1
|
Suphakhonchuwong N, Rungsihirunrat K, Kuesap J. Surveillance of drug resistance molecular markers in Plasmodium vivax before and after introduction of dihydroartemisinin and piperaquine in Thailand: 2009-2019. Parasitol Res 2023; 122:2871-2883. [PMID: 37725258 DOI: 10.1007/s00436-023-07977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Resistance to antimalarial drugs is a serious issue around the world. Widespread Plasmodium vivax and P. falciparum coinfections are commonly found in Thailand. Dihydroartemisinin and piperaquine (DHA-PPQ) have been used as first-line treatments for P. falciparum since 2015, and chloroquine (CQ) and primaquine (PQ) have remained first-line drugs for P. vivax for more than 60 years. Coinfections may lead parasites to evolve with regard to genetics under selective drug pressure. This study is aimed at investigating genes linked to antimalarial resistance in P. vivax before and after introduction of DHA-PPQ as a new drug regimen in Thailand. A total of 400 P. vivax isolates were collected from samples along the Thai-Myanmar and Thai-Malaysian borders before (2009-2015) and after (2016-2019) introduction of DHA-PPQ. Genomic DNA of P. vivax was obtained and subjected to analysis of five drug resistance-associated genes (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o, and PvK12) by nested polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP), and nucleotide sequencing. A high prevalence of Pvdhfr was found in both endemic areas over the period. The quadruple (57I/58R/61M/117T) Pvdhfr haplotype was predominant in both periods in both endemic areas. Although the wild-type haplotype of Pvdhps was predominant in Thai-Malaysian isolates in both periods, a single mutant haplotype (383G) was dominant in Thai-Myanmar isolates during both periods. A low prevalence of the Pvmdr1 976F mutation was found in both periods among Thai-Myanmar isolates. A significant decrease in Pvmdr1 976F was identified in Thai-Malaysian isolates from the second period (p < 0.01). Only one nonsynonymous mutation of Pvcrt-o (193E) and one synonymous mutation of PvK12 (R584) were detected in four isolates (4.7%) and one isolate (0.5%) in the first period among Thai-Myanmar isolates, respectively. Thus, with limited clinical efficacy data, the low prevalence of drug-resistance markers may suggest that there is a low prevalence of P. vivax-resistant strains and that the current drug regimen for P. vivax is still effective for treating this P. vivax parasite population. Continued surveillance of antimalarial drug resistance markers and monitoring of clinical drug efficacy should be conducted for epidemiological and policy implications.
Collapse
Affiliation(s)
| | | | - Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
2
|
De Meulenaere K, Cuypers B, Gamboa D, Laukens K, Rosanas-Urgell A. A new Plasmodium vivax reference genome for South American isolates. BMC Genomics 2023; 24:606. [PMID: 37821878 PMCID: PMC10568799 DOI: 10.1186/s12864-023-09707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.
Collapse
Affiliation(s)
- Katlijn De Meulenaere
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Computer Science, University of Antwerp, Antwerp, Belgium.
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Kris Laukens
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
3
|
Tapaopong P, da Silva G, Chainarin S, Suansomjit C, Manopwisedjaroen K, Cui L, Koepfli C, Sattabongkot J, Nguitragool W. Genetic diversity and molecular evolution of Plasmodium vivax Duffy Binding Protein and Merozoite Surface Protein-1 in northwestern Thailand. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105467. [PMID: 37330027 PMCID: PMC10548344 DOI: 10.1016/j.meegid.2023.105467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The local diversity and population structure of malaria parasites vary across different regions of the world, reflecting variations in transmission intensity, host immunity, and vector species. This study aimed to use amplicon sequencing to investigate the genotypic patterns and population structure of P. vivax isolates from a highly endemic province of Thailand in recent years. Amplicon deep sequencing was performed on 70 samples for the 42-kDa region of pvmsp1 and domain II of pvdbp. Unique haplotypes were identified and a network constructed to illustrate genetic relatedness in northwestern Thailand. Based on this dataset of 70 samples collected between 2015 and 2021, 16 and 40 unique haplotypes were identified in pvdbpII and pvmsp142kDa, respectively. Nucleotide diversity was higher in pvmsp142kDa than in pvdbpII (π = 0.027 and 0.012), as was haplotype diversity (Hd = 0.962 and 0.849). pvmsp142kDa also showed a higher recombination rate and higher levels of genetic differentiation (Fst) in northwestern Thailand versus other regions (0.2761-0.4881). These data together suggested that the genetic diversity of P. vivax in northwestern Thailand at these two studied loci evolved under a balancing selection, most likely host immunity. The lower genetic diversity of pvdbpII may reflect its stronger functional constrain. In addition, despite the balancing selection, a decrease in genetic diversity was observed. Hd of pvdbpII decreased from 0.874 in 2015-2016 to 0.778 in 2018-2021; π of pvmsp142kDa decreased from 0.030 to 0.022 over the same period. Thus, the control activities must have had a strong impact on the parasite population size. The findings from this study provide an understanding of P. vivax population structure and the evolutionary force on vaccine candidates. They also established a new baseline for tracking future changes in P. vivax diversity in the most malarious area of Thailand.
Collapse
Affiliation(s)
- Parsakorn Tapaopong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gustavo da Silva
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sittinont Chainarin
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Cui L, Sattabongkot J, Aung PL, Brashear A, Cao Y, Kaewkungwal J, Khamsiriwatchara A, Kyaw MP, Lawpoolsri S, Menezes L, Miao J, Nguitragool W, Parker D, Phuanukoonnon S, Roobsoong W, Siddiqui F, Soe MT, Sriwichai P, Yang Z, Zhao Y, Zhong D. Multidisciplinary Investigations of Sustained Malaria Transmission in the Greater Mekong Subregion. Am J Trop Med Hyg 2022; 107:138-151. [PMID: 36228909 DOI: 10.4269/ajtmh.21-1267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
In the course of malaria elimination in the Greater Mekong Subregion (GMS), malaria epidemiology has experienced drastic spatiotemporal changes with residual transmission concentrated along international borders and the rising predominance of Plasmodium vivax. The emergence of Plasmodium falciparum parasites resistant to artemisinin and partner drugs renders artemisinin-based combination therapies less effective while the potential spread of multidrug-resistant parasites elicits concern. Vector behavioral changes and insecticide resistance have reduced the effectiveness of core vector control measures. In recognition of these problems, the Southeast Asian International Center of Excellence for Malaria Research (ICEMR) has been conducting multidisciplinary research to determine how human migration, antimalarial drug resistance, vector behavior, and insecticide resistance sustain malaria transmission at international borders. These efforts allow us to comprehensively understand the ecology of border malaria transmission and develop population genomics tools to identify and track parasite introduction. In addition to employing in vivo, in vitro, and molecular approaches to monitor the emergence and spread of drug-resistant parasites, we also use genomic and genetic methods to reveal novel mechanisms of antimalarial drug resistance of parasites. We also use omics and population genetics approaches to study insecticide resistance in malaria vectors and identify changes in mosquito community structure, vectorial potential, and seasonal dynamics. Collectively, the scientific findings from the ICEMR research activities offer a systematic view of the factors sustaining residual malaria transmission and identify potential solutions to these problems to accelerate malaria elimination in the GMS.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | | | - Awtum Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Yaming Cao
- Department of Immunology, China Medical University, Shenyang, China
| | | | | | | | | | - Lynette Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Daniel Parker
- Department of Epidemiology, University of California at Irvine, Irvine, California
| | | | | | - Faiza Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, China Medical University, Shenyang, China
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, California
| |
Collapse
|
5
|
Kattenberg JH, Nguyen HV, Nguyen HL, Sauve E, Nguyen NTH, Chopo-Pizarro A, Trimarsanto H, Monsieurs P, Guetens P, Nguyen XX, Esbroeck MV, Auburn S, Nguyen BTH, Rosanas-Urgell A. Novel highly-multiplexed AmpliSeq targeted assay for Plasmodium vivax genetic surveillance use cases at multiple geographical scales. Front Cell Infect Microbiol 2022; 12:953187. [PMID: 36034708 PMCID: PMC9403277 DOI: 10.3389/fcimb.2022.953187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Although the power of genetic surveillance tools has been acknowledged widely, there is an urgent need in malaria endemic countries for feasible and cost-effective tools to implement in national malaria control programs (NMCPs) that can generate evidence to guide malaria control and elimination strategies, especially in the case of Plasmodium vivax. Several genetic surveillance applications ('use cases') have been identified to align research, technology development, and public health efforts, requiring different types of molecular markers. Here we present a new highly-multiplexed deep sequencing assay (Pv AmpliSeq). The assay targets the 33-SNP vivaxGEN-geo panel for country-level classification, and a newly designed 42-SNP within-country barcode for analysis of parasite dynamics in Vietnam and 11 putative drug resistance genes in a highly multiplexed NGS protocol with easy workflow, applicable for many different genetic surveillance use cases. The Pv AmpliSeq assay was validated using: 1) isolates from travelers and migrants in Belgium, and 2) routine collections of the national malaria control program at sentinel sites in Vietnam. The assay targets 229 amplicons and achieved a high depth of coverage (mean 595.7 ± 481) and high accuracy (mean error-rate of 0.013 ± 0.007). P. vivax parasites could be characterized from dried blood spots with a minimum of 5 parasites/µL and 10% of minority-clones. The assay achieved good spatial specificity for between-country prediction of origin using the 33-SNP vivaxGEN-geo panel that targets rare alleles specific for certain countries and regions. A high resolution for within-country diversity in Vietnam was achieved using the designed 42-SNP within-country barcode that targets common alleles (median MAF 0.34, range 0.01-0.49. Many variants were detected in (putative) drug resistance genes, with different predominant haplotypes in the pvmdr1 and pvcrt genes in different provinces in Vietnam. The capacity of the assay for high resolution identity-by-descent (IBD) analysis was demonstrated and identified a high rate of shared ancestry within Gia Lai Province in the Central Highlands of Vietnam, as well as between the coastal province of Binh Thuan and Lam Dong. Our approach performed well in geographically differentiating isolates at multiple spatial scales, detecting variants in putative resistance genes, and can be easily adjusted to suit the needs in other settings in a country or region. We prioritize making this tool available to researchers and NMCPs in endemic countries to increase ownership and ensure data usage for decision-making and malaria policy.
Collapse
Affiliation(s)
| | - Hong Van Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Hieu Luong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Erin Sauve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ngoc Thi Hong Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Ana Chopo-Pizarro
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hidayat Trimarsanto
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Pieter Monsieurs
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Guetens
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xa Xuan Nguyen
- Department of Epidemiology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Marjan Van Esbroeck
- Clinical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Mahidol‐Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Binh Thi Huong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
6
|
Späth GF, Bussotti G. GIP: an open-source computational pipeline for mapping genomic instability from protists to cancer cells. Nucleic Acids Res 2022; 50:e36. [PMID: 34928370 PMCID: PMC8989552 DOI: 10.1093/nar/gkab1237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Genome instability has been recognized as a key driver for microbial and cancer adaptation and thus plays a central role in many diseases. Genome instability encompasses different types of genomic alterations, yet most available genome analysis software are limited to just one type of mutation. To overcome this limitation and better understand the role of genetic changes in enhancing pathogenicity we established GIP, a novel, powerful bioinformatic pipeline for comparative genome analysis. Here, we show its application to whole genome sequencing datasets of Leishmania, Plasmodium, Candida and cancer. Applying GIP on available data sets validated our pipeline and demonstrated the power of our tool to drive biological discovery. Applied to Plasmodium vivax genomes, our pipeline uncovered the convergent amplification of erythrocyte binding proteins and identified a nullisomic strain. Re-analyzing genomes of drug adapted Candida albicans strains revealed correlated copy number variations of functionally related genes, strongly supporting a mechanism of epistatic adaptation through interacting gene-dosage changes. Our results illustrate how GIP can be used for the identification of aneuploidy, gene copy number variations, changes in nucleic acid sequences, and chromosomal rearrangements. Altogether, GIP can shed light on the genetic bases of cell adaptation and drive disease biomarker discovery.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Giovanni Bussotti
- Institut Pasteur, Université de Paris, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| |
Collapse
|
7
|
Liu Y, Lin FC, Lin JT, Li Q. Dynamic Classification of Plasmodium vivax Malaria Recurrence: An Application of Classifying Unknown Cause of Failure in Competing Risks. JOURNAL OF DATA SCIENCE : JDS 2022; 20:51-78. [PMID: 35928784 PMCID: PMC9347664 DOI: 10.6339/21-jds1026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A standard competing risks set-up requires both time to event and cause of failure to be fully observable for all subjects. However, in application, the cause of failure may not always be observable, thus impeding the risk assessment. In some extreme cases, none of the causes of failure is observable. In the case of a recurrent episode of Plasmodium vivax malaria following treatment, the patient may have suffered a relapse from a previous infection or acquired a new infection from a mosquito bite. In this case, the time to relapse cannot be modeled when a competing risk, a new infection, is present. The efficacy of a treatment for preventing relapse from a previous infection may be underestimated when the true cause of infection cannot be classified. In this paper, we developed a novel method for classifying the latent cause of failure under a competing risks set-up, which uses not only time to event information but also transition likelihoods between covariates at the baseline and at the time of event occurrence. Our classifier shows superior performance under various scenarios in simulation experiments. The method was applied to Plasmodium vivax infection data to classify recurrent infections of malaria.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Feng-Chang Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| | - Quefeng Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, U.S.A
| |
Collapse
|
8
|
Bareng PN, Grignard L, Reyes R, Fornace K, Spencer F, Macalinao ML, Luchavez J, Espino FE, Drakeley C, Hafalla JCR. Prevalence and temporal changes of mutations linked to anti-malarial drug resistance in Plasmodium falciparum and Plasmodium vivax in Palawan, Philippines. Int J Infect Dis 2021; 116:174-181. [PMID: 34883232 PMCID: PMC8866131 DOI: 10.1016/j.ijid.2021.12.318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax isolates from the Philippines were analysed. Varying mutations were found in markers linked to resistance to antimalarial drugs. None of the mutations were particularly of high prevalence. Clear temporal patterns in these mutations were observed within the past 15 years. Decrease in pfcrt and pfmdr mutations are in line with antimalarial policy change.
Objective This study provides 2016 data on the prevalence of key single nucleotide polymorphisms (SNPs) associated with antimalarial drug resistance in Palawan, Philippines. Findings were combined with historical data to model temporal changes in the prevalence of these SNPs in Plasmodium isolates. Methods Plasmodium isolates were genotyped using drug resistance markers pfmdr1, pfcrt, pfdhfr, pfdhps, kelch-13, pvmdr1, pvdhfr, and pvdhps. Temporal trends in the probability of mutations were estimated as a function of time using a binomial generalised linear model. Results All samples sequenced for Plasmodium falciparum chloroquine markers pfmdr1 and pfcrt had wild-type alleles. Varying mutation patterns were observed for the sulphadoxine/pyrimethamine markers pfdhps and pfdhfr; complete quintuplet mutations were not found. No SNPs were observed for the artemisinin marker kelch-13. For Plasmodium vivax, differing patterns were detected for pvmdr1, pvdhfr, and pvdhps. Conclusions The study findings suggest that the current drugs remain effective and that there is limited importation and establishment of resistant parasites in the area. Clear temporal trends were recognised, with prominent decreases in the proportions of pfcrt and pfmdr mutations detected within the past 15 years, consistent with a change in antimalarial drug policy. Continuous surveillance of antimalarial drug resistance is important to support malaria elimination efforts.
Collapse
Affiliation(s)
- Paolo N Bareng
- Department of Parasitology and National Reference Centre for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines.
| | - Lynn Grignard
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ralph Reyes
- Department of Parasitology and National Reference Centre for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Kim Fornace
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Freya Spencer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ma Lourdes Macalinao
- Department of Parasitology and National Reference Centre for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Jennifer Luchavez
- Department of Parasitology and National Reference Centre for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Fe Esperanza Espino
- Department of Parasitology and National Reference Centre for Malaria and Other Parasites, Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Chris Drakeley
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
9
|
High Proportion of Genome-Wide Homology and Increased Pretreatment pvcrt Levels in Plasmodium vivax Late Recurrences: a Chloroquine Therapeutic Efficacy Study. Antimicrob Agents Chemother 2021; 65:e0009521. [PMID: 34031050 DOI: 10.1128/aac.00095-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chloroquine (CQ) is the first-line treatment for Plasmodium vivax malaria in most countries where malaria is endemic. Monitoring P. vivax CQ resistance (CQR) is critical but remains challenged by the difficulty to distinguish real treatment failure from reinfection or liver relapse. The therapeutic efficacy of CQ against uncomplicated P. vivax malaria was evaluated in Gia Lai Province, Vietnam. Sixty-seven patients were enrolled and followed for 42 days using microscopy and quantitative PCR. Adequate clinical and parasitological response (ACPR) was 100% (66/66) on day 28 but 75.4% (49/65) on day 42. Eighteen recurrences (27.7%) were detected, with a median time to recurrence of 42 days (interquartile range [IQR], 35 to 42) and blood CQ concentration of <100 ng/ml. Primary infections leading to recurrence occurred in younger individuals (median age for ACPR = 25 years [IQR, 20 to 28]; recurrences = 18 [16 to 21]; P = 0.002) had a longer parasite clearance time (PCT for ACPR = 47.5 h [IQR, 36.2 to 59.8 h]; recurrences = 54.2 [48.4 to 62.0]; P = 0.035) and higher pvcrt gene expression (median relative expression ratio for ACPR = 0.09 [IQR, 0.05 to 0.22]; recurrences = 0.20 [0.15 to 0.56]; P = 0.002), but showed no differences in ex vivo CQ sensitivity. Parasite genotyping by microsatellites, single nucleotide polymorphism (SNP) barcoding, and whole-genome sequencing (WGS) identified a majority of homologous recurrences, with 80% (8/10) showing >98% identity by descent to paired day 0 samples. This study shows that CQ remained largely efficacious to treat P. vivax in Gia Lai; i.e., recurrences occurred late (>day 28) and in the presence of low blood CQ concentrations. However, the combination of both WGS and gene expression analysis (pvcrt) data with clinical data (PCT) allowed us to identify potential emergence of low-grade CQR, which should be closely monitored. (This study has been registered at ClinicalTrials.gov under identifier NCT02610686.).
Collapse
|
10
|
Spotin A, Mahami-Oskouei M, Ahmadpour E, Parsaei M, Rostami A, Emami S, Gholipour S, Farmani M. Global assessment of genetic paradigms of Pvmdr1 mutations in chloroquine-resistant Plasmodium vivax isolates. Trans R Soc Trop Med Hyg 2021; 114:339-345. [PMID: 32100835 DOI: 10.1093/trstmh/traa002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/04/2019] [Accepted: 01/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloroquine (CQ) is generally prescribed as the front-line antimalarial drug of choice to treat Plasmodium vivax infections; however, some clinical CQ-resistant P. vivax isolates have been indigenously reported around the world during the last decade. METHODS In this study, P. vivax isolates (n=52) were obtained from autochthonous samples in southeast Iran during 2015-2017. The genomic DNA of samples was extracted, amplified (nested PCR) and sequenced by targeting the multidrug-resistance 1 gene. To verify the global genetic diversity of CQ-resistant P. vivax strains, the sequences of Pvmdr1 originating from Asia and the Americas were retrieved. RESULTS A total of 46 haplotypes were grouped into three distinct geographical haplogroups. The haplotype diversity and occurrence rates of Pvmdr1 976F/1076L mutations indicate that the efficacy of CQ is being compromised in Mexico, China, Nicaragua, Thailand, Brazil (2016), Ethiopia, Mauritania (2012) and southwest India in the near future. The cladistic phylogenetic tree showed that Pvmdr1 sequences isolated from the southeast Asian clade has a partial sister relationship with the American clade. CONCLUSIONS The current findings will serve as a basis to develop appropriate malaria control strategies and public health policies in symptomatic imported malaria cases or plausible CQ-resistant P. vivax strains.
Collapse
Affiliation(s)
- Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Parsaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Shima Emami
- Department of Parasitology and Mycology, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Gholipour
- Department of Parasitology and Mycology, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Farmani
- Department of Parasitology and Mycology, Faculty of Medicine Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
12
|
Ford A, Kepple D, Abagero BR, Connors J, Pearson R, Auburn S, Getachew S, Ford C, Gunalan K, Miller LH, Janies DA, Rayner JC, Yan G, Yewhalaw D, Lo E. Whole genome sequencing of Plasmodium vivax isolates reveals frequent sequence and structural polymorphisms in erythrocyte binding genes. PLoS Negl Trop Dis 2020; 14:e0008234. [PMID: 33044985 PMCID: PMC7581005 DOI: 10.1371/journal.pntd.0008234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/22/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium vivax malaria is much less common in Africa than the rest of the world because the parasite relies primarily on the Duffy antigen/chemokine receptor (DARC) to invade human erythrocytes, and the majority of Africans are Duffy negative. Recently, there has been a dramatic increase in the reporting of P. vivax cases in Africa, with a high number of them being in Duffy negative individuals, potentially indicating P. vivax has evolved an alternative invasion mechanism that can overcome Duffy negativity. Here, we analyzed single nucleotide polymorphism (SNP) and copy number variation (CNV) in Whole Genome Sequence (WGS) data from 44 P. vivax samples isolated from symptomatic malaria patients in southwestern Ethiopia, where both Duffy positive and Duffy negative individuals are found. A total of 123,711 SNPs were detected, of which 22.7% were nonsynonymous and 77.3% were synonymous mutations. The largest number of SNPs were detected on chromosomes 9 (24,007 SNPs; 19.4% of total) and 10 (16,852 SNPs, 13.6% of total). There were particularly high levels of polymorphism in erythrocyte binding gene candidates including merozoite surface protein 1 (MSP1) and merozoite surface protein 3 (MSP3.5, MSP3.85 and MSP3.9). Two genes, MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. Variation in gene copy number was also concentrated in genes involved in host-parasite interactions, including the expansion of the Duffy binding protein gene (PvDBP) on chromosome 6 and MSP3.11 on chromosome 10. Based on the phylogeny constructed from the whole genome sequences, the expansion of these genes was an independent process among the P. vivax lineages in Ethiopia. We further inferred transmission patterns of P. vivax infections among study sites and showed various levels of gene flow at a small geographical scale. The genomic features of P. vivax provided baseline data for future comparison with those in Duffy-negative individuals and allowed us to develop a panel of informative Single Nucleotide Polymorphic markers diagnostic at a micro-geographical scale. Plasmodium vivax is the most geographically widespread parasite species that causes malaria in humans. Although it occurs in Africa as a member of a mix of Plasmodium species, P. vivax is dominant in other parts of the world outside of Africa (e.g., Brazil). It was previously thought that most African populations were immune to P. vivax infections due to the absence of Duffy antigen chemokine receptor (DARC) gene expression required for erythrocyte invasion. However, several recent reports have indicated the emergence and potential spread of P. vivax across human populations in Africa. Compared to Southeast Asia and South America where P. vivax is highly endemic, data on polymorphisms in erythrocyte binding gene candidates of P. vivax from Africa is limited. Filling this knowlege gap is critical for identifying functional genes in erythrocyte invasion, biomarkers for tracking the P. vivax isolates from Africa, as well as potential gene targets for vaccine development. This paper examined the level of genetic polymorphisms in a panel of 43 potential erythrocyte binding protein genes based on whole genome sequences and described transmission patterns of P. vivax infections from different study sites in Ethiopia based on the genetic variants. Our analyses showed that chromosomes 9 and 10 of the P. vivax genomes isolated in Ethiopia had the most high-quality genetic polymorphisms. Among all erythrocyte binding protein gene candidates, the merozoite surface proteins 1 and merozoite surface protein 3 showed high levels of polymorphism. MAEBL and MSP3.8 related to immunogenicity and erythrocyte binding function were detected with significant signals of positive selection. The expansion of the Duffy binding protein and merozoite surface protein 3 gene copies was an independent process among the P. vivax lineages in Ethiopia. Various levels of gene flow were observed even at a smaller geographical scale. Our study provided baseline data for future comparison with P. vivax in Duffy negative individuals and help develop a panel of genetic markers that are informative at a micro-geographical scale.
Collapse
Affiliation(s)
- Anthony Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| | - Daniel Kepple
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
| | - Beka Raya Abagero
- Tropical Infectious Disease Research Center, Jimma University, Ethiopia
| | - Jordan Connors
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Richard Pearson
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, United States of America
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Colby Ford
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Louis H. Miller
- Laboratory of Malaria and Vector Research, NIAID/NIH, Bethesda, United States of America
| | - Daniel A. Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, United States of America
| | - Julian C. Rayner
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 OXY, United Kingdom
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, United States of America
- * E-mail: (AF); (GY); (EL)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, United States of America
- * E-mail: (AF); (GY); (EL)
| |
Collapse
|
13
|
Zhao Y, Wang L, Soe MT, Aung PL, Wei H, Liu Z, Ma T, Huang Y, Menezes LJ, Wang Q, Kyaw MP, Nyunt MH, Cui L, Cao Y. Molecular surveillance for drug resistance markers in Plasmodium vivax isolates from symptomatic and asymptomatic infections at the China-Myanmar border. Malar J 2020; 19:281. [PMID: 32758218 PMCID: PMC7409419 DOI: 10.1186/s12936-020-03354-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the Greater Mekong sub-region, Plasmodium vivax has become the predominant species and imposes a major challenge for regional malaria elimination. This study aimed to investigate the variations in genes potentially related to drug resistance in P. vivax populations from the China-Myanmar border area. In addition, this study also wanted to determine whether divergence existed between parasite populations associated with asymptomatic and acute infections. METHODS A total of 66 P. vivax isolates were obtained from patients with acute malaria who attended clinics at the Laiza area, Kachin State, Myanmar in 2015. In addition, 102 P. vivax isolates associated with asymptomatic infections were identified by screening of volunteers without signs or symptoms from surrounding villages. Slide-positive samples were verified with nested PCR detecting the 18S rRNA gene. Multiclonal infections were further excluded by genotyping at msp-3α and msp-3β genes. Parasite DNA from 60 symptomatic cases and 81 asymptomatic infections was used to amplify and sequence genes potentially associated with drug resistance, including pvmdr1, pvcrt-o, pvdhfr, pvdhps, and pvk12. RESULTS The pvmdr1 Y976F and F1076L mutations were present in 3/113 (2.7%) and 97/113 (85.5%) P. vivax isolates, respectively. The K10 insertion in pvcrt-o gene was found in 28.2% of the parasites. Four mutations in the two antifolate resistance genes reached relatively high levels of prevalence: pvdhfr S58R (53.4%), S117N/T (50.8%), pvdhps A383G (75.0%), and A553G (36.3%). Haplotypes with wild-type pvmdr1 (976Y/997K/1076F) and quadruple mutations in pvdhfr (13I/57L/58R/61M/99H/117T/173I) were significantly more prevalent in symptomatic than asymptomatic infections, whereas the pvmdr1 mutant haplotype 976Y/997K/1076L was significantly more prevalent in asymptomatic than symptomatic infections. In addition, quadruple mutations at codons 57, 58, 61 and 117 of pvdhfr and double mutations at codons 383 and 553 of pvdhps were found both in asymptomatic and symptomatic infections with similar frequencies. No mutations were found in the pvk12 gene. CONCLUSIONS Mutations in pvdhfr and pvdhps were prevalent in both symptomatic and asymptomatic P. vivax infections, suggestive of resistance to antifolate drugs. Asymptomatic carriers may act as a silent reservoir sustaining drug-resistant parasite transmission necessitating a rational strategy for malaria elimination in this region.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lin Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Myat Thu Soe
- Myanmar Health Network Organization, Yangon, Myanmar
| | | | - Haichao Wei
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Ziling Liu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Tongyu Ma
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yuanyuan Huang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Lynette J Menezes
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | | | | | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
14
|
Silva SR, Almeida ACG, da Silva GAV, Ramasawmy R, Lopes SCP, Siqueira AM, Costa GL, Sousa TN, Vieira JLF, Lacerda MVG, Monteiro WM, de Melo GC. Chloroquine resistance is associated to multi-copy pvcrt-o gene in Plasmodium vivax malaria in the Brazilian Amazon. Malar J 2018; 17:267. [PMID: 30012145 PMCID: PMC6048775 DOI: 10.1186/s12936-018-2411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/09/2018] [Indexed: 01/08/2023] Open
Abstract
Background The resistance of Plasmodium vivax to chloroquine has become an obstacle to control strategies based on the use of anti-malarials. The current study investigated the association between P. vivax CQ-resistance in vivo with copy number variation and mutations in the promoter region in pvcrt-o and pvmdr1 genes. Methods The study included patients with P. vivax that received supervised treatment with chloroquine and primaquine. Recurrences were actively recorded during this period. Results Among the 60 patients with P. vivax, 25 were CQ-resistant and 35 CQ-susceptible. A frequency of 7.1% of multi-copy pvcrt-o was observed in CQ-susceptible samples and 7.7% in CQ-resistant at D0 (P > 0.05) and 33.3% in CQ-resistant at DR (P < 0.05). For pvmdr1, 10.7% of the CQ-susceptible samples presented multiple copies compared to 11.1% in CQ-resistant at D0 and 0.0% in CQ-resistant at DR (P > 0.05). A deletion of 19 bp was found in 11/23 (47.6%) of the patients with CQ-susceptible P. vivax and 3/10 (23.1%) of the samples with in CQRPv at D0. At day DR, 55.5% of the samples with CQRPv had the 19 bp deletion. For the pvmdr-1 gene, was no variation in the analysed gene compared to the P. vivax reference Sal-1. Conclusions This was the first study with 42-day clinical follow-up to evaluate the variation of the number of copies and polymorphisms in the promoter region of the pvcrt-o and pvmdr1 genes in relation to treatment outcomes. Significantly higher frequency of multi-copy pvcrt-o was found in CQRPv samples at DR compared to CQ-susceptible, indicating parasite selection of this genotype after CQ treatment and its association with CQ-resistance in vivo. Electronic supplementary material The online version of this article (10.1186/s12936-018-2411-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Siuhelem Rocha Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Anne Cristine Gomes Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | | | - Rajendranath Ramasawmy
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Nacional de Infectologia, Evandro Chagas, Fiocruz, Rio de Janeiro, 21040-360, Brazil
| | - Gabriel Luíz Costa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Taís Nóbrega Sousa
- Centro de Pesquisas René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | | | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas & Maria Deane (ILMD), Fiocruz, Manaus, Amazonas, 69057-070, Brazil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, Amazonas, 69040-000, Brazil.
| |
Collapse
|
15
|
Kittichai V, Nguitragool W, Ngassa Mbenda HG, Sattabongkot J, Cui L. Genetic diversity of the Plasmodium vivax multidrug resistance 1 gene in Thai parasite populations. INFECTION GENETICS AND EVOLUTION 2018; 64:168-177. [PMID: 29936038 DOI: 10.1016/j.meegid.2018.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/19/2022]
Abstract
Plasmodium vivax resistance to chloroquine (CQ) was first reported over 60 years ago. Here we analyzed sequence variations in the multidrug resistance 1 gene (Pvmdr1), a putative molecular marker for P. vivax CQ resistance, in field isolates collected from three sites in Thailand during 2013-2016. Several single nucleotide polymorphisms previously implicated in reduced CQ sensitivity were found. These genetic variations encode amino acids in the two nucleotide-binding domains as well as the transmembrane domains of the protein. The high level of genetic diversity of Pvmdr1 provides insights into the evolutionary history of this gene. Specifically, there was little evidence of positive selection at amino acid F1076L in global isolates to be promoted as a possible marker for CQ resistance. Population genetic analysis clearly divided the parasites into eastern and western populations, which is consistent with their geographical separation by the central malaria-free area of Thailand. With CQ-primaquine remaining as the frontline treatment for vivax malaria in all regions of Thailand, such a population subdivision could be shaped and affected by the current drugs for P. falciparum since mixed P. falciparum/P. vivax infections often occur in this region.
Collapse
Affiliation(s)
- Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Tantiamornkul K, Pumpaibool T, Piriyapongsa J, Culleton R, Lek-Uthai U. The prevalence of molecular markers of drug resistance in Plasmodium vivax from the border regions of Thailand in 2008 and 2014. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:229-237. [PMID: 29677637 PMCID: PMC6039358 DOI: 10.1016/j.ijpddr.2018.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/08/2023]
Abstract
The prevalence of Plasmodium vivax is increasing in the border regions of Thailand; one potential problem confounding the control of malaria in these regions is the emergence and spread of drug resistance. The aim of this study was to determine the genetic diversity in genes potentially linked to drug resistance in P. vivax parasites isolated from four different border regions of Thailand; Thai-Myanmar (Tak, Mae Hong Son and Prachuap Khiri Khan Provinces), and Thai-Cambodian borders (Chanthaburi Province). Isolates were collected from 345 P. vivax patients in 2008 and 2014, and parasite DNA extracted and subjected to nucleotide sequencing at five putative drug-resistance loci (Pvdhfr, Pvdhps, Pvmdr1, Pvcrt-o and Pvk12). The prevalence of mutations in Pvdhfr, Pvdhps and Pvmdr1 were markedly different between the Thai-Myanmar and Thai-Cambodian border areas and also varied between sampling times. All isolates carried the Pvdhfr (58R and 117N/T) mutation, however, whereas the quadruple mutant allele (I57R58M61T117) was the most prevalent (69.6%) in the Thai-Myanmar border region, the double mutant allele (F57R58T61N117) was at fixation on the Thai-Cambodian border (100%). The most prevalent genotypes of Pvdhps and Pvmdr1 were the double mutant (S382G383K512G553) (65.1%) and single mutant (M958Y976F1076) (46.5%) alleles, respectively on the Thai-Myanmar border while the single Pvdhps mutant (S382G383K512A553) (52.7%) and the triple Pvmdr1 mutant (M958F976L1076) (81%) alleles were dominant on the Thai-Cambodian border. No mutations were observed in the Pvcrt-o gene in either region. Novel mutations in the Pvk12 gene, the P. vivax orthologue of PfK13, linked to artemisinin resistance in Plasmodium falciparum, were observed with three nonsynonymous and three synonymous mutations in six isolates (3.3%).
Collapse
Affiliation(s)
- Kritpaphat Tantiamornkul
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Rajvithi Rd, Rajthewee District, Bangkok 10400, Thailand; Faculty of Graduate Studies, Mahidol University, Phuttamonthon 4 Rd, Nakorn Pathom 73170, Thailand
| | - Tepanata Pumpaibool
- College of Public Health Science, Chulalongkorn University, Phyathai Rd, Bangkok 10330, Thailand
| | - Jittima Piriyapongsa
- Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki 8528523, Japan.
| | - Usa Lek-Uthai
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Rajvithi Rd, Rajthewee District, Bangkok 10400, Thailand.
| |
Collapse
|
17
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
18
|
Chaorattanakawee S, Lon C, Chann S, Thay KH, Kong N, You Y, Sundrakes S, Thamnurak C, Chattrakarn S, Praditpol C, Yingyuen K, Wojnarski M, Huy R, Spring MD, Walsh DS, Patel JC, Lin J, Juliano JJ, Lanteri CA, Saunders DL. Measuring ex vivo drug susceptibility in Plasmodium vivax isolates from Cambodia. Malar J 2017; 16:392. [PMID: 28964258 PMCID: PMC5622433 DOI: 10.1186/s12936-017-2034-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
Background While intensive Plasmodium falciparum multidrug resistance surveillance continues in Cambodia, relatively little is known about Plasmodium vivax drug resistance in Cambodia or elsewhere. To investigate P. vivax anti-malarial susceptibility in Cambodia, 76 fresh P. vivax isolates collected from Oddar Meanchey (northern Cambodia) in 2013–2015 were assessed for ex vivo drug susceptibility using the microscopy-based schizont maturation test (SMT) and a Plasmodium pan-species lactate dehydrogenase (pLDH) ELISA. P. vivax multidrug resistance gene 1 (pvmdr1) mutations, and copy number were analysed in a subset of isolates. Results Ex vivo testing was interpretable in 80% of isolates using the pLDH-ELISA, but only 25% with the SMT. Plasmodium vivax drug susceptibility by pLDH-ELISA was directly compared with 58 P. falciparum isolates collected from the same locations in 2013–4, tested by histidine-rich protein-2 ELISA. Median pLDH-ELISA IC50 of P. vivax isolates was significantly lower for dihydroartemisinin (3.4 vs 6.3 nM), artesunate (3.2 vs 5.7 nM), and chloroquine (22.1 vs 103.8 nM) than P. falciparum but higher for mefloquine (92 vs 66 nM). There were not significant differences for lumefantrine or doxycycline. Both P. vivax and P. falciparum had comparable median piperaquine IC50 (106.5 vs 123.8 nM), but some P. falciparum isolates were able to grow in much higher concentrations above the normal standard range used, attaining up to 100-fold greater IC50s than P. vivax. A high percentage of P. vivax isolates had pvmdr1 Y976F (78%) and F1076L (83%) mutations but none had pvmdr1 amplification. Conclusion The findings of high P. vivax IC50 to mefloquine and piperaquine, but not chloroquine, suggest significant drug pressure from drugs used to treat multidrug resistant P. falciparum in Cambodia. Plasmodium vivax isolates are frequently exposed to mefloquine and piperaquine due to mixed infections and the long elimination half-life of these drugs. Difficulty distinguishing infection due to relapsing hypnozoites versus blood-stage recrudescence complicates clinical detection of P. vivax resistance, while well-validated molecular markers of chloroquine resistance remain elusive. The pLDH assay may be a useful adjunctive tool for monitoring for emerging drug resistance, though more thorough validation is needed. Given high grade clinical chloroquine resistance observed recently in neighbouring countries, low chloroquine IC50 values seen here should not be interpreted as susceptibility in the absence of clinical data. Incorporating pLDH monitoring with therapeutic efficacy studies for individuals with P. vivax will help to further validate this field-expedient method. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-2034-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suwanna Chaorattanakawee
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand. .,Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok, Thailand.
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Soklyda Chann
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kheang Heng Thay
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Yom You
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Siratchana Sundrakes
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Sorayut Chattrakarn
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Chantida Praditpol
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Kritsanai Yingyuen
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Mariusz Wojnarski
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Rekol Huy
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Michele D Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Douglas S Walsh
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - Jaymin C Patel
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica Lin
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jonathan J Juliano
- Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science, Bangkok, Thailand.,US Army Medical Materiel Development Activity, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
19
|
Lo E, Hemming-Schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, Getachew S, Tushune K, Zhong D, Zhou G, Petros B, Yan G. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis 2017; 11:e0005806. [PMID: 28746333 PMCID: PMC5546713 DOI: 10.1371/journal.pntd.0005806] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/07/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antimalarials/pharmacology
- Child
- Child, Preschool
- Drug Resistance
- Endemic Diseases
- Ethiopia/epidemiology
- Female
- Gene Flow
- Genes, Protozoan
- Genetics, Population
- Genotype
- Humans
- Infant
- Infant, Newborn
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Male
- Microsatellite Repeats
- Middle Aged
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium vivax/drug effects
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- Prevalence
- Young Adult
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (EL); (GY)
| | | | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Jennifer Nguyen
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Estifanos Kebede
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kora Tushune
- Department of Health Services Management, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, United States of America
- * E-mail: (EL); (GY)
| |
Collapse
|
20
|
Maneerattanasak S, Gosi P, Krudsood S, Chimma P, Tongshoob J, Mahakunkijcharoen Y, Sukasem C, Imwong M, Snounou G, Khusmith S. Molecular and immunological analyses of confirmed Plasmodium vivax relapse episodes. Malar J 2017; 16:228. [PMID: 28558712 PMCID: PMC5450361 DOI: 10.1186/s12936-017-1877-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/25/2017] [Indexed: 12/12/2022] Open
Abstract
Background Relapse infections resulting from the activation hypnozoites produced by Plasmodium vivax and Plasmodium ovale represent an important obstacle to the successful control of these species. A single licensed drug, primaquine is available to eliminate these liver dormant forms. To date, investigations of vivax relapse infections have been few in number. Results Genotyping, based on polymorphic regions of two genes (Pvmsp1F3 and Pvcsp) and four microsatellite markers (MS3.27, MS3.502, MS6 and MS8), of 12 paired admission and relapse samples from P. vivax-infected patients were treated with primaquine, revealed that in eight of the parasite populations in the admission and relapse samples were homologous, and heterologous in the remaining four patients. The patients’ CYP2D6 genotypes did not suggest that any were poor metabolisers of primaquine. Parasitaemia tended to be higher in the heterologous as compared to the homologous relapse episodes as was the IgG3 response. For the twelve pro- and anti-inflammatory cytokine levels measured for all samples, only those of IL-6 and IL-10 tended to be higher in patients with heterologous as compared to homologous relapses in both admission and relapse episodes. Conclusions The data from this limited number of patients with confirmed relapse episodes mirror previous observations of a significant proportion of heterologous parasites in relapses of P. vivax infections in Thailand. Failure of the primaquine treatment that the patients received is unlikely to be due to poor drug metabolism, and could indicate the presence of P. vivax populations in Thailand with poor susceptibility to 8-aminoquinolines. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1877-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarunya Maneerattanasak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Science-United States Army Military Component, Bangkok, Thailand
| | - Srivicha Krudsood
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pattamawan Chimma
- Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jarinee Tongshoob
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Yuvadee Mahakunkijcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.,Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Georges Snounou
- UPMC Univ Paris 06, Inserm (Institut National de la Santé et de la Recherche Medicale), Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, ERL CNRS 8255 (Centre National de la Recherche Scientifique), Sorbonne Universités, 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Srisin Khusmith
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand. .,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
21
|
Costa GL, Amaral LC, Fontes CJF, Carvalho LH, de Brito CFA, de Sousa TN. Assessment of copy number variation in genes related to drug resistance in Plasmodium vivax and Plasmodium falciparum isolates from the Brazilian Amazon and a systematic review of the literature. Malar J 2017; 16:152. [PMID: 28420389 PMCID: PMC5395969 DOI: 10.1186/s12936-017-1806-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. Methods The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR–RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. Results All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. Conclusions The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1806-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Lara Cotta Amaral
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Nyunt MH, Han JH, Wang B, Aye KM, Aye KH, Lee SK, Htut Y, Kyaw MP, Han KT, Han ET. Clinical and molecular surveillance of drug resistant vivax malaria in Myanmar (2009-2016). Malar J 2017; 16:117. [PMID: 28298235 PMCID: PMC5353783 DOI: 10.1186/s12936-017-1770-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND One of the major challenges for control and elimination of malaria is ongoing spread and emergence of drug resistance. While epidemiology and surveillance of the drug resistance in falciparum malaria is being explored globally, there are few studies on drug resistance vivax malaria. METHODS To assess the spread of drug-resistant vivax malaria in Myanmar, a multisite, prospective, longitudinal study with retrospective analysis of previous therapeutic efficacy studies, was conducted. A total of 906 from nine study sites were included in retrospective analysis and 208 from three study sites in prospective study. Uncomplicated vivax mono-infected patients were recruited and monitored with longitudinal follow-up until day 28 after treatment with chloroquine. Amplification and sequence analysis of molecular markers, such as mutations in pvcrt-O, pvmdr1, pvdhps and pvdhfr, were done in day-0 samples in prospective study. RESULTS Clinical failure cases were found only in Kawthaung, southern Myanmar and western Myanmar sites within 2009-2016. Chloroquine resistance markers, pvcrt-O 'AAG' insertion and pvmdr1 mutation (Y976F) showed higher mutant rate in southern and central Myanmar than western site: 66.7, 72.7 vs 48.3% and 26.7, 17.0 vs 1.7%, respectively. A similar pattern of significantly higher mutant rate of antifolate resistance markers, pvdhps (S382A, K512M, A553G) and pvdhfr (F57L/I, S58R, T61M, S117T/N) were noted. CONCLUSIONS Although clinical failure rate was low, widespread distribution of chloroquine and antifolate resistance molecular makers alert to the emergence and spread of drug resistance vivax malaria in Myanmar. Proper strategy and action plan to eliminate and contain the resistant strain strengthened together with clinical and molecular surveillance on drug resistance vivax is recommended.
Collapse
Affiliation(s)
- Myat Htut Nyunt
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.,Department of Medical Research, Yangon, Myanmar
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui, China
| | | | | | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Ye Htut
- Department of Medical Research, Yangon, Myanmar
| | | | | | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
23
|
Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 2016; 113:E8096-E8105. [PMID: 27911780 DOI: 10.1073/pnas.1608828113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.
Collapse
|
24
|
Brazeau NF, Hathaway N, Parobek CM, Lin JT, Bailey JA, Lon C, Saunders DL, Juliano JJ. Longitudinal Pooled Deep Sequencing of the Plasmodium vivax K12 Kelch Gene in Cambodia Reveals a Lack of Selection by Artemisinin. Am J Trop Med Hyg 2016; 95:1409-1412. [PMID: 27799638 DOI: 10.4269/ajtmh.16-0566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/30/2016] [Indexed: 11/07/2022] Open
Abstract
The emergence of artemisinin resistance among Plasmodium falciparum in the Greater Mekong subregion threatens malaria control interventions and is associated with multiple unique mutations in K13 (PF3D7_1343700). The aim of this study was to survey Cambodian Plasmodium vivax for mutations in the K13 ortholog (K12, PVX_083080) that might similarly confer artemisinin resistance. Extracted DNA from Cambodian isolates collected between 2009 and 2012 was pooled by province and year and submitted for next-generation sequencing. Single-nucleotide polymorphisms (SNPs) were identified using a pile-up approach that detected minority SNPs. Among the 14 pools, we found six unique SNPs, including three nonsynonymous SNPs, across six codons in K12 However, none of the SNPs were orthologous to artemisinin resistance-conferring mutations in PF3D7_1343700, and nonsynonymous changes did not persist through time within populations. These results suggest a lack of selection in the P. vivax population in Cambodia due to artemisinin drug pressure.
Collapse
Affiliation(s)
- Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina.,Doctor of Medicine/Doctor of Philosophy Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Nicholas Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts.,School of Medicine, University of Massachusetts, Worcester, Massachusetts
| | - Christian M Parobek
- Doctor of Medicine/Doctor of Philosophy Program, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts.,School of Medicine, University of Massachusetts, Worcester, Massachusetts
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jonathan J Juliano
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina. .,Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, Massachusetts.,Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Gomes LR, Almeida-de-Oliveira NK, de Lavigne AR, de Lima SRF, de Pina-Costa A, Brasil P, Daniel-Ribeiro CT, Ménard D, Ferreira-da-Cruz MDF. Plasmodium vivax mdr1 genotypes in isolates from successfully cured patients living in endemic and non-endemic Brazilian areas. Malar J 2016; 15:96. [PMID: 26887935 PMCID: PMC4758108 DOI: 10.1186/s12936-016-1141-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/03/2016] [Indexed: 01/10/2023] Open
Abstract
Background Plasmodium vivax is the most widely distributed species causing the highest number of malaria cases in the world. In Brazil, P. vivax is responsible for approximately 84 % of reported cases. In the absence of a vaccine, control strategies are based on the management of cases through rapid diagnosis and adequate treatment, in addition to vector control measures. The approaches used to investigate P. vivax resistance to chloroquine (CQ) were exclusively in vivo studies because of the difficulty in keeping parasites in continuous in vitro culture. In view of the limitations related to follow-up of patients and to assessing the plasma dosage of CQ and its metabolites, an alternative approach to monitor chemo-resistance (QR) is to use molecular markers. Single nucleotide polymorphisms (SNPs) in the multidrug resistance gene pvmdr1 are putative determinants of CQ resistance (CQR), but such SNPs in P. vivax isolates from patients with good response to treatment should be further explored. The aim of this study is to investigate the mutations in the gene, supposedly associated to QR, in P. vivax isolates from successfully cured patients, living in Brazilian endemic and non-endemic areas. Methods Blood samples were collected from 49 vivax malaria patients from endemic (Amazon Basin: 45) and non-endemic (Atlantic Forest: four) Brazilian regions and analysed for SNPs in the CQR-related P. vivax gene (pvmdr1), using PCR-based methods. Results Among the 49 isolates genetically characterized for the gene pvmdr1, 34 (70 %) presented at least one mutation. T958M mutant alleles were the most frequent (73 %) followed Y976F (15 %) and F1076L (12 %). Single mutation was detected in 24 (70.5 %) isolates and double mutations in ten (29.5 %). The most common single mutant genotype was the 958M/Y976/F1076 (79 %), followed by 976F/F1076 (21 %) whereas 958M/Y976/1076L (60 %) and 976F/1076L (40 %) double mutant genotypes were detected. Single mutant profile was observed only in isolates from Amazon Basin, although double mutants were found both in the Amazon and Atlantic Forest regions. Interestingly, the genotype 958M/Y976/1076L was present in all isolates from the Atlantic Forest in the Rio de Janeiro State. Conclusions Considering that primaquine (PQ) efficacy is highly dependent on concurrent administration of a blood schizontocidal agent and that PQ could not circumvent CQR, together with the fact that no pvmdr1 mutation should be expected in successfully cured patients, these findings seem to indicate that the pvmdr1 gene is not a reliable marker of CQR. Further investigations are needed to define a reliable molecular marker for monitoring P. vivax CQR in P. vivax populations.
Collapse
Affiliation(s)
- Larissa Rodrigues Gomes
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Natália Ketrin Almeida-de-Oliveira
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Aline Rosa de Lavigne
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Suelen Rezende Félix de Lima
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Anielle de Pina-Costa
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil. .,Laboratório de Doenças Febris Agudas - Instituto Nacional de Infectologia Evandro Chagas (INI-IPEC) (Fiocruz), Rio de Janeiro, Brazil.
| | - Patrícia Brasil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil. .,Laboratório de Doenças Febris Agudas - Instituto Nacional de Infectologia Evandro Chagas (INI-IPEC) (Fiocruz), Rio de Janeiro, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| | - Didier Ménard
- Malaria Molecular Epidemiology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia.
| | - Maria de Fatima Ferreira-da-Cruz
- Laboratório de Pesquisa em Malária - Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal) Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
26
|
Winter DJ, Pacheco MA, Vallejo AF, Schwartz RS, Arevalo-Herrera M, Herrera S, Cartwright RA, Escalante AA. Whole Genome Sequencing of Field Isolates Reveals Extensive Genetic Diversity in Plasmodium vivax from Colombia. PLoS Negl Trop Dis 2015; 9:e0004252. [PMID: 26709695 PMCID: PMC4692395 DOI: 10.1371/journal.pntd.0004252] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/30/2015] [Indexed: 11/24/2022] Open
Abstract
Plasmodium vivax is the most prevalent malarial species in South America and exerts a substantial burden on the populations it affects. The control and eventual elimination of P. vivax are global health priorities. Genomic research contributes to this objective by improving our understanding of the biology of P. vivax and through the development of new genetic markers that can be used to monitor efforts to reduce malaria transmission. Here we analyze whole-genome data from eight field samples from a region in Cordóba, Colombia where malaria is endemic. We find considerable genetic diversity within this population, a result that contrasts with earlier studies suggesting that P. vivax had limited diversity in the Americas. We also identify a selective sweep around a substitution known to confer resistance to sulphadoxine-pyrimethamine (SP). This is the first observation of a selective sweep for SP resistance in this species. These results indicate that P. vivax has been exposed to SP pressure even when the drug is not in use as a first line treatment for patients afflicted by this parasite. We identify multiple non-synonymous substitutions in three other genes known to be involved with drug resistance in Plasmodium species. Finally, we found extensive microsatellite polymorphisms. Using this information we developed 18 polymorphic and easy to score microsatellite loci that can be used in epidemiological investigations in South America.
Collapse
Affiliation(s)
- David J. Winter
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - M. Andreína Pacheco
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Rachel S. Schwartz
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Myriam Arevalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | | | - Reed A. Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- The School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ananias A. Escalante
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
27
|
Chung DI, Jeong S, Dinzouna-Boutamba SD, Yang HW, Yeo SG, Hong Y, Goo YK. Evaluation of single nucleotide polymorphisms of pvmdr1 and microsatellite genotype in Plasmodium vivax isolates from Republic of Korea military personnel. Malar J 2015; 14:336. [PMID: 26337571 PMCID: PMC4559299 DOI: 10.1186/s12936-015-0845-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/11/2015] [Indexed: 11/23/2022] Open
Abstract
Background Chloroquine has been administered to the soldiers of the Republic of Korea as prophylaxis against vivax malaria. Recent increase in the number of chloroquine-resistant parasites has raised concern over the chemoprophylaxis and treatment of vivax malaria. Methods To monitor the development of chloroquine-resistant parasites in the Republic of Korea, analyses of single nucleotide polymorphisms (SNPs) of pvmdr1 and microsatellite markers were performed using samples collected from 55 South Korean soldiers infected with Plasmodium vivax. Results Four SNPs, F1076L, T529, E1233, and S1358, were identified. Among these, S1358 was detected for the first time in Korea. The microsatellite-based study revealed higher genetic diversity in
samples collected in 2012 than in 2011. Conclusions Taken together, the results indicate that P. vivax with a newly identified SNP of pvmdr1 has been introduced into the Korean P. vivax population. Therefore, continuous monitoring for chloroquine-resistant parasites is required for controlling vivax malaria in the Republic of Korea.
Collapse
Affiliation(s)
- Dong-Il Chung
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, 101 Dongin-2-ga, Joong-gu, Daegu, 70-422, Republic of Korea.
| | - Sookwan Jeong
- Department of Medicine, Headquarters of Republic of Korea Army, Choongnam, Republic of Korea.
| | - Sylvatrie-Danne Dinzouna-Boutamba
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, 101 Dongin-2-ga, Joong-gu, Daegu, 70-422, Republic of Korea.
| | - Hye-Won Yang
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, 101 Dongin-2-ga, Joong-gu, Daegu, 70-422, Republic of Korea.
| | - Sang-Geon Yeo
- College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, 101 Dongin-2-ga, Joong-gu, Daegu, 70-422, Republic of Korea.
| | - Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, 101 Dongin-2-ga, Joong-gu, Daegu, 70-422, Republic of Korea.
| |
Collapse
|
28
|
Flannery EL, Wang T, Akbari A, Corey VC, Gunawan F, Bright AT, Abraham M, Sanchez JF, Santolalla ML, Baldeviano GC, Edgel KA, Rosales LA, Lescano AG, Bafna V, Vinetz JM, Winzeler EA. Next-Generation Sequencing of Plasmodium vivax Patient Samples Shows Evidence of Direct Evolution in Drug-Resistance Genes. ACS Infect Dis 2015; 1:367-79. [PMID: 26719854 DOI: 10.1021/acsinfecdis.5b00049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the mechanisms of drug resistance in Plasmodium vivax, the parasite that causes the most widespread form of human malaria, is complicated by the lack of a suitable long-term cell culture system for this parasite. In contrast to P. falciparum, which can be more readily manipulated in the laboratory, insights about parasite biology need to be inferred from human studies. Here we analyze the genomes of parasites within 10 human P. vivax infections from the Peruvian Amazon. Using next-generation sequencing we show that some P. vivax infections analyzed from the region are likely polyclonal. Despite their polyclonality we observe limited parasite genetic diversity by showing that three or fewer haplotypes comprise 94% of the examined genomes, suggesting the recent introduction of parasites into this geographic region. In contrast we find more than three haplotypes in putative drug-resistance genes, including the gene encoding dihydrofolate reductase-thymidylate synthase and the P. vivax multidrug resistance associated transporter, suggesting that resistance mutations have arisen independently. Additionally, several drug-resistance genes are located in genomic regions with evidence of increased copy number. Our data suggest that whole genome sequencing of malaria parasites from patients may provide more insight about the evolution of drug resistance than genetic linkage or association studies, especially in geographical regions with limited parasite genetic diversity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan F. Sanchez
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Meddly L. Santolalla
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - G. Christian Baldeviano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Kimberly A. Edgel
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Luis A. Rosales
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | - Andrés G. Lescano
- U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Avenida Venezuela Cuadra 36 S/N, Centro Médico
Naval, Lima Callao 02, Peru
| | | | | | | |
Collapse
|
29
|
Khim N, Andrianaranjaka V, Popovici J, Kim S, Ratsimbasoa A, Benedet C, Barnadas C, Durand R, Thellier M, Legrand E, Musset L, Menegon M, Severini C, Nour BYM, Tichit M, Bouchier C, Mercereau-Puijalon O, Ménard D. Effects of mefloquine use on Plasmodium vivax multidrug resistance. Emerg Infect Dis 2015; 20:1637-44. [PMID: 25272023 PMCID: PMC4193276 DOI: 10.3201/eid2010.140411] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Use of mefloquine against P. falciparum jeopardizes its future use against P. vivax. Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non–P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites.
Collapse
|
30
|
Daniels RF, Rice BL, Daniels NM, Volkman SK, Hartl DL. The utility of genomic data for Plasmodium vivax population surveillance. Pathog Glob Health 2015; 109:153-61. [PMID: 25892032 DOI: 10.1179/2047773215y.0000000014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genetic polymorphisms identified from genomic sequencing can be used to track changes in parasite populations through time. Such tracking is particularly informative when applying control strategies and evaluating their effectiveness. Using genomic approaches may also enable improved ability to categorise populations and to stratify them according to the likely effectiveness of intervention. Clinical applications of genomic approaches also allow relapses to be classified according to reinfection or recrudescence. These tools can be used not only to assess the effectiveness of malaria interventions but also to appraise the strategies for malaria elimination.
Collapse
|
31
|
Lin JT, Hathaway NJ, Saunders DL, Lon C, Balasubramanian S, Kharabora O, Gosi P, Sriwichai S, Kartchner L, Chuor CM, Satharath P, Lanteri C, Bailey JA, Juliano JJ. Using Amplicon Deep Sequencing to Detect Genetic Signatures of Plasmodium vivax Relapse. J Infect Dis 2015; 212:999-1008. [PMID: 25748326 DOI: 10.1093/infdis/jiv142] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/27/2015] [Indexed: 01/31/2023] Open
Abstract
Plasmodium vivax infections often recur due to relapse of hypnozoites from the liver. In malaria-endemic areas, tools to distinguish relapse from reinfection are needed. We applied amplicon deep sequencing to P. vivax isolates from 78 Cambodian volunteers, nearly one-third of whom suffered recurrence at a median of 68 days. Deep sequencing at a highly variable region of the P. vivax merozoite surface protein 1 gene revealed impressive diversity-generating 67 unique haplotypes and detecting on average 3.6 cocirculating parasite clones within individuals, compared to 2.1 clones detected by a combination of 3 microsatellite markers. This diversity enabled a scheme to classify over half of recurrences as probable relapses based on the low probability of reinfection by multiple recurring variants. In areas of high P. vivax diversity, targeted deep sequencing can help detect genetic signatures of relapse, key to evaluating antivivax interventions and achieving a better understanding of relapse-reinfection epidemiology.
Collapse
Affiliation(s)
- Jessica T Lin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester
| | - David L Saunders
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sujata Balasubramanian
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Oksana Kharabora
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| | - Panita Gosi
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sabaithip Sriwichai
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Laurel Kartchner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill
| | - Char Meng Chuor
- National Center for Parasitology, Entomology and Malaria Control
| | | | - Charlotte Lanteri
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester Division of Transfusion Medicine, University of Massachusetts Medical School, Worcester
| | - Jonathan J Juliano
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill
| |
Collapse
|
32
|
Lon C, Manning JE, Vanachayangkul P, So M, Sea D, Se Y, Gosi P, Lanteri C, Chaorattanakawee S, Sriwichai S, Chann S, Kuntawunginn W, Buathong N, Nou S, Walsh DS, Tyner SD, Juliano JJ, Lin J, Spring M, Bethell D, Kaewkungwal J, Tang D, Chuor CM, Satharath P, Saunders D. Efficacy of two versus three-day regimens of dihydroartemisinin-piperaquine for uncomplicated malaria in military personnel in northern Cambodia: an open-label randomized trial. PLoS One 2014; 9:e93138. [PMID: 24667662 PMCID: PMC3965521 DOI: 10.1371/journal.pone.0093138] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Emerging antimalarial drug resistance in mobile populations remains a significant public health concern. We compared two regimens of dihydroartemisinin-piperaquine in military and civilians on the Thai-Cambodian border to evaluate national treatment policy. METHODS Efficacy and safety of two and three-day regimens of dihydroartemisinin-piperaquine were compared as a nested open-label evaluation within a malaria cohort study in 222 otherwise healthy volunteers (18% malaria-infected at baseline). The first 80 volunteers with slide-confirmed Plasmodium falciparum or vivax malaria were randomized 1:1 to receive either regimen (total dose 360 mg dihydroartemisinin and 2880 mg piperaquine) and followed weekly for up to 6 months. The primary endpoint was malaria recurrence by day 42. Volunteers with vivax infection received primaquine at study discharge with six months follow-up. RESULTS Eighty patients (60 vivax, 15 falciparum, and 5 mixed) were randomized to dihydroartemisinin-piperaquine. Intention-to-treat all-species efficacy at Day 42 was 85% for the two-day regimen (95% CI 69-94) and 90% for the three-day regimen (95% CI 75-97). PCR-adjusted falciparum efficacy was 75% in both groups with nearly half (45%) still parasitemic at Day 3. Plasma piperaquine levels were comparable to prior published reports, but on the day of recrudescence were below measurable in vitro piperaquine IC50 levels in all falciparum treatment failures. CONCLUSIONS In the brief period since introduction of dihydroartemisinin-piperaquine, there is early evidence suggesting declining efficacy relative to previous reports. Parasite IC50 levels in excess of plasma piperaquine levels seen only in treatment failures raises concern for clinically significant piperaquine resistance in Cambodia. These findings warrant improved monitoring of clinical outcomes and follow-up, given few available alternative drugs. TRIAL REGISTRATION ClinicalTrials.gov NCT01280162.
Collapse
Affiliation(s)
- Chanthap Lon
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Jessica E. Manning
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Pattaraporn Vanachayangkul
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Mary So
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Darapiseth Sea
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Youry Se
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Panita Gosi
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Charlotte Lanteri
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Sabaithip Sriwichai
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Soklyda Chann
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Worachet Kuntawunginn
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Nillawan Buathong
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Samon Nou
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Douglas S. Walsh
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Stuart D. Tyner
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Jonathan J. Juliano
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jessica Lin
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Michele Spring
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Delia Bethell
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Mahidol University, Bangkok, Thailand
| | - Douglas Tang
- Fast Track Biologics, Potomac, Maryland, United States of America
| | - Char Meng Chuor
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | | | - David Saunders
- US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Department of Immunology & Medicine, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
33
|
Development of a capillary electrophoresis-based heteroduplex tracking assay to measure in-host genetic diversity of initial and recurrent Plasmodium vivax infections in Cambodia. J Clin Microbiol 2013; 52:298-301. [PMID: 24131693 DOI: 10.1128/jcm.02274-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A heteroduplex tracking assay used to genotype Plasmodium vivax merozoite surface protein 1 was adapted to a capillary electrophoresis format, obviating the need for radiolabeled probes and allowing its use in settings where malaria is endemic. This new assay achieved good allelic discrimination and detected high multiplicities of infection in 63 P. vivax infections in Cambodia. More than half of the recurrent parasitemias sampled displayed identical or highly related genotypes compared to the initial genotype, suggesting that they represented relapses.
Collapse
|
34
|
Activation of minority-variant Plasmodium vivax hypnozoites following artesunate + amodiaquine treatment in a 23-year old man with relapsing malaria in Antananarivo, Madagascar. Malar J 2013; 12:177. [PMID: 23721298 PMCID: PMC3671981 DOI: 10.1186/1475-2875-12-177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/27/2013] [Indexed: 12/25/2022] Open
Abstract
In endemic areas, Plasmodium vivax relapses are difficult to distinguish from new infections. Genotyping of patients who experience relapse after returning to a malaria-free area can be used to explore the nature of hypnozoite activation and relapse. This paper describes a person who developed P. vivax malaria for the first time after travelling to Boriziny in the malaria endemic coastal area of Madagascar, then suffered two P. vivax relapses 11 weeks and 21 weeks later despite remaining in Antananarivo in the malaria-free central highlands area. He was treated with the combination artesunate + amodiaquine according to the national malaria policy in Madagascar. Genotyping by PCR-RFLP at pvmsp-3α as well as pvmsp1 heteroduplex tracking assay (HTA) showed the same dominant genotype at each relapse. Multiple recurring minority variants were also detected at each relapse, highlighting the propensity for multiple hypnozoite clones to activate simultaneously to cause relapse.
Collapse
|