1
|
Neurobehavioral and biochemical responses to artemisinin-based drug and aflatoxin B 1 co-exposure in rats. Mycotoxin Res 2023; 39:67-80. [PMID: 36701108 DOI: 10.1007/s12550-023-00474-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Populations in malaria endemic areas are frequently exposed to mycotoxin-contaminated diets. The possible toxicological outcome of co-exposure to dietary aflatoxin B1 (AFB1) and artemisinin-based combination therapy warrants investigation to ascertain amplification or attenuation of cellular injury. Here, we investigated the neurobehavioral and biochemical responses associated with co-exposure to anti-malarial drug coartem, an artemether-lumefantrine combination (5 mg/kg body weight, twice a day and 3 days per week) and AFB1 (35 and 70 µg/kg body weight) in rats. Motor deficits, locomotor incompetence, and anxiogenic-like behavior induced by low AFB1 dose were significantly (p < 0.05) assuaged by coartem but failed to rescue these behavioral abnormalities in high AFB1-dosed group. Coartem administration did not alter exploratory deficits typified by reduced track plot densities and greater heat map intensity in high AFB1-dosed animals. Furthermore, the reduction in cerebral and cerebellar acetylcholinesterase activity, anti-oxidant enzyme activities, and glutathione and thiol levels were markedly assuaged by coartem administration in low AFB1 group but not in high AFB1-dosed animals. The significant attenuation of cerebral and cerebellar oxidative stress indices namely reactive oxygen and nitrogen species, xanthine oxidase activity, and lipid peroxidation by coartem administration was evident in low AFB1 group but not high AFB1 dose. Although coartem administration abated nitric oxide level, activities of myeloperoxidase, caspase-9, and caspase-3 in animals exposed to both doses of AFB1, these indices were significantly higher than the control. Coartem administration ameliorated histopathological and mophometrical changes due to low AFB1 exposure but not in high AFB1 exposure. In conclusion, contrary to AFB1 alone, behavioral and biochemical responses were not altered in animals singly exposed to coartem. Co-exposure to coartem and AFB1 elicited no additional risk but partially lessened neurotoxicity associated with AFB1 exposure.
Collapse
|
2
|
Arora RD, Jati M, Nagarkar NM. Ototoxicity of Artemisinin-Based Combination Therapy: A Case Presentation. Indian J Otolaryngol Head Neck Surg 2022; 74:3847-3849. [PMID: 36742687 PMCID: PMC9895225 DOI: 10.1007/s12070-021-02669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroauditory-toxicity should always be borne in mind prior to treatment of severe conditions like cerebral-malaria and due attention should be paid to auditory monitoring. Artemisinin-based combination therapy is the best available treatment for cerebral malaria however its attribution to hearing loss remains undetermined. This report manifests ototoxic effect of artemisinin.
Collapse
Affiliation(s)
- Ripu Daman Arora
- Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| | - Monalisa Jati
- Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| | - Nitin M. Nagarkar
- Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Raipur, Chhattisgarh 492099 India
| |
Collapse
|
3
|
The Artemiside-Artemisox-Artemisone-M1 Tetrad: Efficacies against Blood Stage P. falciparum Parasites, DMPK Properties, and the Case for Artemiside. Pharmaceutics 2021; 13:pharmaceutics13122066. [PMID: 34959347 PMCID: PMC8704606 DOI: 10.3390/pharmaceutics13122066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf) blood stage parasites (IC50 1.5–2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies.
Collapse
|
4
|
Watson DJ, Laing L, Gibhard L, Wong HN, Haynes RK, Wiesner L. Toward New Transmission-Blocking Combination Therapies: Pharmacokinetics of 10-Amino-Artemisinins and 11-Aza-Artemisinin and Comparison with Dihydroartemisinin and Artemether. Antimicrob Agents Chemother 2021; 65:e0099021. [PMID: 34097488 PMCID: PMC8284440 DOI: 10.1128/aac.00990-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
As artemisinin combination therapies (ACTs) are compromised by resistance, we are evaluating triple combination therapies (TACTs) comprising an amino-artemisinin, a redox drug, and a third drug with a different mode of action. Thus, here we briefly review efficacy data on artemisone, artemiside, other amino-artemisinins, and 11-aza-artemisinin and conduct absorption, distribution, and metabolism and excretion (ADME) profiling in vitro and pharmacokinetic (PK) profiling in vivo via intravenous (i.v.) and oral (p.o.) administration to mice. The sulfamide derivative has a notably long murine microsomal half-life (t1/2 > 150 min), low intrinsic liver clearance and total plasma clearance rates (CLint 189.4, CLtot 32.2 ml/min/kg), and high relative bioavailability (F = 59%). Kinetics are somewhat similar for 11-aza-artemisinin (t1/2 > 150 min, CLint = 576.9, CLtot = 75.0 ml/min/kg), although bioavailability is lower (F = 14%). In contrast, artemether is rapidly metabolized to dihydroartemisinin (DHA) (t1/2 = 17.4 min) and eliminated (CLint = 855.0, CLtot = 119.7 ml/min/kg) and has low oral bioavailability (F) of 2%. While artemisone displays low t1/2 of <10 min and high CLint of 302.1, it displays a low CLtot of 42.3 ml/min/kg and moderate bioavailability (F) of 32%. Its active metabolite M1 displays a much-improved t1/2 of >150 min and a reduced CLint of 37.4 ml/min/kg. Artemiside has t1/2 of 12.4 min, CLint of 673.9, and CLtot of 129.7 ml/kg/min, likely a reflection of its surprisingly rapid metabolism to artemisone, reported here for the first time. DHA is not formed from any amino-artemisinin. Overall, the efficacy and PK data strongly support the development of selected amino-artemisinins as components of new TACTs.
Collapse
Affiliation(s)
- Daniel J. Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lizahn Laing
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Liezl Gibhard
- H3D, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard K. Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Dillard LK, Fullerton AM, McMahon CM. Ototoxic hearing loss from antimalarials: A systematic narrative review. Travel Med Infect Dis 2021; 43:102117. [PMID: 34129960 DOI: 10.1016/j.tmaid.2021.102117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Drugs used in curative and prophylactic antimalarial treatment may be ototoxic and lead to permanent hearing loss, but there is no consensus regarding prevalence and permanence of ototoxic hearing loss caused by antimalarials. The purpose of this systematic narrative review was to synthesize current evidence on antimalarial ototoxicity in human populations. METHOD Studies published between 2005 and 2018 that reported prevalence of post-treatment hearing loss in individuals treated for malaria were included. RESULTS Twenty-two studies including data from 21 countries were included. Primary themes of the included studies were to evaluate drug safety and/or efficacy (n = 13) or ototoxic effects of drugs (n = 9). Hearing data were measured objectively in 9 studies. Five studies focused on quinine (or derivates), 10 focused on artemisinin combination therapies, and 7 considered multiple drug combinations. There is a paucity of evidence that thoroughly reports potentially permanent ototoxic effects of antimalarials. CONCLUSIONS Antimalarial drugs may be ototoxic in some cases. More research in human populations is needed to describe ototoxicity of current antimalarials and of future drugs that will be used/developed in response to antimalarial resistance. It is recommended that randomized trials evaluating drug safety objectively measure and report ototoxic hearing loss as an adverse event.
Collapse
Affiliation(s)
- Lauren K Dillard
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA; Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, WI, USA.
| | - Amanda M Fullerton
- Department of Linguistics, Macquarie University, Sydney, New South Wales, Australia
| | - Catherine M McMahon
- Department of Linguistics, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Jozefowicz-Korczynska M, Pajor A, Lucas Grzelczyk W. The Ototoxicity of Antimalarial Drugs-A State of the Art Review. Front Neurol 2021; 12:661740. [PMID: 33959089 PMCID: PMC8093564 DOI: 10.3389/fneur.2021.661740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
This review summarizes current knowledge about the occurrence of hearing and balance disorders after antimalarial drugs treatment. It also examines the clinical applications of antimalarials, their mechanisms behind this ototoxicity and how it can be monitored. It includes studies with larger numbers of patients and those in which auditory function was assessed using audiological tests. Some antimalarials have been repurposed for other conditions like autoimmune disorders, rheumatic diseases, some viral diseases and cancers. While old antimalarial drugs, such as quinoline derivatives, are known to demonstrate ototoxicity, a number of new synthetic antimalarial agents particularly artemisinin derivatives, demonstrate unknown ototoxicity. Adverse audiovestibular effects vary depending on the medication itself, its dose and route of administration, as well as the drug combination, treated disease and individual predispositions of the patient. Dizziness was commonly reported, while vestibular symptoms, hearing loss and tinnitus were observed much less frequently, and most of these symptoms were reversible. As early identification of ototoxic hearing loss is critical to introducing possible alternative treatments with less ototoxic medications, therefore monitoring systems of those drugs ototoxic side effects are much needed.
Collapse
Affiliation(s)
- Magdalena Jozefowicz-Korczynska
- Balance Disorders Unit, Otolaryngology Department, The Norbert Barlicki Memorial Teaching Hospital, Medical University of Lodz, Lodz, Poland
| | - Anna Pajor
- Department of Otolaryngology, Head and Neck Oncology, The Norbert Barlicki Memorial Teaching Hospital, Medical University of Lodz, Lodz, Poland
| | - Weronika Lucas Grzelczyk
- Balance Disorders Unit, Otolaryngology Department, The Norbert Barlicki Memorial Teaching Hospital, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Wong HN, Padín-Irizarry V, van der Watt ME, Reader J, Liebenberg W, Wiesner L, Smith P, Eribez K, Winzeler EA, Kyle DE, Birkholtz LM, Coertzen D, Haynes RK. Optimal 10-Aminoartemisinins With Potent Transmission-Blocking Capabilities for New Artemisinin Combination Therapies-Activities Against Blood Stage P. falciparum Including PfKI3 C580Y Mutants and Liver Stage P. berghei Parasites. Front Chem 2020; 7:901. [PMID: 31998692 PMCID: PMC6967409 DOI: 10.3389/fchem.2019.00901] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
We have demonstrated previously that amino-artemisinins including artemiside and artemisone in which an amino group replaces the oxygen-bearing substituents attached to C-10 of the current clinical artemisinin derivatives dihydroartemisinin (DHA), artemether and artesunate, display potent activities in vitro against the asexual blood stages of Plasmodium falciparum (Pf). In particular, the compounds are active against late blood stage Pf gametocytes, and are strongly synergistic in combination with the redox active drug methylene blue. In order to fortify the eventual selection of optimum amino-artemisinins for development into new triple combination therapies also active against artemisinin-resistant Pf mutants, we have prepared new amino-artemisinins based on the easily accessible and inexpensive DHA-piperazine. The latter was converted into alkyl- and aryl sulfonamides, ureas and amides. These derivatives were screened together with the comparator drugs DHA and the hitherto most active amino-artemisinins artemiside and artemisone against asexual and sexual blood stages of Pf and liver stage P. berghei (Pb) sporozoites. Several of the new amino-artemisinins bearing aryl-urea and -amide groups are potently active against both asexual, and late blood stage gametocytes (IC50 0.4-1.0 nM). Although the activities are superior to those of artemiside (IC50 1.5 nM) and artemisone (IC50 42.4 nM), the latter are more active against the liver stage Pb sporozoites (IC50 artemisone 28 nM). In addition, early results indicate these compounds tend not to display reduced susceptibility against parasites bearing the Pf Kelch 13 propeller domain C580Y mutation characteristic of artemisinin-resistant Pf. Thus, the advent of the amino-artemisinins including artemiside and artemisone will enable the development of new combination therapies that by virtue of the amino-artemisinin component itself will possess intrinsic transmission-blocking capabilities and may be effective against artemisinin resistant falciparum malaria.
Collapse
Affiliation(s)
- Ho Ning Wong
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Vivian Padín-Irizarry
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Wilna Liebenberg
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Peter Smith
- Division of Clinical Pharmacology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Korina Eribez
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elizabeth A Winzeler
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Dennis E Kyle
- Center for Tropical & Emerging Global Diseases, Coverdell Center, University of Georgia, Athens, GA, United States
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Dina Coertzen
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Pretoria, South Africa
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Reiterer E, Reider S, Lackner P, Fischer N, Dejaco D, Riechelmann H, Zorowka P, Kremsner PG, Adegnika AA, Schmutzhard E, Schmutzhard J. A long-term follow-up study on otoacoustic emissions testing in paediatric patients with severe malaria in Gabon. Malar J 2019; 18:212. [PMID: 31234890 PMCID: PMC6591898 DOI: 10.1186/s12936-019-2840-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 06/17/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In a previous study, severe and cerebral malaria have been connected with acute cochlear malfunction in children, demonstrated by a decrease of transitory evoked otoacoustic emissions (TEOAEs) reproducibility. This study aims to determine whether cochlear malfunction persists for 4 years after recovery from severe malaria in a subset of the previous study's collective. Follow-up TEOAEs were performed on site (CERMEL, Hôpital Albert Schweitzer, Lambaréné, Gabon) or at the participants' homes; 33 out of 90 participants included in the initial investigation by Schmutzhard et al. could be retrieved and were re-examined, 31/33 could be included. Of the 57 missing participants, 51 could not be contacted, 1 had moved away, 4 refused to cooperate, and 1 had died. METHODS As in the initial investigation, participants of this prospective follow-up study were subjected to TEOAE examination on both ears separately. A wave correlation rate of > 60% on both ears was considered a "pass"; if one ear failed to pass, the examination was considered a "fail". The results were compared to the primary control group. Additionally, a questionnaire has been applied focusing on subsequent malaria infections between the primary inclusion and follow-up and subjective impairment of hearing and/or understanding. RESULTS The cohort's mean age was 9 years, 14 children were female, 18 male. 31 had been originally admitted with severe, one with cerebral malaria. 83.8% of participants (n = 26) presented with a TEOAE correlation rate of > 60% on both ears (the cut-off for good cochlear function); in the control group, 92.2% (n = 83) had passed TEOAE examination on both ears. Recurrent severe malaria was associated with a worse TEOAE correlation rate. Age at infection and gender had no influence on the outcome. CONCLUSIONS Cochlear malfunction seems to be persistent after 4 years in more than 16% of children hospitalized for malaria. In a healthy control group, this proportion was 7.8%. Yet, the severity of the initial TEOAE-decrease did not predict a worse outcome.
Collapse
Affiliation(s)
- Elisa Reiterer
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Simon Reider
- Department of Internal Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Peter Lackner
- Department of Neurology, NICU, Medical University Innsbruck, Innsbruck, Austria
| | - Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daniel Dejaco
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Patrick Zorowka
- Department of Hearing, Speech and Voice Disorders, Medical University, Innsbruck, Austria
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital (MRUG), Lambaréné, Gabon.,Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital (MRUG), Lambaréné, Gabon
| | - Erich Schmutzhard
- Department of Neurology, NICU, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|
11
|
Artemisinin-Based Combination Therapy Depressed Mitosis and Induced Chromosome Aberration in Onion Root Cells. J Toxicol 2018; 2018:4671326. [PMID: 30210539 PMCID: PMC6126092 DOI: 10.1155/2018/4671326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
Artemisinin-based combination therapy is used to treat uncomplicated malaria disease in most endemic countries. Although most antimalarial drugs are effective in killing the parasite, there is a concern of induced toxicity to the cell. Here, the cytogenotoxicity of dihydroartemisinin-piperaquine phosphate (DHAP), a coformulation for artemisinin-based combination therapy, was evaluated using Allium cepa model. The toxicity on the mitotic index varies with the duration of exposure and dose tested. Chromosome aberrations observed include chromosome fragments, chromosome bridges, binucleated cells, and micronucleated cells. This study showed that DHAP can depress mitosis and induce chromosome abnormalities. Their accumulation in cells may be inhibitory to cell division and growth. This calls for caution in the administration of artemisinin combination therapy for the treatment of malaria ailment. Wide spacing of dosage is therefore suggested in order to avoid the risk of genetic damage.
Collapse
|
12
|
Chan WC, Wai Chan DH, Lee KW, Tin WS, Wong HN, Haynes RK. Evaluation and optimization of synthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosylation methodologies on a lipophilic peroxide. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.04.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Artemisone and Artemiside Are Potent Panreactive Antimalarial Agents That Also Synergize Redox Imbalance in Plasmodium falciparum Transmissible Gametocyte Stages. Antimicrob Agents Chemother 2018; 62:AAC.02214-17. [PMID: 29866868 DOI: 10.1128/aac.02214-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
The emergence of resistance toward artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, the development of new artemisinins in combination with new drugs that impart activities toward both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular, those of resistant parasites, is urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives toward the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes, in the low-nanomolar range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displayed notable synergism. These data suggest that modulation of redox homeostasis is likely an important druggable process, particularly in gametocytes, and this finding thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.
Collapse
|
14
|
Bordi L, Avsic-Zupanc T, Lalle E, Vairo F, Capobianchi MR, da Costa Vasconcelos PF. Emerging Zika Virus Infection: A Rapidly Evolving Situation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 972:61-86. [PMID: 28032327 DOI: 10.1007/5584_2016_187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zika virus is a mosquito-borne flavivirus, firstly identified in Uganda and responsible for sporadic human cases in Africa and Asia until recently, when large outbreak occurred in Pacific Ocean and the Americas. Since the main vectors during its spread outside of Africa have been Ae. albopictus and Ae. aegypti mosquitoes, which are widely distributed all over the world, there is urgent need for a coordinated response for prevention and spread of ZIKV epidemics.Despite clinical manifestation of Zika virus infection are usually mild and self limiting, there are reports suggesting, during the recent epidemic, an association of ZIKV infection with severe consequences, including fetal/newborn microcephaly, due to vertical in utero transmission, autoimmune-neurological presentations including cranial nerve dysfunction, and Guillain-Barré Syndrome in adults. The primary mode of transmission of Zika virus between humans is through the bite of an infected female mosquito of the Aedes genus, but also sexual and blood transfusion transmission may occur. Moreover, a case of non-sexual spread from one person to another has been described, indicating that we still have more to learn about Zika transmission.Biological basis for pathogenetic effects are under investigation. Laboratory diagnosis is challenging since, so far, there are no "gold standard" diagnostic tools, and the low and short viremia in the acute phase, and together with the high cross-reactivity among the members of flavivirus genus are the most challenging aspects to be overcome.
Collapse
Affiliation(s)
- Licia Bordi
- Laboratory of virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Tatjana Avsic-Zupanc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Eleonora Lalle
- Laboratory of virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Francesco Vairo
- Emerging and Reemerging Infectious Disease Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of virology, National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | | |
Collapse
|
15
|
Bitta MA, Kariuki SM, Mwita C, Gwer S, Mwai L, Newton CRJC. Antimalarial drugs and the prevalence of mental and neurological manifestations: A systematic review and meta-analysis. Wellcome Open Res 2017. [PMID: 28630942 PMCID: PMC5473418 DOI: 10.12688/wellcomeopenres.10658.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Antimalarial drugs affect the central nervous system, but it is difficult to differentiate the effect of these drugs from that of the malaria illness. We conducted a systematic review to determine the association between anti-malarial drugs and mental and neurological impairment in humans. Methods: We systematically searched online databases, including Medline/PubMed, PsychoInfo, and Embase, for articles published up to 14th July 2016. Pooled prevalence, heterogeneity and factors associated with prevalence of mental and neurological manifestations were determined using meta-analytic techniques. Results: Of the 2,349 records identified in the initial search, 51 human studies met the eligibility criteria. The median pooled prevalence range of mental and neurological manifestations associated with antimalarial drugs ranged from 0.7% (dapsone) to 48.3% (minocycline) across all studies, while it ranged from 0.6% (pyrimethamine) to 42.7% (amodiaquine) during treatment of acute malaria, and 0.7% (primaquine/dapsone) to 55.0% (sulfadoxine) during prophylaxis. Pooled prevalence of mental and neurological manifestations across all studies was associated with an increased number of antimalarial drugs (prevalence ratio= 5.51 (95%CI, 1.05-29.04); P=0.045) in a meta-regression analysis. Headaches (15%) and dizziness (14%) were the most common mental and neurological manifestations across all studies. Of individual antimalarial drugs still on the market, mental and neurological manifestations were most common with the use of sulphadoxine (55%) for prophylaxis studies and amodiaquine (42.7%) for acute malaria studies. Mefloquine affected more domains of mental and neurological manifestations than any other antimalarial drug. Conclusions: Antimalarial drugs, particularly those used for prophylaxis, may be associated with mental and neurological manifestations, and the number of antimalarial drugs taken determines the association. Mental and neurological manifestations should be assessed following the use of antimalarial drugs.
Collapse
Affiliation(s)
- Mary A Bitta
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya
| | - Symon M Kariuki
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya
| | - Clifford Mwita
- Department of Surgery, Thika Level 5 Hospital, Thika, Kenya.,Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
| | - Samson Gwer
- Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya.,Department of Medical Physiology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Leah Mwai
- Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
| | - Charles R J C Newton
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya.,Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Bitta MA, Kariuki SM, Mwita C, Gwer S, Mwai L, Newton CRJC. Antimalarial drugs and the prevalence of mental and neurological manifestations: A systematic review and meta-analysis. Wellcome Open Res 2017. [PMID: 28630942 DOI: 10.12688/wellcomeopenres.10658.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Antimalarial drugs affect the central nervous system, but it is difficult to differentiate the effect of these drugs from that of the malaria illness. We conducted a systematic review to determine the association between anti-malarial drugs and mental and neurological impairment in humans. Methods: We systematically searched online databases, including Medline/PubMed, PsychoInfo, and Embase, for articles published up to 14th July 2016. Pooled prevalence, heterogeneity and factors associated with prevalence of mental and neurological manifestations were determined using meta-analytic techniques. Results: Of the 2,349 records identified in the initial search, 51 human studies met the eligibility criteria. The median pooled prevalence range of mental and neurological manifestations associated with antimalarial drugs ranged from 0.7% (dapsone) to 48.3% (minocycline) across all studies, while it ranged from 0.6% (pyrimethamine) to 42.7% (amodiaquine) during treatment of acute malaria, and 0.7% (primaquine/dapsone) to 55.0% (sulfadoxine) during prophylaxis. Pooled prevalence of mental and neurological manifestations across all studies was associated with an increased number of antimalarial drugs (prevalence ratio= 5.51 (95%CI, 1.05-29.04); P=0.045) in a meta-regression analysis. Headaches (15%) and dizziness (14%) were the most common mental and neurological manifestations across all studies. Of individual antimalarial drugs still on the market, mental and neurological manifestations were most common with the use of sulphadoxine (55%) for prophylaxis studies and amodiaquine (42.7%) for acute malaria studies. Mefloquine affected more domains of mental and neurological manifestations than any other antimalarial drug. Conclusions: Antimalarial drugs, particularly those used for prophylaxis, may be associated with mental and neurological manifestations, and the number of antimalarial drugs taken determines the association. Mental and neurological manifestations should be assessed following the use of antimalarial drugs.
Collapse
Affiliation(s)
- Mary A Bitta
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya
| | - Symon M Kariuki
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya
| | - Clifford Mwita
- Department of Surgery, Thika Level 5 Hospital, Thika, Kenya.,Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
| | - Samson Gwer
- Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya.,Department of Medical Physiology, School of Medicine, Kenyatta University, Nairobi, Kenya
| | - Leah Mwai
- Joanna Briggs Institute (JBI) Affiliate Centre for Evidence-Based Healthcare in Kenya, Clinical Research Evidence Synthesis and Translation Unit, Afya Research Africa, Nairobi, Kenya
| | - Charles R J C Newton
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research (Coast), Kilifi, Kenya.,Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Nevin RL, Croft AM. Psychiatric effects of malaria and anti-malarial drugs: historical and modern perspectives. Malar J 2016; 15:332. [PMID: 27335053 PMCID: PMC4918116 DOI: 10.1186/s12936-016-1391-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
The modern medical literature implicates malaria, and particularly the potentially fatal form of cerebral malaria, with a risk of neurocognitive impairment. Yet historically, even milder forms of malaria were associated in the literature with a broad range of psychiatric effects, including disorders of personality, mood, memory, attention, thought, and behaviour. In this article, the history of psychiatric effects attributed to malaria and post-malaria syndromes is reviewed, and insights from the historical practice of malariotherapy in contributing to understanding of these effects are considered. This review concludes with a discussion of the potentially confounding role of the adverse effects of anti-malarial drugs, particularly of the quinoline class, in the unique attribution of certain psychiatric effects to malaria, and of the need for a critical reevaluation of the literature in light of emerging evidence of the chronic nature of these adverse drug effects.
Collapse
Affiliation(s)
- Remington L. Nevin
- />Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Room 782, Baltimore, MD 21205 USA
| | - Ashley M. Croft
- />School of Pharmacy and Biomedical Science, University of Portsmouth, James Watson Building (West), Portsmouth, Hants PO1 2FR UK
| |
Collapse
|
18
|
Abstract
INTRODUCTION Antimalarial drugs are the primary weapon to treat parasite infection, save lives, and curtail further transmission. Accumulating data have indicated that at least some antimalarial drugs may contribute to severe neurological and/or psychiatric side effects which further complicates their use and limits the pool of available medications. AREAS COVERED In this review article, we summarize published scientific studies in search of evidence of the neuropsychiatric effects that may be attributed to the commonly used antimalarial drugs administered alone or in combination. Each individual drug was used as a search term in addition to keywords such as neuropsychiatric, adverse events, and neurotoxicity. EXPERT OPINION Accumulating data based on published reports over several decades have suggested that among the major commonly used antimalarial drugs, only mefloquine exhibited clear indications of serious neurological and/or psychiatric side effects. A more systematic approach to assess the neuropsychiatric adverse effects of new or repurposed antimalarial drugs on their safety, tolerability and efficacy phases of clinical studies and in post-marketing surveillance, is needed to ensure that these life-saving tools remain available and can be prescribed with appropriate caution and medical judgment.
Collapse
Affiliation(s)
- Bryan Grabias
- a Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| | - Sanjai Kumar
- a Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases , Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring , MD , USA
| |
Collapse
|
19
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Abstract
Pharmacokinetic studies are essential for the development of safe and effective antimalarial treatment regimens, but there are clinical situations in which there are limited data on drug disposition. These include very young children, pregnant women, and where drug interactions may alter treatment response. New approaches such as sampling methods involving low volumes and minimal preparation such as dried blood spots, highly sensitive and specific multidrug assays, and population PK analyses which can evaluate the influence of covariates such as age, pregnancy and coadministered therapies, can generate robust data that inform treatment in the most challenging situations in the tropics.
Collapse
Affiliation(s)
- Timothy M E Davis
- a School of Medicine and Pharmacology, Fremantle Hospital , University of Western Australia , Fremantle , Western Australia , Australia
| |
Collapse
|
21
|
In vivo curative and protective potential of orally administered 5-aminolevulinic acid plus ferrous ion against malaria. Antimicrob Agents Chemother 2015; 59:6960-7. [PMID: 26324278 PMCID: PMC4604406 DOI: 10.1128/aac.01910-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 08/20/2015] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a naturally occurring amino acid present in diverse organisms and a precursor of heme biosynthesis. ALA is commercially available as a component of cosmetics, dietary supplements, and pharmaceuticals for cancer diagnosis and therapy. Recent reports demonstrated that the combination of ALA and ferrous ion (Fe2+) inhibits the in vitro growth of the human malaria parasite Plasmodium falciparum. To further explore the potential application of ALA and ferrous ion as a combined antimalarial drug for treatment of human malaria, we conducted an in vivo efficacy evaluation. Female C57BL/6J mice were infected with the lethal strain of rodent malaria parasite Plasmodium yoelii 17XL and orally administered ALA plus sodium ferrous citrate (ALA/SFC) as a once-daily treatment. Parasitemia was monitored in the infected mice, and elimination of the parasites was confirmed using diagnostic PCR. Treatment of P. yoelii 17XL-infected mice with ALA/SFC provided curative efficacy in 60% of the mice treated with ALA/SFC at 600/300 mg/kg of body weight; no mice survived when treated with vehicle alone. Interestingly, the cured mice were protected from homologous rechallenge, even when reinfection was attempted more than 230 days after the initial recovery, indicating long-lasting resistance to reinfection with the same parasite. Moreover, parasite-specific antibodies against reported vaccine candidate antigens were found and persisted in the sera of the cured mice. These findings provide clear evidence that ALA/SFC is effective in an experimental animal model of malaria and may facilitate the development of a new class of antimalarial drug.
Collapse
|
22
|
Severe malaria in children leads to a significant impairment of transitory otoacoustic emissions--a prospective multicenter cohort study. BMC Med 2015; 13:125. [PMID: 26021376 PMCID: PMC4457990 DOI: 10.1186/s12916-015-0366-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Severe malaria may influence inner ear function, although this possibility has not been examined prospectively. In a retrospective analysis, hearing impairment was found in 9 of 23 patients with cerebral malaria. An objective method to quickly evaluate the function of the inner ear are the otoacoustic emissions. Negative transient otoacoustic emissions are associated with a threshold shift of 20 dB and above. METHODS This prospective multicenter study analyses otoacoustic emissions in patients with severe malaria up to the age of 10 years. In three study sites (Ghana, Gabon, Kenya) 144 patients with severe malaria and 108 control children were included. All malaria patients were treated with parental artesunate. RESULTS In the control group, 92.6 % (n = 108, 95 % confidence interval 86.19-6.2 %) passed otoacoustic emission screening. In malaria patients, 58.5 % (n = 94, malaria vs controls p < 0.001, 95 % confidence interval 48.4-67.9 %) passed otoacoustic emission screening at the baseline measurement. The value increased to 65.2 % (n = 66, p < 0.001, 95 % confidence interval 53.1-75.5 %) at follow up 14-28 days after diagnosis of malaria. The study population was divided into severe non-cerebral malaria and severe malaria with neurological symptoms (cerebral malaria). Whereas otoacoustic emissions in severe malaria improved to a passing percentage of 72.9 % (n = 48, 95 % confidence interval 59-83.4 %) at follow-up, the patients with cerebral malaria showed a drop in the passing percentage to 33 % (n = 18) 3-7 days after diagnosis. This shows a significant impairment in the cerebral malaria group (p = 0.012 at days 3-7, 95 % confidence interval 16.3-56.3 %; p = 0.031 at day 14-28, 95 % confidence interval 24.5-66.3 %). CONCLUSION The presented data show that 40 % of children have involvement of the inner ear early in severe malaria. In children, audiological screening after severe malaria infection is not currently recommended, but is worth investigating in larger studies.
Collapse
|
23
|
Yansouni CP, Libman MD. Does post-artesunate delayed haemolysis change practice? Travel Med Infect Dis 2015; 13:122-3. [DOI: 10.1016/j.tmaid.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
|