1
|
Su C, Duan B, Duan Q, He Z, Sha H, Liang Y, Pu E, Qin S, Duan R, Lyu D, Li W, Tang D, Zhang P, Xiao M, Xia L, Jing H, Wang X, Gao Z, Kan B. Status and analysis of undetected plague cases in Yunnan Province, China. Front Public Health 2024; 12:1408025. [PMID: 39296840 PMCID: PMC11408185 DOI: 10.3389/fpubh.2024.1408025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background The virulence of Yersinia pestis strains in the Rattus flavipectus plague focus is relatively low. The purpose of this study was to investigate the undetected, sporadic plague cases in plague foci and provide the basis for plague prevention and control. Methods A 3-year-old plague-confirmed case was investigated in the R. flavipectus plague focus of Yunnan Province in 2020 due to the intensive screening for fever symptoms during the coronavirus disease 2019 (COVID-19) pandemic. Epidemiological investigation, laboratory testing, and clinical treatment were conducted for the case. The expanded survey was carried out around the case within a 7-km radius, including the resident population, domesticated dogs, and rats. PCR and indirect hemagglutination tests were performed on the collected samples. Results The isolation rates of Y. pestis were 100.0% (7 out of 7) in dead rats and 4.00% (3 out of 75) in live rats in the survey area of the foci. A total of 5.00% (6 out of 120) of the domesticated dogs were F1 antibody positive. Nine local people were determined for plague infection recently (0.92%, 9 out of 978). The locations of human cases coincided with the Y. pestis epidemic area among the animals. Conclusion This study discovered the existence of plague cases that had not been detected by routine surveillance in the R. flavipectus plague focus, and the actual epidemic of human infection may be underestimated.
Collapse
Affiliation(s)
- Chao Su
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Plague Center, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Biao Duan
- Plague Center, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yun Liang
- Plague Center, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Ennian Pu
- Plague Center, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbao Li
- Heqing Center for Disease Control and Prevention, Dali, China
| | - Deming Tang
- Dongcheng District Center for Disease Control and Prevention, Beijing, China
| | - Peng Zhang
- Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lianxu Xia
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zihou Gao
- Plague Center, Yunnan Institute for Endemic Disease Control and Prevention, Dali, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
2
|
Davies ML, Biryukov SS, Rill NO, Klimko CP, Hunter M, Dankmeyer JL, Miller JA, Shoe JL, Mlynek KD, Talyansky Y, Toothman RG, Qiu J, Bozue JA, Cote CK. Sex differences in immune protection in mice conferred by heterologous vaccines for pneumonic plague. Front Immunol 2024; 15:1397579. [PMID: 38835755 PMCID: PMC11148226 DOI: 10.3389/fimmu.2024.1397579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024] Open
Abstract
Background Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.
Collapse
Affiliation(s)
- Michael L Davies
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Sergei S Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Nathaniel O Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jeremy A Miller
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Kevin D Mlynek
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ronald G Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Ju Qiu
- Regulated Research Administration: Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Joel A Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
3
|
Nelson CA, Meaney-Delman D, Fleck-Derderian S, Cooley KM, Yu PA, Mead PS. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm Rep 2021; 70:1-27. [PMID: 34264565 PMCID: PMC8312557 DOI: 10.15585/mmwr.rr7003a1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report provides CDC recommendations to U.S. health care providers regarding treatment, pre-exposure prophylaxis, and postexposure prophylaxis of plague. Yersinia pestis, the bacterium that causes plague, leads to naturally occurring disease in the United States and other regions worldwide and is recognized as a potential bioterrorism weapon. A bioweapon attack with Y. pestis could potentially infect thousands, requiring rapid and informed decision making by clinicians and public health agencies. The U.S. government stockpiles a variety of medical countermeasures to mitigate the effects of a bioterrorism attack (e.g., antimicrobials, antitoxins, and vaccines) for which the 21st Century Cures Act mandates the development of evidence-based guidelines on appropriate use. Guidelines for treatment and postexposure prophylaxis of plague were published in 2000 by a nongovernmental work group; since then, new human clinical data, animal study data, and U.S. Food and Drug Administration approvals of additional countermeasures have become available. To develop a comprehensive set of updated guidelines, CDC conducted a series of systematic literature reviews on human treatment of plague and other relevant topics to collect a broad evidence base for the recommendations in this report. Evidence from CDC reviews and additional sources were presented to subject matter experts during a series of forums. CDC considered individual expert input while developing these guidelines, which provide recommended best practices for treatment and prophylaxis of human plague for both naturally occurring disease and following a bioterrorism attack. The guidelines do not include information on diagnostic testing, triage decisions, or logistics involved in dispensing medical countermeasures. Clinicians and public health officials can use these guidelines to prepare their organizations, hospitals, and communities to respond to a plague mass-casualty event and as a guide for treating patients affected by plague.
Collapse
Affiliation(s)
| | | | | | | | - Patricia A Yu
- National Center for Emerging and Zoonotic Infectious Diseases
- CDC
| | | |
Collapse
|
4
|
Salam AP, Rojek A, Cai E, Raberahona M, Horby P. Deaths Associated with Pneumonic Plague, 1946-2017. Emerg Infect Dis 2021; 26:2432-2434. [PMID: 32946734 PMCID: PMC7510718 DOI: 10.3201/eid2610.191270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Vallès X, Stenseth NC, Demeure C, Horby P, Mead PS, Cabanillas O, Ratsitorahina M, Rajerison M, Andrianaivoarimanana V, Ramasindrazana B, Pizarro-Cerda J, Scholz HC, Girod R, Hinnebusch BJ, Vigan-Womas I, Fontanet A, Wagner DM, Telfer S, Yazdanpanah Y, Tortosa P, Carrara G, Deuve J, Belmain SR, D’Ortenzio E, Baril L. Human plague: An old scourge that needs new answers. PLoS Negl Trop Dis 2020; 14:e0008251. [PMID: 32853251 PMCID: PMC7451524 DOI: 10.1371/journal.pntd.0008251] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Yersinia pestis, the bacterial causative agent of plague, remains an important threat to human health. Plague is a rodent-borne disease that has historically shown an outstanding ability to colonize and persist across different species, habitats, and environments while provoking sporadic cases, outbreaks, and deadly global epidemics among humans. Between September and November 2017, an outbreak of urban pneumonic plague was declared in Madagascar, which refocused the attention of the scientific community on this ancient human scourge. Given recent trends and plague's resilience to control in the wild, its high fatality rate in humans without early treatment, and its capacity to disrupt social and healthcare systems, human plague should be considered as a neglected threat. A workshop was held in Paris in July 2018 to review current knowledge about plague and to identify the scientific research priorities to eradicate plague as a human threat. It was concluded that an urgent commitment is needed to develop and fund a strong research agenda aiming to fill the current knowledge gaps structured around 4 main axes: (i) an improved understanding of the ecological interactions among the reservoir, vector, pathogen, and environment; (ii) human and societal responses; (iii) improved diagnostic tools and case management; and (iv) vaccine development. These axes should be cross-cutting, translational, and focused on delivering context-specific strategies. Results of this research should feed a global control and prevention strategy within a "One Health" approach.
Collapse
Affiliation(s)
- Xavier Vallès
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Nils Chr. Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
- Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China
| | - Christian Demeure
- Yersinia Research Unit, National Reference Centre “Plague & Other Yersinioses,” WHO Collaborating Research and Reference Centre for Yersinia, Institut Pasteur, Paris, France
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul S. Mead
- Bacterial Diseases Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Oswaldo Cabanillas
- Control de Epidemia Desastres y Otras Emergencias Sanitarias, Oficina General de Epidemiologia, Ministerio de Salud, Perúu
| | - Mahery Ratsitorahina
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Minoarisoa Rajerison
- Plague Unit, Central Laboratory for Plague, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Beza Ramasindrazana
- Plague Unit, Central Laboratory for Plague, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Javier Pizarro-Cerda
- Yersinia Research Unit, National Reference Centre “Plague & Other Yersinioses,” WHO Collaborating Research and Reference Centre for Yersinia, Institut Pasteur, Paris, France
| | - Holger C. Scholz
- Reference Laboratory for Plague, Bundeswehr Institute of Microbiology, Munich, Germany
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - B. Joseph Hinnebusch
- Rocky Mountain Laboratories, National Institute of Health, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Ines Vigan-Womas
- Immunology of Infectious Diseases Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris, France
- PACRI unit, Conservatoire National des Arts et Métiers, Paris, France
| | - David M. Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Sandra Telfer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yazdan Yazdanpanah
- REACTing, Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Pablo Tortosa
- Université de La Réunion, Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical, La Réunion, France
| | - Guia Carrara
- REACTing, Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Jane Deuve
- Department of International Affairs, Institut Pasteur, Paris, France
| | - Steven R. Belmain
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - Eric D’Ortenzio
- REACTing, Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Laurence Baril
- Epidemiology and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|