1.243, P = 0.011; Bayesian weighted MR (BWMR): OR = 1.137,95% CI:1.031-1.254, P = 0.010]. Triacylglycerol (53:3) level showed no inverse causality with AA (IVW:P = 0.834; BWMR:P = 0.349). Mediation analyses showed that increasing the vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio can decrease the risk of AA. CONCLUSION This study revealed the association between vitamin A to oleoyl-linoleoyl-glycerol (18:1-18:2) ratio, triacylglycerol (53:3) levels and AA, and indicated that lowering triacylglycerol (53:3) levels can reduce the risk of AA.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, Jiujiang University Affiliated Hospital, Jiujiang, Jiangxi, People's Republic of China
| | | |
Collapse
|
2
|
Sankar D, Oviya IR. Multidisciplinary approaches to study anaemia with special mention on aplastic anaemia (Review). Int J Mol Med 2024; 54:95. [PMID: 39219286 PMCID: PMC11410310 DOI: 10.3892/ijmm.2024.5419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Anaemia is a common health problem worldwide that disproportionately affects vulnerable groups, such as children and expectant mothers. It has a variety of underlying causes, some of which are genetic. A comprehensive strategy combining physical examination, laboratory testing (for example, a complete blood count), and molecular tools for accurate identification is required for diagnosis. With nearly 400 varieties of anaemia, accurate diagnosis remains a challenging task. Red blood cell abnormalities are largely caused by genetic factors, which means that a thorough understanding requires interpretation at the molecular level. As a result, precision medicine has become a key paradigm, utilising artificial intelligence (AI) techniques, such as deep learning and machine learning, to improve prognostic evaluation, treatment prediction, and diagnostic accuracy. Furthermore, exploring the immunomodulatory role of vitamin D along with biomarker‑based molecular techniques offers promising avenues for insight into anaemia's pathophysiology. The intricacy of aplastic anaemia makes it particularly noteworthy as a topic deserving of concentrated molecular research. Given the complexity of anaemia, an integrated strategy integrating clinical, laboratory, molecular, and AI techniques shows a great deal of promise. Such an approach holds promise for enhancing global anaemia management options in addition to advancing our understanding of the illness.
Collapse
Affiliation(s)
- Divya Sankar
- Department of Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| | - Iyyappan Ramalakshmi Oviya
- Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Chennai, Tamil Nadu 601103, India
| |
Collapse
|
3
|
Gonzaga VF, Wenceslau CV, Vieira DP, Policiquio BDO, Khalil C, Araldi RP, Kerkis I. Therapeutic Potential of Human Immature Dental Pulp Stem Cells Observed in Mouse Model for Acquired Aplastic Anemia. Cells 2022; 11:2252. [PMID: 35883695 PMCID: PMC9315564 DOI: 10.3390/cells11142252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Aplastic anemia (AA) is a rare and serious disorder of hematopoietic stem cells (HSCs) that results in the loss of blood cells due to the failure of the bone marrow (BM). Although BM transplantation is used to treat AA, its use is limited by donor availability. In this sense, mesenchymal stem cells (MSCs) can offer a novel therapeutic approach for AA. This is because the MSCs contribute to the hematopoietic niche organization through their repopulating. In our study, we used the human immature dental pulp stem cell (hIDPSC), an MSC-like cell, to explore an alternative therapeutic approach for AA. For this, isogenic C57BL/6 mice were exposed to total body irradiation (TBI) to induce the AA. After 48 h of TBI, the mice were intraperitoneally treated with hIDPSC. The immunohistochemistry analyses confirmed that the hIDPSCs migrated and grafted in the mouse bone marrow (BM) and spleen, providing rapid support to hematopoiesis recovery compared to the group exposed to radiation, but not to those treated with the cells as well as the hematological parameters. Six months after the last hIDPSC transplantation, the BM showed long-term stable hematopoiesis. Our data highlight the therapeutic plasticity and hematoprotective role of hIDPSC for AA and potentially for other hematopoietic failures.
Collapse
Affiliation(s)
- Vivian Fonseca Gonzaga
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (V.F.G.); (B.d.O.P.); (R.P.A.)
- Cellavita Pesquisas Científicas Ltda., Valinhos 13271-650, Brazil;
| | | | | | - Bruna de Oliveira Policiquio
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (V.F.G.); (B.d.O.P.); (R.P.A.)
- Cellavita Pesquisas Científicas Ltda., Valinhos 13271-650, Brazil;
| | - Charbel Khalil
- Reviva Stem Cell Platform for Research and Applications Center, Bsalim 17-5208, Lebanon;
- Faculty of Pharmacy, Saint Joseph University, Beirut 17-5208, Lebanon
| | - Rodrigo Pinheiro Araldi
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (V.F.G.); (B.d.O.P.); (R.P.A.)
- Cellavita Pesquisas Científicas Ltda., Valinhos 13271-650, Brazil;
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (V.F.G.); (B.d.O.P.); (R.P.A.)
| |
Collapse
|
4
|
[The characterization analysis of pathogenic T cells in immune-mediated aplastic anemia mouse model]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:587-593. [PMID: 36709137 PMCID: PMC9395574 DOI: 10.3760/cma.j.issn.0253-2727.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: This study aims, in addition to characterizing pathogenic T cells trafficking to bone marrow (BM) and other organs, to establish immune-mediated AA C.B10 mouse model by DsRed mouse (B6 background) lymph nodes (LN) cells infusion after a total body irradiation (TBI) . Methods: The C.B10 mice received a 5 Gy TBI and then were infused with DsRed mouse (B6 background) LN cells at 5×10(6)/mouse via a tail vein injection. The severity of bone marrow failure (BMF) was observed by mononuclear cell count in bone marrow and peripheral blood cell count. On days 3, 6, 9, and 12, mice were sacrificed and collected BM, spleens, LN, or thymus to analyze the dynamic change and activation status of donor T cells in these organs by a flow cytometry. At day 12, the donor-derived T cells from BM, spleens, and LN were sorted to collect the DsRed(+)CD3(+)CD4(+) T cells and DsRed(+)CD3(+)CD8(+) T cells for RNA isolation and gene expression analyses by PCR array. Results: Relative to control animals that received 5 Gy TBI without LN cell infusion, AA mice developed severe BMF with dramatic decrease in total BM cells, hemoglobin, white blood cells, and platelets in peripheral blood on days 9 and 12 after the LN cell infusion. The frequencies of DsRed(+) T cells trafficking to BM, LN, and spleens increased with time. Surprisingly, although the DsRed(+) T cells in BM increased dramatically at a level much higher than those in the spleens and LN on day 12, there were very few DsRed(+) T cells in BM on days three and six, which was significantly lower than those in spleens or LN. The frequency of DsRed(+) T cells in thymus was the lowest during the whole process. On day 12, the DsRed(+)CD3(+)CD4(+) T cells of BM, LN, and spleens from AA mice were (91.38±2.10) %, (39.78±6.98) %, and (67.87±12.77) %, respectively. On the contrary, the DsRed(+)CD3(+)CD8(+)T cells of BM, LN, and spleens were (98.21±1.49) %, (94.06±4.20) %, and (96.29±1.23) %, respectively. We assessed the donor T cell phenotypes using the CD44 and CD62L markers and found that almost all of the DsRed(+)CD4(+) or DsRed(+)CD8(+) T cells in BM were effector memory T cell phenotype from day 9 to day 12. Meanwhile, transcriptome analyses showed higher expression in CD38, IFN-γ, LAG3, CSF1, SPP1, and TNFSF13B in BM DsRed(+)CD4(+) and DsRed(+)CD8(+) T cells. However, there was a lower expression in FOXP3 and CTLA4 in BM DsRed(+)CD4(+) T cells than those in spleens and LN. Conclusions: The DsRed LN cells infusion to induce BMF in CB10 mice enabled to track the donor-derived pathogenic T cells. Besides previously published findings in this model, we demonstrated that donor CD4(+) and CD8(+) T cells primarily homed to spleens and LN, expanded and differentiated, then infiltrated in BM with a terminal effector memory phenotype. The T cells infiltrated in BM showed more activation and less immunosuppression characteristics compared to those homing to spleens and LN during the BMF development.
Collapse
|
5
|
Li R, Tu J, Zhao J, Pan H, Fang L, Shi J. Mesenchymal stromal cells as prophylaxis for graft-versus-host disease in haplo-identical hematopoietic stem cell transplantation recipients with severe aplastic anemia?-a systematic review and meta-analysis. Stem Cell Res Ther 2021; 12:106. [PMID: 33541414 PMCID: PMC7860635 DOI: 10.1186/s13287-021-02170-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are an emerging prophylaxis option for graft-versus-host disease (GVHD) in haplo-identical hematopoietic stem cell transplantation (haplo-HSCT) recipients with severe aplastic anemia (SAA), but studies have reported inconsistent results. This systematic review and meta-analysis evaluates the efficacy of MSCs as prophylaxis for GVHD in SAA patients with haplo-HSCT. METHODS Studies were retrieved from PubMed, EMBASE, Cochrane, Web of Science, and http://clinicaltrials.gov from establishment to February 2020. Twenty-nine single-arm studies (n = 1456) were included, in which eight (n = 241) studies combined with MSCs and eleven (n = 1215) reports without MSCs in haplo-HSCT for SAA patients. The primary outcomes were the incidences of GVHD. Other outcomes included 2-year overall survival (OS) and the incidence of cytomegalovirus (CMV) infection. Odds ratios (ORs) were calculated to compare the results pooled through random or fixed effects models. RESULTS Between MSCs and no MSCs groups, no significant differences were found in the pooled incidences of acute GVHD (56.0%, 95% CI 48.6-63.5% vs. 47.2%, 95% CI 29.0-65.4%; OR 1.43, 95% CI 0.91-2.25; p = 0.123), grade II-IV acute GVHD (29.8%, 95% CI 24.1-35.5% vs. 30.6%, 95% CI 26.6-34.6%; OR 0.97, 95% CI 0.70-1.32; p = 0.889), and chronic GVHD (25.4%, 95% CI 19.8-31.0% vs. 30.0%, 95% CI 23.3-36.6%; OR 0.79, 95% CI 0.56-1.11; p = 0.187). Furtherly, there was no obvious difference in 2-year OS (OR 0.98, 95% CI 0.60-1.61; p = 1.000) and incidence of CMV infection (OR 0.61, 95% CI 0.40-1.92; p = 0.018). CONCLUSIONS Our meta-analysis indicates that the prophylactic use of MSC co-transplantation is not an effective option for SAA patients undergoing haplo-HSCT. Hence, the general co-transplantation of MSCs for SAA haplo-HSCT recipients may lack evidence-based practice.
Collapse
Affiliation(s)
- Ruonan Li
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingke Tu
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jingyu Zhao
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Hong Pan
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Liwei Fang
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jun Shi
- Regenerative Medicine Clinic, National Clinical Research Center for Blood Diseases, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
6
|
Lou B, Hu Y, Lu X, Zhang X, Li Y, Pi J, Xu Y. Long-isoform NRF1 protects against arsenic cytotoxicity in mouse bone marrow-derived mesenchymal stem cells by suppressing mitochondrial ROS and facilitating arsenic efflux. Toxicol Appl Pharmacol 2020; 407:115251. [PMID: 32980394 DOI: 10.1016/j.taap.2020.115251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Acute exposure to arsenic is known to cause bone marrow depression and result in anemia, in which the dusfunction of cells in the bone marrow niche such as mesenchymal stem cells (MSCs) is vital. However, the mechanism underlying response of MSCs to arsenic challange is not fully understood. In the present study, we investigated the role of nuclear factor erythroid 2-related factor (NRF) 1 (NRF1), a sister member of the well-known master regulator in antioxidative response NRF2, in arsenite-induced cytotoxicity in mouse bone marrow-derived MSCs (mBM-MSCs). We found that arsenite exposure induced significant increase in the protein level of long-isoform NRF1 (L-NRF1). Though short-isoform NRF1 (S-NRF1) was induced by arsenite at mRNA level, its protein level was not obviously altered. Silencing L-Nrf1 sensitized the cells to arsenite-induced cytotoxicity. L-Nrf1-silenced mBM-MSCs showed decreased arsenic efflux with reduced expression of arsenic transporter ATP-binding cassette subfamily C member 4 (ABCC4), as well as compromised NRF2-mediated antioxidative defense with elevated level of mitochondrial reactive oxygen species (mtROS) under arsenite-exposed conditions. A specific mtROS scavenger (Mito-quinone) alleviated cell apoptosis induced by arsenite in L-Nrf1-silenced mBM-MSCs. Taken together, these findings suggest that L-NRF1 protects mBM-MSCs from arsenite-induced cytotoxicity via suppressing mtROS in addition to facilitating cellular arsenic efflux.
Collapse
Affiliation(s)
- Bin Lou
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxin Hu
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xiaoyu Lu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Xinyu Zhang
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Research Center of Environment and Non-Communicable Diseases, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jingbo Pi
- Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Laboratory of Chronic Diseases and Environmental Genetics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; Experimental Teaching Center, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
7
|
Li S, Qin M, Wu R, Meng H, He Y, Wang B, Zhou X, Zhu G. Insensitive to PTH of CD8 + T cells regulate bone marrow mesenchymal stromal cell in aplastic anemia patients. Int J Med Sci 2020; 17:1665-1672. [PMID: 32714069 PMCID: PMC7378662 DOI: 10.7150/ijms.47273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Aplastic anemia (AA) is a rare disorder characterized by the suppression of bone marrow function resulting in progressive pancytopenia. The pathogenesis of AA is complex and involves an abnormal hematopoietic microenvironment, hematopoietic stem cell/progenitor cell deficiencies, and immunity disorders. However, the underlying mechanism of the disease is still not fully uncovered. In this research, we collected both donor and patient samples and found suppressed proliferation, abnormal differentiation as well as increased apoptosis of patient mesenchymal stem cells (MSCs). Considering the close relationship of parathyroid hormone (PTH) and MSCs differentiation, further studies showed that although patients maintained normal serum PTH level, their CD8+ T cells possessed lower PTH receptors. The insensitive to PTH of patients' CD8+ T cells finally lead to reduced expression of key Wnt factors. In all, bone marrow CD8+ T cells may play an important role in inducing MSCs adipogenesis and osteogenesis imbalancement.
Collapse
Affiliation(s)
- Sidan Li
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Maoquan Qin
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Runhui Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Hengxing Meng
- Zhong Wei Xin Biotechnology Co., Ltd, Tianjin, China
| | - Yixuan He
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bin Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xuan Zhou
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Guanghua Zhu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics, Ministry of Education; Key Laboratory of Major Diseases in Children, Ministry of Education; Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Zhao J, Chen J, Huang F, Wang J, Su W, Zhou J, Qi Q, Cao F, Sun B, Liu Z, Bellanti JA, Zheng S. Human gingiva tissue-derived MSC ameliorates immune-mediated bone marrow failure of aplastic anemia via suppression of Th1 and Th17 cells and enhancement of CD4+Foxp3+ regulatory T cells differentiation. Am J Transl Res 2019; 11:7627-7643. [PMID: 31934306 PMCID: PMC6943455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Accumulating evidence has revealed that human gingiva-derived mesenchymal stem cells (GMSCs) are emerging as a new line of mesenchymal stem cells and may have the potential to control or even treat autoimmune diseases through maintaining the balance between Th and Treg cells. Given that GMSCs have a robust immune regulatory function and regenerative ability, we investigated the effect of GMSCs on preventing T cell-mediated bone marrow failure (BMF) in a mouse model. We observed that GMSCs markedly improved mice survival and attenuated histological bone marrow (BM) damage. Moreover, we found GMSCs significantly reduced cell infiltration of CD8+ cells, Th1 and Th17 cells, whereas increased CD4+Foxp3+ regulatory T cells (Tregs) differentiation in lymph nodes. GMSCs also suppressed the levels of TNF-α, IFN-γ, IL-17A and IL-6, but IL-10 was increased in serum. The live in vivo imaging identified that GMSCs can home into inflammatory location on BM. Our results demonstrate that GMSCs attenuate T cell-mediated BMF through regulating the balance of Th1, Th17 and Tregs, implicating that application of GMSCs may provide a promising approach in prevention and treatment of patients with aplastic anemia.
Collapse
Affiliation(s)
- Jianzhi Zhao
- Division of Hematology, Shaoxing Central HospitalShaoxing, China
- Division of Rheumatology, Penn State University College of MedicineHershey, USA
| | - Jingrong Chen
- Department of Clinical Immunology in Third Affiliated Hospital of The Sun Yat-sen UniversityGuangzhou, China
| | - Feng Huang
- Department of Clinical Immunology in Third Affiliated Hospital of The Sun Yat-sen UniversityGuangzhou, China
| | - Julie Wang
- Division of Rheumatology and Immunology, Department of Internal Medicine at The Ohio State University College of MedicineColumbus, OH, USA
| | - Wenru Su
- Department of Clinical Immunology in Third Affiliated Hospital of The Sun Yat-sen UniversityGuangzhou, China
| | - Jianyao Zhou
- Division of Hematology, Shaoxing Central HospitalShaoxing, China
| | - Quanyin Qi
- State Key Lab at Guiling Medical CollegeGuiling, China
| | - Fenglin Cao
- Department of Internal Medicine in The First Affiliated Hospital at The Harbin Medical UniversityHarbin, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital at The Guangzhou Medical UniversityGuangzhou, China
| | - Zhongmin Liu
- Center of Stem Cell, Shanghai East Hospital at The Tongji UniversityShanghai, China
| | - Joseph A Bellanti
- Department of Pediatrics and Microbiology-Immunology, Georgetown University Medical CenterWashington, DC, USA
| | - Songguo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine at The Ohio State University College of MedicineColumbus, OH, USA
| |
Collapse
|
9
|
Poggi A, Zocchi MR. Immunomodulatory Properties of Mesenchymal Stromal Cells: Still Unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14:344-350. [PMID: 30516112 DOI: 10.2174/1574888x14666181205115452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are mesodermal elements characterized by the ability to differentiate into several types of cells present mainly in connective tissues. They play a key function in tissue homeostasis and repair. Furthermore, they exert a strong effect on both innate and adaptive immune response. The main current of thought considers MSC as strong inhibitors of the immune system. Indeed, the first description of MSC immunomodulation pointed out their inability to induce alloimmune responses and their veto effects on mixed lymphocyte reactions. This inhibition appears to be mediated both by direct MSC interaction with immune cells and by soluble factors. Unfortunately, evidence to support this notion comes almost exclusively from in vitro experiments. In complex experimental systems, it has been shown that MSC can exert immunosuppressive effects also in vivo, either in murine models or in transplanted patients to avoid the graft versus host disease. However, it is still debated how the small number of administered MSC can regulate efficiently a large number of host effector lymphocytes. In addition, some reports in the literature indicate that MSC can trigger rather than inhibit lymphocyte activation when a very low number of MSC are co-cultured with lymphocytes. This would imply that the ratio between the number of MSC and immune cells is a key point to forecast whether MSC will inhibit or activate the immune system. Herein, we discuss the conflicting results reported on the immunomodulatory effects of MSC to define which features are relevant to understand their behavior and cross-talk with immune cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
10
|
Chao YH, Lin CW, Pan HH, Yang SF, Weng TF, Peng CT, Wu KH. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia. Pediatr Blood Cancer 2018; 65:e27247. [PMID: 29870142 DOI: 10.1002/pbc.27247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. METHODS To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. RESULTS SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). CONCLUSIONS Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM.
Collapse
Affiliation(s)
- Yu-Hua Chao
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Hsien Pan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Fu Weng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Ching-Tien Peng
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Kang-Hsi Wu
- Division of Pediatric Hematology/Oncology, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Post-baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|